Newer
Older
" <tr>\n",
" <th>Male</th>\n",
" <td>2626</td>\n",
" <td>29</td>\n",
" <td>1621</td>\n",
" <td>427</td>\n",
" <td>9</td>\n",
" <td>285</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"race African-American Asian Caucasian Hispanic Native American Other\n",
"sex \n",
"Female 549 2 482 82 2 58\n",
"Male 2626 29 1621 427 9 285"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tab = compas.groupby(['sex', 'race']).size()\n",
"tab.unstack()"
]
},
{
"cell_type": "code",
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHlRJREFUeJzt3XuYXFWd7vHvS8ItiIRLwJCEBIbIRUYQA6LMUTSogAg4RwXG0YBgRgevOEcuzoh6hhk4OqI+KorcVUBABWRQiNzUOXIJiNwZIiBpEkhrAkFQYuCdP/ZqrXQq6dqdrqru9Pt5nnpq77VX7d/alU79aq+1a23ZJiIiolXrdLsBERExsiRxRERELUkcERFRSxJHRETUksQRERG1JHFEREQtSRzRVpJ+JGlWWT5C0s+73aZukrSVpJ9KelrSf9R87TRJljS2rN8g6egWX7uPpJ4W60rSOZKWSLqlThtb3L8lbT/U+43OGdvtBkT3SXoE2ApYDjwP3AucD5xh+4U12bft/de4gWuX2cBvgRd7+P6I6m+ANwKTbT/T7casiqRPA9vb/vtut2W0yRlH9Hmr7Y2BqcApwHHAWd1tUudIGtOhUFOBe4dx0oCqjY8M56QR3ZXEESuw/ZTtK4BDgVmSdgGQtL6kz0t6VNITkr4uacO+10k6WNIdkpZK+rWk/Ur5KrtTJO0oaY6kxZIekPTOVbWrdHM9VLp4Hpb0roZt75N0X9l2r6TdS/lOJf6Tku6RdFDDa86VdLqkqyQ9A7x+dccoaQtJV5Z9LZb0M0lN//9Ieo2kWyU9VZ5f0xcTmAV8QtLvJe3b5LVvkfTL8j7OL9+qa5O0YTnGJZLuBfbot31rSd+T1Fvezw+X8qOAM4FXlzZ+ppQfWP59n5T0/yW9vGFfj0j6J0l3lmP+rqQNGrb/H0kLJS2Q9N5Wj7eha25W+Tf5raRPlm37AScCh5Z2/qqUr/LvJIaQ7TxG+QN4BNi3SfmjwAfK8heBK4DNgI2BHwL/XrbtCTxF1b2xDjAJ2LFsuwE4uiwfAfy8LG8EzAeOpOoy3Z2qC+dlTdqxEbAU2KGsT+yrB7wDeIzqg1HA9lTfmNcF5lF9uKwHvAF4umEf55Y2713avMEAx/jvwNfLftcF/hegJm3dDFgCvLsc1+FlffOGuP+6mn+LfYC/Lm16OfAEcEjZNg0wMLb/e9tkP6cAPyvtmQLcDfSUbesAtwGfKu/NdsBDwJv7/zuV9d2BRcCrgDFUye8RYP2Gv59bgK1LvPuA95dt+5Vj2KX8O15QjmH7Gsf7TWBDYFfgOWCnsv3TwLdb+TvJY2gfOeOI1VkAbCZJwPuAj9lebPtp4N+Aw0q9o4Czbc+x/YLtx2zfP8C+D6TqDjnH9nLbtwPfA96+ivovALtI2tD2Qtv3lPKjgf9n+1ZX5tn+DbAX8CLgFNvLbF8HXEn1Qd7nctv/5Woc57kBjvFPVB9EU23/yfbPXD6d+nkL8KDtb5XjuhC4H3jrAO8HALZvsH1XeR/vBC4EXtfKa/t5J3ByOZb5wJcbtu0BTLD92fLePET14XxYsx1RvS/fsH2z7edtn0f1fu3VUOfLthfYXkyVcHdraMc5tu921fX16UEc72ds/8H2r4BfUSWQVVnV30kMoSSOWJ1JwGJgAjAOuK10VTwJ/LiUQ/WN9tc19z0VeFXf/so+3wW8pH/F8oFzKPB+YKGk/5S04wCxtwbme8XB/d+UY+ozv2F5oGP8HNUZzDWlK+T4VRzX1iVOo/5xV0nSqyRdX7qQnqI65i1aeW2TdjQeX2ObpgJb93vvT6S6QKKZqcDH+9WfUmL0ebxh+VmqpD1QO1o93lXtewUD/J3EEEriiKYk7UH1Yfdzqi6kP1Cd9o8vj01s9/0Hng/8Vc0Q84EbG/Y33vaLbH+gWWXbV9t+I9W3/vupviGvLvYCYEq/cYhtqLq1/rzbhuXVHqPtp21/3PZ2VGcPx0qauYq4U/uV9Y+7OhdQdZdNsb0JVfeYWnxto4VUH+6NbegzH3i433u/se0DVrGv+VRnL431x5WzqTVpB6zZ8a50xreav5MYQkkcsQJJL5Z0IHARVf/xXeVb+zeB0yRtWepNkvTm8rKzgCMlzZS0Ttk20De9K4GXSnq3pHXLYw9JOzVp01aSDpK0EVUXye+pLhuGaiD3nyS9UpXtJU0FbgaeoRqIXlfSPlQf+Bc1a8xAx1gGh7cv3XZLS/znm+zqqnJcfydprKRDgZ3L8bZiY2Cx7T9K2hP4uxZf19/FwAmSNpU0GfhQw7ZbgKWSjiuD6GMk7VK+LDTzTeD95exAkjYqg9obt9iOIyTtLGkccFK/7WtyvE8A0/q+HAzwdxJDKIkj+vxQ0tNU3y4/CXyBauC6z3FUXTU3SVoK/ATYAcD2LaXuaVQDzjey8rfuFZQxhDdR9asvoOqOOBVYv0n1dYCPl3qLqfrA/7Hs5xLgZKpvrk8DlwGb2V4GHATsT3U28TXgPQOMvazyGIHpZf33wC+Ar9m+oclx/Y5q/ObjwO+ATwAH2v7t6t6PBv8IfLb8W3yK6oN3MD5D1S30MHAN8K2GNj5PlUR3K9t/S5WAN2m2I9tzqcY5vkI10D+PagB9QLZ/RHXRwXXlddf1q7Imx3tJef6dpNtZzd9JDC01H9+LiIhoLmccERFRSxJHRETUksQRERG1JHFEREQta+XsuFtssYWnTZvW7WZERIwot912229tTxio3lqZOKZNm8bcuXO73YyIiBFFUv9ZD5pKV1VERNSSxBEREbUkcURERC1JHBERUUsSR0RE1JLEERERtSRxRERELUkcERFRSxJHRETUksTRxMTJ2yCprY+Jk/vfQTMiYmRYK6ccWVOPPzafqce1eqfPwfnNqQe2df8REe2SM46IiKgliSMiImpJ4oiIiFqSOCIiopYkjoiIqCWJIyIiakniiIiIWpI4IiKilrYlDklnS1ok6e6Gss9Jul/SnZJ+IGl8w7YTJM2T9ICkNzeU71fK5kk6vl3tjYiI1rTzjONcYL9+ZXOAXWy/HPhv4AQASTsDhwEvK6/5mqQxksYAXwX2B3YGDi91IyKiS9qWOGz/FFjcr+wa28vL6k3A5LJ8MHCR7edsPwzMA/Ysj3m2H7K9DLio1I2IiC7p5hjHe4EfleVJwPyGbT2lbFXlERHRJV1JHJI+CSwHvtNX1KSaV1PebJ+zJc2VNLe3t3doGhoRESvpeOKQNAs4EHiX7b4k0ANMaag2GViwmvKV2D7D9gzbMyZMmDD0DY+ICKDDiUPSfsBxwEG2n23YdAVwmKT1JW0LTAduAW4FpkvaVtJ6VAPoV3SyzRERsaK23Y9D0oXAPsAWknqAk6iuolofmCMJ4Cbb77d9j6SLgXupurCOsf182c8HgauBMcDZtu9pV5sjImJgbUsctg9vUnzWauqfDJzcpPwq4KohbFpERKyB/HI8IiJqSeKIiIhakjgiIqKWJI6IiKgliSMiImpJ4oiIiFqSOCIiopYkjoiIqCWJIyIiakniiIiIWpI4IiKiliSOiIioJYkjIiJqSeKIiIhakjgiIqKWJI6IiKgliSMiImpJ4oiIiFqSOCIiopYkjoiIqCWJIyIiakniiIiIWpI4IiKiliSOiIiopW2JQ9LZkhZJuruhbDNJcyQ9WJ43LeWS9GVJ8yTdKWn3htfMKvUflDSrXe2NiIjWtPOM41xgv35lxwPX2p4OXFvWAfYHppfHbOB0qBINcBLwKmBP4KS+ZBMREd3RtsRh+6fA4n7FBwPnleXzgEMays935SZgvKSJwJuBObYX214CzGHlZBQRER3U6TGOrWwvBCjPW5byScD8hno9pWxV5SuRNFvSXElze3t7h7zhERFRGS6D42pS5tWUr1xon2F7hu0ZEyZMGNLGRUTEX3Q6cTxRuqAoz4tKeQ8wpaHeZGDBasojIqJLOp04rgD6royaBVzeUP6ecnXVXsBTpSvrauBNkjYtg+JvKmUREdElY9u1Y0kXAvsAW0jqobo66hTgYklHAY8C7yjVrwIOAOYBzwJHAtheLOn/AreWep+13X/APSIiOqhticP24avYNLNJXQPHrGI/ZwNnD2HTIiJiDQyXwfGIiBghkjgiIqKWJI6IiKgliSMiImpJ4oiIiFqSOCIiopYkjoiIqCWJIyIiakniiIiIWpI4IiKiliSOiIioJYkjIiJqSeKIiIhakjgiIqKWJI6IiKgliSMiImpJ4oiIiFqSOCIiopYkjoiIqCWJIyIiakniiIiIWpI4IiKilpYSh6Rd2t2QqEycvA2S2vqYOHmbbh9mRIxgY1us93VJ6wHnAhfYfnJNgkr6GHA0YOAu4EhgInARsBlwO/Bu28skrQ+cD7wS+B1wqO1H1iT+cPb4Y/OZetyVbY3xm1MPbOv+I2Lt1tIZh+2/Ad4FTAHmSrpA0hsHE1DSJODDwAzbuwBjgMOAU4HTbE8HlgBHlZccBSyxvT1wWqkXERFd0vIYh+0HgX8GjgNeB3xZ0v2S/nYQcccCG0oaC4wDFgJvAC4t288DDinLB5d1yvaZkjSImBERMQRaHeN4uaTTgPuoPuDfanunsnxanYC2HwM+DzxKlTCeAm4DnrS9vFTrASaV5UnA/PLa5aX+5k3aOFvSXElze3t76zQpIiJqaPWM4ytU4w672j7G9u0AthdQnYW0TNKmVGcR2wJbAxsB+zep6r6XrGbbXwrsM2zPsD1jwoQJdZoUERE1tDo4fgDwB9vPA0haB9jA9rO2v1Uz5r7Aw7Z7y76+D7wGGC9pbDmrmAwsKPV7qMZWekrX1ibA4poxIyJiiLR6xvETYMOG9XGlbDAeBfaSNK6MVcwE7gWuB95e6swCLi/LV5R1yvbrbK90xhEREZ3RauLYwPbv+1bK8rjBBLR9M9Ug9+1Ul+KuA5xBNeh+rKR5VGMYZ5WXnAVsXsqPBY4fTNyIiBgarXZVPSNp976xDUmvBP4w2KC2TwJO6lf8ELBnk7p/BN4x2FgRETG0Wk0cHwUukdQ37jAROLQ9TYqIiOGspcRh+1ZJOwI7UF3ldL/tP7W1ZRERMSy1esYBsAcwrbzmFZKwfX5bWhUREcNWS4lD0reAvwLuAJ4vxaaaQyoiIkaRVs84ZgA75zLYiIho9XLcu4GXtLMhERExMrR6xrEFcK+kW4Dn+gptH9SWVkVExLDVauL4dDsbERERI0erl+PeKGkqMN32TySNo7qPRkREjDKtTqv+PqppQr5RiiYBl7WrURERMXy1Ojh+DLA3sBT+fFOnLdvVqIiIGL5aTRzP2V7Wt1KmN8+luRERo1CrieNGSSdS3e71jcAlwA/b16yIiBiuWk0cxwO9VNOg/wNwFTXv/BcREWuHVq+qegH4ZnlERMQo1upcVQ/T/D7f2w15iyIiYlirM1dVnw2obqy02dA3J7pp4uRtePyx+W2N8ZJJU1jY82hbY0REe7XaVfW7fkVflPRz4FND36Tolscfm8/U465sa4zfnHpgW/cfEe3XalfV7g2r61CdgWzclhZFRMSw1mpX1X80LC8HHgHeOeStiVEr3WQRI0erXVWvb3dDYnRLN1nEyNFqV9Wxq9tu+wtD05yIiBju6lxVtQdwRVl/K/BToL19CxERMezUuZHT7rafBpD0aeAS20cPJqik8cCZwC5Uvw95L/AA8F1gGmUMxfYSSQK+BBwAPAscYfv2wcSNiIg11+qUI9sAyxrWl1F9wA/Wl4Af294R2BW4j2pak2ttTweuLesA+wPTy2M2cPoaxI2IiDXU6hnHt4BbJP2A6gzhbcD5gwko6cXAa4EjAMqsu8skHQzsU6qdB9wAHAccDJxv28BNksZLmmh74WDiR0TEmmnpjMP2ycCRwBLgSeBI2/82yJjbUU2YeI6kX0o6U9JGwFZ9yaA8993vYxIrjqX0lLIVSJotaa6kub29vYNsWkREDKTVriqAccBS218CeiRtO8iYY4HdgdNtvwJ4hr90SzWjJmXN5s06w/YM2zMmTJgwyKZFRMRAWr117ElU3UYnlKJ1gW8PMmYP0GP75rJ+KVUieULSxBJvIrCoof6UhtdPBhYMMnZERKyhVs843gYcRHV2gO0FDHLKEduPA/Ml7VCKZgL3Ul3qO6uUzQIuL8tXAO9RZS/gqYxvxFCaOHkbJLX1MXHyNt0+zIgh0+rg+DLblmSAMiaxJj4EfEfSesBDVOMn6wAXSzoKeJRqBl6obhp1ADCP6nLcI9cwdsQK8qv1iHpaTRwXS/oGMF7S+6h+dzHomzrZvoMVp2rvM7NJXQPHDDZWREQMrVbnqvp8udf4UmAH4FO257S1ZRERMSwNmDgkjQGutr0vkGQRETHKDTg4bvt54FlJm3SgPRERMcy1OsbxR+AuSXMoV1YB2P5wW1oVERHDVquJ4z/LIyIiRrnVJg5J29h+1PZ5nWpQREQMbwONcVzWtyDpe21uS8Sokx8fxkg0UFdV4zxR27WzIRGjUX58GCPRQGccXsVyRESMUgOdcewqaSnVmceGZZmybtsvbmvrIiJi2Flt4rA9plMNiYiIkaHO/TgiYi2SgfkYrFZ/xxERa5kMzMdg5YwjIiJqSeKIiIhakjgiIqKWJI6IiKgliSMiImpJ4oiIiFqSOCIiopYkjoiIqCWJIyIiakniiIiIWrqWOCSNkfRLSVeW9W0l3SzpQUnflbReKV+/rM8r26d1q80RMTS6OU9W5uhac92cq+ojwH1A39TspwKn2b5I0teBo4DTy/MS29tLOqzUO7QbDY6IodHNebIyR9ea68oZh6TJwFuAM8u6gDcAl5Yq5wGHlOWDyzpl+8xSPyIiuqBbXVVfBD4BvFDWNweetL28rPcAk8ryJGA+QNn+VKm/AkmzJc2VNLe3t7edbY+IGNU6njgkHQgssn1bY3GTqm5h218K7DNsz7A9Y8KECUPQ0oiIaKYbYxx7AwdJOgDYgGqM44vAeEljy1nFZGBBqd8DTAF6JI0FNgEWd77ZEREBXTjjsH2C7cm2pwGHAdfZfhdwPfD2Um0WcHlZvqKsU7ZfZ3ulM46IiOiM4fQ7juOAYyXNoxrDOKuUnwVsXsqPBY7vUvsiIoIu3zrW9g3ADWX5IWDPJnX+CLyjow2LiIhVGk5nHBERMQIkcURERC1JHBERUUsSR0RE1JLEERERtSRxRERELUkcERFRSxJHRETUksQRERG1JHFEREQtSRwRER2ytty2tqtzVUVEjCZry21rc8YRERG1JHFEREQtSRwREVFLEkdERNSSxBEREbUkcURERC1JHBERUUsSR0RE1JLEERERtSRxRERELUkcERFRS8cTh6Qpkq6XdJ+keyR9pJRvJmmOpAfL86alXJK+LGmepDsl7d7pNkdExF9044xjOfBx2zsBewHHSNoZOB641vZ04NqyDrA/ML08ZgOnd77JERHRp+OJw/ZC27eX5aeB+4BJwMHAeaXaecAhZflg4HxXbgLGS5rY4WZHRETR1TEOSdOAVwA3A1vZXghVcgG2LNUmAfMbXtZTyiIiogu6ljgkvQj4HvBR20tXV7VJmZvsb7akuZLm9vb2DlUzIyKin64kDknrUiWN79j+fil+oq8LqjwvKuU9wJSGl08GFvTfp+0zbM+wPWPChAnta3xExCjXjauqBJwF3Gf7Cw2brgBmleVZwOUN5e8pV1ftBTzV16UVERGd141bx+4NvBu4S9IdpexE4BTgYklHAY8C7yjbrgIOAOYBzwJHdra5ERHRqOOJw/bPaT5uATCzSX0Dx7S1URER0bL8cjwiImpJ4oiIiFqSOCIiopYkjoiIqCWJIyIiakniiIiIWpI4IiKiliSOiIioJYkjIiJqSeKIiIhakjgiIqKWJI6IiKgliSMiImpJ4oiIiFqSOCIiopYkjoiIqCWJIyIiakniiIiIWpI4IiKiliSOiIioJYkjIiJqSeKIiIhakjgiIqKWJI6IiKhlxCQOSftJekDSPEnHd7s9ERGj1YhIHJLGAF8F9gd2Bg6XtHN3WxURMTqNiMQB7AnMs/2Q7WXARcDBXW5TRMSoJNvdbsOAJL0d2M/20WX93cCrbH+woc5sYHZZ3QF4oINN3AL4bQfjJXZiJ/boid/J2FNtTxio0thOtGQIqEnZChnP9hnAGZ1pzookzbU9I7ETO7HXvtjdjt/tY29mpHRV9QBTGtYnAwu61JaIiFFtpCSOW4HpkraVtB5wGHBFl9sUETEqjYiuKtvLJX0QuBoYA5xt+54uN6tRV7rIEjuxE3tUxO/2sa9kRAyOR0TE8DFSuqoiImKYSOKIiIhakjjWgKSzJS2SdHcXYk+RdL2k+yTdI+kjHYy9gaRbJP2qxP5Mp2I3tGGMpF9KurLDcR+RdJekOyTN7XDs8ZIulXR/+Xd/dYfi7lCOt++xVNJHOxG7xP9Y+Tu7W9KFkjboYOyPlLj3tPuYm32eSNpM0hxJD5bnTdvZhlYlcayZc4H9uhR7OfBx2zsBewHHdHAalueAN9jeFdgN2E/SXh2K3ecjwH0djtnn9bZ368K19V8Cfmx7R2BXOnT8th8ox7sb8ErgWeAHnYgtaRLwYWCG7V2oLo45rEOxdwHeRzVzxa7AgZKmtzHkuaz8eXI8cK3t6cC1Zb3rkjjWgO2fAou7FHuh7dvL8tNUHyKTOhTbtn9fVtctj45dZSFpMvAW4MxOxew2SS8GXgucBWB7me0nu9CUmcCvbf+mgzHHAhtKGguMo3O/4doJuMn2s7aXAzcCb2tXsFV8nhwMnFeWzwMOaVf8OpI41gKSpgGvAG7uYMwxku4AFgFzbHcsNvBF4BPACx2M2cfANZJuK9PcdMp2QC9wTumiO1PSRh2M3+cw4MJOBbP9GPB54FFgIfCU7Ws6FP5u4LWSNpc0DjiAFX+I3Alb2V4I1ZdFYMsOx28qiWOEk/Qi4HvAR20v7VRc28+XrovJwJ7ltL7tJB0ILLJ9WyfiNbG37d2pZmo+RtJrOxR3LLA7cLrtVwDP0OFui/Lj24OASzoYc1Oqb93bAlsDG0n6+07Etn0fcCowB/gx8CuqLuJRL4ljBJO0LlXS+I7t73ejDaW75AY6N9azN3CQpEeoZkl+g6Rvdyg2theU50VU/fx7dih0D9DTcGZ3KVUi6aT9gdttP9HBmPsCD9vutf0n4PvAazoV3PZZtne3/VqqbqQHOxW7eELSRIDyvKjD8ZtK4hihJImqv/s+21/ocOwJksaX5Q2p/nPf34nYtk+wPdn2NKpuk+tsd+QbqKSNJG3ctwy8iao7o+1sPw7Ml7RDKZoJ3NuJ2A0Op4PdVMWjwF6SxpW/+Zl08KIISVuW522Av6Xzx38FMKsszwIu73D8pkbElCPDlaQLgX2ALST1ACfZPqtD4fcG3g3cVcYaAE60fVUHYk8Ezis32FoHuNh2Ry+L7ZKtgB9Un1+MBS6w/eMOxv8Q8J3SZfQQcGSnApc+/jcC/9CpmAC2b5Z0KXA7VTfRL+nsFBzfk7Q58CfgGNtL2hWo2ecJcApwsaSjqJLoO9oVv45MORIREbWkqyoiImpJ4oiIiFqSOCIiopYkjoiIqCWJIyIiakniiFFL0vNlttd7yky/x0oa1P8JSZ+VtG9ZvkFSpydAjOiY/I4jRrM/lGlT+n7odQGwCdX187XY/tQQt23QJI2x/Xy32xFrr5xxRPDnKURmAx9UZYykz0m6VdKdkv78wzdJnyj35PiVpFNK2bmS3t5/v5LeJOkXkm6XdEmZW6x/nQ9LurfEuaiUvUjSOSXOnZL+dyk/vJTdLenUhn38vpz13Ay8WtIrJd1YJmO8um/aioihkDOOiML2Q6WrakuqifWesr2HpPWB/5J0DbAj1dTWr7L9rKTNVrU/SVsA/wzsa/sZSccBxwKf7Vf1eGBb28/1TeUC/EuJ/9dlX5tK2ppq0r1XAkuoZuk9xPZlwEbA3bY/VeYwuxE42HavpEOBk4H3rvGbFEESR0R/Ks9vAl7ecBaxCTCdal6uc2w/C2B7dfdj2QvYmSrpAKwH/KJJvTupphK5DLislO1Lww2LbC8pM/HeYLsXQNJ3qO7RcRnwPNWElwA7ALsAc0rcMVRTkkcMiSSOiELSdlQfwIuoEsiHbF/dr85+tH7TKlHdq+TwAeq9hSoBHAT8i6SXldf2j6P+L2zwx4ZxDQH32O7IrWVj9MkYRwTVjL/A14GvuJrA7WrgA6XbB0kvLTPiXgO8t0z6x+q6qoCbgL0lbV/qjpP00n5x1wGm2L6e6uZU44EXlTgfbKi3KdWNul4naYsyweThVF1S/T0ATFC5J7mkdUsyihgSOeOI0WzDMrPwulQzr34L6Jui/kxgGnB7mc67FzjE9o8l7QbMlbQMuAo4sdnOy/jCEcCFZZwEqjGP/26oNgb4tqRNqM4UTrP9pKR/Bb4q6W6qs6DP2P6+pBOA60vdq2yvNM227WWli+3LZb9jqe6aeM8g3qOIlWR23IiIqCVdVRERUUsSR0RE1JLEERERtSRxRERELUkcERFRSxJHRETUksQRERG1/A/2xMifBaoOpgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA/cAAAH1CAYAAACz0Q7tAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XnYZGddJ/zvjzRb2AIkQJtOJyBh0xkWWcLg6EiAYYkkzoCCDGRiJI6CwuBAIoNsr85F5h0BGRVlEQKy7zGTFwgIODrsENmCJkTS3UmahCVhXxJ/80ed9n1onu5Ud56nq+/qz+e66qpz7nPXqd9zOnDXt859TlV3BwAAABjXdRZdAAAAAHDtCPcAAAAwOOEeAAAABifcAwAAwOCEewAAABiccA8AAACDE+7hAFRVN6yqv6yqK6vqTbvo85iqeve+rm3RqupPq+p3F10HAIyuqr5ZVbdbdB1woCi/cw/Lraren+SuSW7T3d+b2h6b5DeT/KvuvmqB5a2qqirJF5J8t7vvsuh6AGB/UlW/nOQpSe6U5BtJzk3y+939NwstDFgoZ+5hiVXVUUn+dZJO8vAVm45M8g+7CvZVtWHdi9u9n0lyqyS3q6p77as3raqD9tV7AcDeqKqnJHlhkv+W5NZJNif5kyTHL7IuYPGEe1huj0vyoSSvTHJiklTVc5I8M8kvTdPlTq6q/1hVf1tVL6iqryZ59tT2z2cAquonquqcqvpqVX2pqp4+td+7qj5YVVdU1aVV9UdVdb0Vr+uq+k9VdX5Vfa2q/ng6M787JyZ5R5Kzd9S9Yn/vr6rfq6r/M9X/l1V1y6p6TVV9vao+On2psaP/nVbU/fdV9Ysrtr2yql5cVWdX1beS/NzU9nsr+hxfVedO+/5CVT14aj+pqs6rqm9U1YVV9WsrXvNvqmpbVf12VV02HZeT5vkHA4BdqaqbJXlukid091u7+1vd/YPu/svufuruxuSqOmoakzes2N/7q+pXV6w/fsXY9rmqusfUfto0Bu5o/4UVr7l9VX1gutTvy1X1hhXbuqpuPy0/rKo+OY2nW6vq2Sv67ajtxKraMu3nv67joYSlJNzDcntcktdMj39bVbfu7mdl9m3/G7r7xt398qnvfZJcmNkZ899fuZOqukmS9yR5Z5IfS3L7JO+dNl+d5D8nOTTJfZMcm+Q3dqrjuCT3yuzygF9M8m93VXBVHZzkESvqftTKLwsmj0ry2CSHJ/nxJB9M8ookt0hyXpJnTfu6UZJzkrx2+rseneRPquonVuzrl6e/9yZJfmg6Y1XdO8mrkjw1ySGZzSj44rT5sunvummSk5K8YMeHoMltktxsqvHkJH9cVTff1d8NAHO4b5IbJHnbLrbPMyavqqoemeTZmX12uGlmM/6+Mm3+QmYzAW+W5DlJ/qKqNk7b/p8k705y8ySbkvzPXbzFt6Z9H5LkYUl+vapO2KnPTye541T3M6vqzvPUDswI97CkquqnM5t+/8bu/nhmA/Mv7+Yll3T3/+zuq7r7OzttOy7J9u7+g+7+bnd/o7s/nCTd/fHu/tD0ui8m+bMkP7vT65/X3Vd095Yk70tyt93U8e+SfC+zDwpnJdmQ2YeAlV7R3V/o7iuT/H9JvtDd75kuM3hTkruvqPuL3f2Kqb5PJHlLZl8e7PCO7v7b7v6n7v7uTu9zcpI/7+5zpu0Xd/fnp7/7f001dHd/YKr3X6947Q+SPHc6o3J2km9m9oEFAPbWLZN8eVeX1c05Ju/Kryb579390Wlsu6C7L5r2+6buvmQaC9+Q5Pwk955e94PMPm/82PQZYdXr/rv7/d396Wkfn0ryulVqe053f6e7/y7J32V2UgCYk3APy+vEJO/u7i9P66/NTlPcd7J1N9uOyOzLgR9RVXeoqrOqantVfT2zWQGH7tRt+4rlbye58fTaz05T679ZVTuC8YmZfSFx1XQDwLeuUveXVix/Z5X1G0/LRya5zzQ98YqquiLJYzI7q77D3v7dD6mqD03T/a9I8tD88N/9lZ0+fP3z3w0Ae+krSQ6tXdwbZ84xeVd2N+Y9brpEbcdY+pMr9vu0JJXkI9O4/iu72Md9qup9VXV5VV2Z5D+tUtuqnxeA+Sz6plnAOqiqG2Y2/f2gqtoxUF4/ySFVtatvwXf30xlbM5vSvpoXJ/lkkkd39zeq6sn54TPju9TdK6fHp6o2Jbl/kntX1b+fmg9OcoOqOnTFFxXz2prkA939wN2VcQ2v//GdG6vq+pnNAHhcZmf+f1BVb8/sww0ArJcPJvlukhOSvHmV7bsbk781PR+c5OvT8s5fdq825h2Z5KWZTZX/YHdfXVXnZhrzunt7ksdPfX86yXuq6q+7+4KddvXaJH+U5CHd/d2qemHm/+IBmIMz97CcTsjsuru7ZDYF/m5J7pzkf2cWSPfUWUluU1VPrqrrV9VNquo+07abZPYh4ZtVdackv34t6n5skn/IbPr6jrrvkGRbdv3lwjXVfYeqemxVXXd63GsPruF7eZKTqurYqrpOVR0+/Y3Xy+zLksuTXFVVD0nyoL2oDwDmNl2O9szM7uNyQlUdPI1tD6mq/57djMndfXmSi5P8h6o6aDrDvjLMvyzJf6mqn6qZ20/B/kaZfRF+eTK7oWxmZ+4zrT9y+nI+Sb429b16lfJvkuSrU7C/d3Z/qSCwF4R7WE4nZnZd+pbu3r7jkdk35o/JHs7a6e5vJHlgkp/PbMrc+Ul+btr8XzIboL+R2Tf7b1htH3tQ95+srHmq+0+z+0sKdlf3gzK7Ad8lU+2nZxbM53n9RzLdLC/JlUk+kOTIab+/leSNmX2Q+eUkZ+5pfQCwp7r7+Zn9xv0zMgvcW5M8Mcnbc81j8uMzu0nsV5L8RJL/s2K/b8rsBrOvnV7/9iS36O7PJfmDzGYNfCnJv0jytyv2ea8kH66qb2Y2Fj6pu/9xldJ/I8lzq+obmX1B8ca9OwLArlT37makAgAAAPs7Z+4BAABgcMI9AAAADE64BwAAgMEJ9wAAADA44R4AAAAGt0c/h3UgO/TQQ/uoo45adBkAsE99/OMf/3J3H7boOozDAByo5h2Lhfs5HXXUUfnYxz626DIAYJ+qqosWXUNiHAbgwDXvWGxaPgAAAAxOuAcAAIDBCfcAAAAwOOEeAAAABifcAwAAwOCEewAAABiccA8AAACDE+4BAABgcMI9AAAADE64BwAAgMEJ9wAAADA44R4AAAAGJ9wDAADA4IR7AAAAGJxwDwAAAIMT7gEAAGBwwj0AAAAMTrgHAACAwS1NuK+qQ6rqzVX1+ao6r6ruW1W3qKpzqur86fnmU9+qqhdV1QVV9amqusei6wcA9q2Nmzanqhb62Lhp86IPAwBLYsOiC1hDf5jknd39iKq6XpKDkzw9yXu7+3lVdVqS05KcmuQhSY6eHvdJ8uLpGQA4QGy/eGuOPPWshdZw0enHLfT9AVgeS3HmvqpumuRnkrw8Sbr7+919RZLjk5wxdTsjyQnT8vFJXtUzH0pySFVt3MdlAwAAwJpYinCf5HZJLk/yiqr6ZFW9rKpulOTW3X1pkkzPt5r6H55k64rXb5vafkhVnTJN6b98y5Yt6/sXAAA/xDgMAPNblnC/Ick9kry4u++e5FuZTcHflVqlrX+kofsl3X10dx+2ebNr4gBgXzIOA8D8liXcb0uyrbs/PK2/ObOw/6Ud0+2n58tW9D9ixes3JblkH9UKAAAAa2opwn13b0+ytaruODUdm+RzSc5McuLUdmKSd0zLZyZ53HTX/GOSXLlj+j4AAACMZpnulv+bSV4z3Sn/wiQnZfblxRur6uQkW5I8cup7dpKHJrkgybenvgAAADCkpQn33X1uknuusunYVfp2kiese1EAAACwDyzFtHwAAAA4kAn3AAAAMDjhHgAAAAYn3AMAAMDghHsAAAAYnHAPAAAAgxPuAQAAYHDCPQAAAAxOuAcAAIDBCfcAAAAwOOEeAAAABifcAwAAwOCEewAAABiccA8AAACDE+4BAABgcMI9AAAADE64BwAAgMEJ9wAAADA44R4AAAAGJ9wDAADA4IR7AAAAGJxwDwAAAIMT7gEAAGBwwj0AAAAMTrgHAACAwQn3AAAAMDjhHgAAAAYn3AMAAMDghHsAAAAYnHAPAAAAgxPuAQAAYHDCPQAAAAxOuAcAAIDBCfcAAAAwOOEeAAAABifcAwAAwOCEewAAABiccA8AAACDE+4BAABgcMI9AAAADE64BwAAgMEJ9wAAADA44R4AAAAGJ9wDAADA4IR7AAAAGJxwDwAAAIMT7gEAAGBwwj0AAAAMTrgHAACAwQn3AAAAMDjhHgAAAAYn3AMAAMDghHsAAAAYnHAPAAAAgxPuAQAAYHDCPQAAAAxOuAcAAIDBCfcAAAAwuKUJ91X1xar6dFWdW1Ufm9puUVXnVNX50/PNp/aqqhdV1QVV9amqusdiqwcAAIC9tzThfvJz3X237r7ntH5akvd299FJ3jutJ8lDkhw9PU5J8uJ9XikAAACskWUL9zs7PskZ0/IZSU5Y0f6qnvlQkkOqauMiCgQAAIBra5nCfSd5d1V9vKpOmdpu3d2XJsn0fKup/fAkW1e8dtvUBgAAAMPZsOgC1tD9uvuSqrpVknOq6vO76VurtPWPdJp9SfDUJIccdthha1QmADAP4zAAzG9pztx39yXT82VJ3pbk3km+tGO6/fR82dR9W5IjVrx8U5JLVtnnS7r76O4+bPPmzetZPgCwE+MwAMxvKcJ9Vd2oqm6yYznJg5J8JsmZSU6cup2Y5B3T8plJHjfdNf+YJFfumL4PAAAAo1mWafm3TvK2qkpmf9Nru/udVfXRJG+sqpOTbEnyyKn/2UkemuSCJN9OctK+LxkAAADWxlKE++6+MMldV2n/SpJjV2nvJE/YB6UBAADAuluKafkAAABwIBPuAQAAYHDCPQAAAAxOuAcAAIDBCfcAAAAwOOEeAAAABifcAwAAwOCEewAAABiccA8AAACDE+4BAABgcMI9AAAADE64BwAAgMEJ9wAAADA44R4AAAAGJ9wDAADA4IR7AAAAGJxwDwAAAIMT7gEAAGBwwj0AAAAMTrgHAACAwQn3AAAAMDjhHgAAAAYn3AMAAMDghHsAAAAYnHAPAAAAgxPuAQAAYHDCPQAAAAxOuAcAAIDBCfcAAAAwOOEeAAAABifcAwAAwOCEewAAABiccA8AAACDE+4BAABgcMI9AAAADE64BwAAgMEJ9wAAADA44R4AAAAGJ9wDAADA4IR7AAAAGJxwDwAAAIMT7gEAAGBwwj0AAAAMTrgHAACAwQn3AAAAMDjhHgAAAAYn3AMAAMDghHsAAAAYnHAPAAAAgxPuAQAAYHDCPQAAAAxOuAcAAIDBCfcAAAAwOOEeAAAABifcAwAAwOCEewAAABiccA8AAACDE+4BAABgcMI9AAAADG6pwn1VHVRVn6yqs6b121bVh6vq/Kp6Q1Vdb2q//rR+wbT9qEXWDQAAANfGUoX7JE9Kct6K9dOTvKC7j07ytSQnT+0nJ/lad98+yQumfgAAADCkpQn3VbUpycOSvGxaryT3T/LmqcsZSU6Ylo+f1jNtP3bqDwAAAMNZmnCf5IVJnpbkn6b1Wya5oruvmta3JTl8Wj48ydYkmbZfOfX/IVV1yjSl//ItW7asZ+0AwE6MwwAwv6UI91V1XJLLuvvjK5tX6dpzbPv/G7pf0t1Hd/dhmzdvXoNKAYB5GYcBYH4bFl3AGrlfkodX1UOT3CDJTTM7k39IVW2Yzs5vSnLJ1H9bkiOSbKuqDUluluSr+75sAAAAuPaW4sx9d/9Od2/q7qOSPCrJX3X3Y5K8L8kjpm4nJnnHtHzmtJ5p+19194+cuQcAAIARLEW4341Tkzylqi7I7Jr6l0/tL09yy6n9KUlOW1B9AAAAcK0ty7T8f9bd70/y/mn5wiT3XqXPd5M8cp8WBgAAAOtk2c/cAwAAwNIT7gEAAGBwwj0AAAAMTrgHAACAwQn3AAAAMDjhHgAAAAYn3AMAAMDghHsAAAAYnHAPAAAAgxPuAQAAYHDCPQAAAAxOuAcAAIDBCfcAAAAwOOEeAAAABifcAwAAwOCEewAAABiccA8AAACDE+4BAABgcML9Am3ctDlVtdDHxk2bF30YAAAAuJY2LLqAA9n2i7fmyFPPWmgNF51+3ELfHwAAgGvPmXsAAAAYnHAPAAAAg5sr3FfVT653IQAAAMDemffM/Z9W1Ueq6jeq6pB1rQgAAADYI3OF++7+6SSPSXJEko9V1Wur6oHrWhkAAAAwl7mvue/u85M8I8mpSX42yYuq6vNV9e/WqzgAAADgms17zf2/rKoXJDkvyf2T/Hx333lafsE61gcAAABcg3l/5/6Pkrw0ydO7+zs7Grv7kqp6xrpUBgAAAMxl3nD/0CTf6e6rk6SqrpPkBt397e5+9bpVBwAAAFyjea+5f0+SG65YP3hqAwAAABZs3nB/g+7+5o6Vafng9SkJAAAA2BPzhvtvVdU9dqxU1U8l+c5u+rMkNm7anKpa6GPjps2LPgwAAAD7tXmvuX9ykjdV1SXT+sYkv7Q+JbE/2X7x1hx56lkLreGi049b6PsDAADs7+YK99390aq6U5I7Jqkkn+/uH6xrZQCD27hpc7ZfvHWhNdzm8CNy6bYtC60BAID1N++Z+yS5V5KjptfcvarS3a9al6oAloCZLwAA7CtzhfuqenWSH09ybpKrp+ZOItwDAADAgs175v6eSe7S3b2exQAAAAB7bt675X8myW3WsxBYdvvDLw/49QEAAFhO8565PzTJ56rqI0m+t6Oxux++LlXBEtofrr9OXIMNAADLaN5w/+z1LAIAAADYe/P+FN4HqurIJEd393uq6uAkB61vaQAAAMA85rrmvqoen+TNSf5sajo8ydvXqygAAABgfvPeUO8JSe6X5OtJ0t3nJ7nVehUFAAAAzG/ecP+97v7+jpWq2pDZ79wDAAAACzZvuP9AVT09yQ2r6oFJ3pTkL9evLAAAAGBe84b705JcnuTTSX4tydlJnrFeRQEAAADzm/du+f+U5KXTA1hiGzdtzvaLty60htscfkQu3bZloTUAAMBI5gr3VfWPWeUa++6+3ZpXBCzU9ou35shTz1poDRedftxC3x8AAEYzV7hPcs8VyzdI8sgkt1j7cgAA2GF/mE2VmFEFMIJ5p+V/ZaemF1bV3yR55tqXBABAsn/MpkrMqAIYwbzT8u+xYvU6mZ3Jv8m6VARwDZzJOvDsD//m/r0BgP3ZvNPy/2DF8lVJvpjkF9e8GoA5OJN14Nkf/s39ewMA+7N5p+X/3HoXAgAAAOydeaflP2V327v7+WtTDgAAALCn9uRu+fdKcua0/vNJ/jrJ4i96BQAAgAPcvOH+0CT36O5vJElVPTvJm7r7V9erMAAAAGA+15mz3+Yk31+x/v0kR615NQAAAMAem/fM/auTfKSq3pakk/xCkletW1UAAADA3OY6c9/dv5/kpCRfS3JFkpO6+7+tZ2F7oqpuUFUfqaq/q6rPVtVzpvbbVtWHq+r8qnpDVV1var/+tH7BtP2oRdYPAAAA18a80/KT5OAkX+/uP0yyrapuu0417Y3vJbl/d981yd2SPLiqjklyepIXdPfRmX0xcfLU/+QkX+vu2yd5wdQPAAAAhjRXuK+qZyU5NcnvTE3XTfIX61XUnuqZb06r150eneT+Sd48tZ+R5IRp+fhpPdP2Y6uq9lG5AAAAsKbmPXP/C0kenuRbSdLdlyS5yXoVtTeq6qCqOjfJZUnOSfKFJFd091VTl21JDp+WD8/0M37T9iuT3HLfVgywf9i4aXOqaqGPjZs2L/owAAAMbd4b6n2/u7uqOkmq6kbrWNNe6e6rk9ytqg5J8rYkd16t2/S82ln63rmhqk5J8tQkhxx22GFrVSrAfmX7xVtz5KlnLbSGi04/bqHvz/7JOAwA85v3zP0bq+rPkhxSVY9P8p4kL12/svZed1+R5P1Jjsms3h1fYGxKcsm0vC3JEUkybb9Zkq+usq+XdPfR3X3Y5s3OKu3PnHkEWD7GYQCY31xn7rv7f1TVA5N8Pckdkzyzu89Z18r2QFUdluQH3X1FVd0wyQMyu0ne+5I8Isnrk5yY5B3TS86c1j84bf+r7v6RM/eMw5lHAADgQHaN4b6qDkryru5+QGbXsu+PNiY5Y6r1Okne2N1nVdXnkry+qn4vySeTvHzq//Ikr66qCzI7Y/+oRRQNAAAAa+Eaw313X11V366qm3X3lfuiqD3V3Z9KcvdV2i9Mcu9V2r+b5JH7oDQAAABYd/PeUO+7ST5dVedkumN+knT3b61LVQAAAMDc5g33/2t6AAAAAPuZ3Yb7qtrc3Vu6+4x9VRAAAACwZ67pp/DevmOhqt6yzrUAAAAAe+Gawn2tWL7dehYCAAAA7J1rCve9i2UAAABgP3FNN9S7a1V9PbMz+DecljOtd3ffdF2rAwAAAK7RbsN9dx+0rwoBAAAA9s41TcsHAAAA9nPCPQAAAAxOuAcAAIDBCfcAAAAwOOEeAAAABifcAwAAwOCEewAAABiccA8AAACDE+4BAABgcMI9AAAADE64BwAAgMEJ9wAAADA44R4AAAAGJ9wDAADA4IR7AAAAGJxwDwAAAIMT7gEAAGBwwj0AAAAMTrgHAACAwQn3AAAAMDjhHgAAAAYn3AMAAMDghHsAAAAYnHAPAAAAgxPuAQAAYHDCPQAAB4SNmzanqhb62Lhp86IPA7CkNiy6AAAA2Be2X7w1R5561kJruOj04xb6/sDycuYeAAAABifcAwAAwOCEewAArhXXsgMsnmvuAQC4VlzLDrB4ztwDAADA4IR7AAAAGJxwDwAAAIMT7gEAAGBwwj0AAAAMTrgHgDXi58AAgEXxU3gAsEb8HBgAsCjO3AMAAMDghHsAAAAYnHAPAAAAgxPuAQAAYHDCPQAAAAxOuAcAAIDBCfcAAAAwOOEeAAAABifcAwAAwOCEewAAABiccA8AAACDE+4BAABgcMI9AAAADG4pwn1VHVFV76uq86rqs1X1pKn9FlV1TlWdPz3ffGqvqnpRVV1QVZ+qqnss9i8AAACAvbcU4T7JVUl+u7vvnOSYJE+oqrskOS3Je7v76CTvndaT5CFJjp4epyR58b4vGQAAANbGUoT77r60uz8xLX8jyXlJDk9yfJIzpm5nJDlhWj4+yat65kNJDqmqjfu4bAAAAFgTSxHuV6qqo5LcPcmHk9y6uy9NZl8AJLnV1O3wJFtXvGzb1Lbzvk6ZpvRfvmXLlvUsGwDYiXGYA9HGTZtTVQt9bNy0edGHAdgLGxZdwFqqqhsneUuSJ3f316tql11Xaesfaeh+SZKXJMk973nPH9kOAKwf4zAHou0Xb82Rp5610BouOv24hb4/sHeW5sx9VV03s2D/mu5+69T8pR3T7afny6b2bUmOWPHyTUku2Ve1AgAAwFpainBfs1P0L09yXnc/f8WmM5OcOC2fmOQdK9ofN901/5gkV+6Yvg8AAACjWZZp+fdL8tgkn66qc6e2pyd5XpI3VtXJSbYkeeS07ewkD01yQZJvJzlp35YLAAAAa2cpwn13/01Wv44+SY5dpX8necK6FgUAAAD7yFJMywcAAIADmXAPAAAAgxPuAQAAYHDCPQAAAAxOuAcAAIDBCfcAAAAwOOEeAAAABifcAwAAwOCEewAAABiccA8AAACDE+4BAABgcMI9AAAADE64BwAAgMEJ9wAAADA44R4AAAAGJ9wDAADA4IR7AAAAGJxwDwAAAIMT7gEAAGBwwj0AAAAMTrgHAACAwQn3AADAHtm4aXOqaqGPjZs2L/owwH5lw6ILAAAAxrL94q058tSzFlrDRacft9D3h/2NM/cAAAAwOOEeAAAABifcAwAAwOCEewAAABiccA8AAACDE+4BAABgcMI9AAAADE64BwAAgMEJ9wAAADA44R4AAAAGJ9wDAADA4IR7AAAAGJxwDwAAAIMT7gEAAGBwwj0AAAAMTrgHAACAwQn3AAAAMDjhHgAAAAYn3AMAAMDghHsAAAAYnHAPAAAAgxPuAQAAYHDCPQAAAAxOuAcAAIDBCfcAAAAwOOEeAAAABifcAwAAwOCEewAAABiccA8AAACDE+4BAABgcMI9AACwdDZu2pyqWvhj46bNiz4UHCA2LLoAAACAtbb94q058tSzFl1GLjr9uEWXwAHCmXsAAAAYnHAPAAAAgxPuAQAAYHBLEe6r6s+r6rKq+syKtltU1TlVdf70fPOpvarqRVV1QVV9qqrusbjKAQAA4NpbinCf5JVJHrxT22lJ3tvdRyd577SeJA9JcvT0OCXJi/dRjQAAALAuliLcd/dfJ/nqTs3HJzljWj4jyQkr2l/VMx9KckhVbdw3lQIAAMDaW4pwvwu37u5Lk2R6vtXUfniSrSv6bZvaAAAAYEjLHO53pVZp61U7Vp0yXbN/+ZYtW9a5LABgJeMwAMxvmcP9l3ZMt5+eL5vatyU5YkW/TUkuWW0H3f2S7j66uw/bvHnzuhYLAPww4zAAzG+Zw/2ZSU6clk9M8o4V7Y+b7pp/TJIrd0zfBwAAgBEtRbivqtcl+WCSO1bVtqo6Ocnzkjywqs5P8sBpPUnOTnJhkguSvDTJbyygZAAAgGzctDlVtdDHxk1mRy2DDYsuYC1096N3senYVfp2kiesb0UAAADXbPvFW3PkqWcttIaLTj9uoe/P2liKM/cAAABwIBPuAQAAYHDCPQAAAAxOuAcAAIDBCfcAAAAwOOEeAAAABifcAwAAwOCEewAAABiccA8AAACDE+4BAABgcMI9AAAAu7Rx0+ZU1cIfGzdtXvSh2K9tWHQBAAAA7L+2X7w1R5561qLLyEWnH7foEvZrztwDAADA4IR7AAAAGJxwDwAAAIMT7gEAAGBwwj0AAAAMTrgHAACAwQn3AAAAMDjhHgAAAAYn3AMAAMDghHsAAAAYnHAPAAAAgxPuAQAAYHDCPQAAAAxOuAcAAIDBCfcAAAAwOOEeAAAABifcAwAAwOCEewAAAIa3cdPmVNVCHxs3bV7Y379hYe8MAAAAa2T7xVtz5KlnLbSGi04/bmHv7cw9AAAADE56h03WAAAJBElEQVS4BwAAgMEJ9wAAADA44R4AAAAGJ9wDAADA4IR7AAAAGJxwDwAAAIMT7gEAAGBwwj0AAAAMTrgHAACAwQn3AAAAMDjhHgAAAAYn3AMAAMDghHsAAAAYnHAPAAAAgxPuAQAAYHDCPQAAAAxOuAcAAIDBCfcAAAAwOOEeAAAABifcAwAAwOCEewAAABiccA8AAACDE+4BAABgcMI9AAAADE64BwAAgMEJ9wAAADA44R4AAAAGd0CH+6p6cFX9fVVdUFWnLboeAAAA2BsHbLivqoOS/HGShyS5S5JHV9VdFlsVAAAA7LkDNtwnuXeSC7r7wu7+fpLXJzl+wTUBAADAHqvuXnQNC1FVj0jy4O7+1Wn9sUnu091PXNHnlCRPTXJIkhsn+ewial0Chyb58qKLWBKO5dpxLNeOY7l29sdjeWR3H7aINzYOr5n98b+rUTmWa8exXFuO59rZH4/lXGPxhn1RyX6qVmn7oW86uvslSV6yb8pZXlX1se6+56LrWAaO5dpxLNeOY7l2HMsfZhxeG/67WjuO5dpxLNeW47l2Rj6WB/K0/G1JjlixvinJJQuqBQAAAPbagRzuP5rk6Kq6bVVdL8mjkpy54JoAAABgjx2w0/K7+6qqemKSdyU5KMmfd7dr+daHKZVrx7FcO47l2nEs145jyXrw39XacSzXjmO5thzPtTPssTxgb6gHAAAAy+JAnpYPAAAAS0G4BwAAgMEJ96yLqjqiqt5XVedV1Wer6kmLrml0VXVQVX2yqs5adC2jq6pDqurNVfX56b/R+y66plFV1X+e/jf+map6XVXdYNE1jaKq/ryqLquqz6xou0VVnVNV50/PN19kjYzNWLy2jMNrxzi8dozDe28Zx2HhnvVyVZLf7u47JzkmyROq6i4Lrml0T0py3qKLWBJ/mOSd3X2nJHeN47pXqurwJL+V5J7d/ZOZ3Zz0UYutaiivTPLgndpOS/Le7j46yXunddhbxuK1ZRxeO8bhNWAcvtZemSUbh4V71kV3X9rdn5iWv5HZ/2kfvtiqxlVVm5I8LMnLFl3L6Krqpkl+JsnLk6S7v9/dVyy2qqFtSHLDqtqQ5OAklyy4nmF0918n+epOzccnOWNaPiPJCfu0KJaKsXjtGIfXjnF4zRmH99IyjsPCPeuuqo5KcvckH15sJUN7YZKnJfmnRReyBG6X5PIkr5imV76sqm606KJG1N0XJ/kfSbYkuTTJld397sVWNbxbd/elySyYJbnVguthSRiLrzXj8NoxDq8R4/C6GHocFu5ZV1V14yRvSfLk7v76ousZUVUdl+Sy7v74omtZEhuS3CPJi7v77km+lcGmXO0vpuvQjk9y2yQ/luRGVfUfFlsVsDNj8bVjHF5zxuE1YhxmZ8I966aqrpvZh4nXdPdbF13PwO6X5OFV9cUkr09y/6r6i8WWNLRtSbZ1946zV2/O7EMGe+4BSf6xuy/v7h8keWuSf7Xgmkb3paramCTT82ULrofBGYvXhHF4bRmH145xeO0NPQ4L96yLqqrMrqU6r7ufv+h6Rtbdv9Pdm7r7qMxukvJX3e1b2b3U3duTbK2qO05Nxyb53AJLGtmWJMdU1cHT/+aPjZsiXVtnJjlxWj4xyTsWWAuDMxavDePw2jIOrynj8NobehzesOgCWFr3S/LYJJ+uqnOntqd399kLrAl2+M0kr6mq6yW5MMlJC65nSN394ap6c5JPZHZX7k8mecliqxpHVb0uyb9JcmhVbUvyrCTPS/LGqjo5sw9tj1xchSwBYzH7K+PwGjAOXzvLOA5Xdy+6BgAAAOBaMC0fAAAABifcAwAAwOCEewAAABiccA8AAACDE+4BAABgcMI9AAAADE64BwAAgMEJ9wAAADA44R4AAAAGJ9wDAADA4IR7AAAAGJxwDwAAAIMT7gEAAGBwwj0AAAAMTrgHAACAwQn3AAAAMDjhHgD4Z1V1dVWdW1Wfraq/q6qnVNVefV6oqudW1QOm5fdX1T3XtloAYIcNiy4AANivfKe775YkVXWrJK9NcrMkz9rTHXX3M9e4tr1WVQd199WLrgMA1osz9wDAqrr7siSnJHlizRxUVf9vVX20qj5VVb+2o29VPa2qPj2d7X/e1PbKqnrEzvutqgdV1Qer6hNV9aaquvEqfX6rqj43vc/rp7YbV9Urpvf5VFX9+6n90VPbZ6rq9BX7+OY0e+DDSe5bVT9VVR+oqo9X1buqauOaHzQAWBBn7gGAXeruC6dp+bdKcnySK7v7XlV1/SR/W1XvTnKnJCckuU93f7uqbrGr/VXVoUmekeQB3f2tqjo1yVOSPHenrqcluW13f6+qDpnafnd6/38x7evmVfVjSU5P8lNJvpbk3VV1Qne/PcmNknymu59ZVddN8oEkx3f35VX1S0l+P8mvXOuDBAD7AeEeALgmNT0/KMm/XHE2/mZJjk7ygCSv6O5vJ0l3f3U3+zomyV0y+2IgSa6X5IOr9PtUktdU1duTvH1qe0CSR+3o0N1fq6qfSfL+7r48SarqNUl+ZnrN1UneMnW/Y5KfTHLO9L4HJbl0nj8eAEYg3AMAu1RVt8ssJF+WWcj/ze5+1059Hpyk591lknO6+9HX0O9hmYX0hyf53ar6iem1O79P7fzCFb674jr7SvLZ7r7vnHUCwFBccw8ArKqqDkvyp0n+qLs7ybuS/Po0xT1VdYequlGSdyf5lao6eGrf5bT8JB9Kcr+quv3U9+CqusNO73udJEd09/uSPC3JIUluPL3PE1f0u3mSDyf52ao6tKoOSvLozKbf7+zvkxxWVfedXnvd6QsDAFgKztwDACvdsKrOTXLdJFcleXWS50/bXpbkqCSfqNnc9suTnNDd76yquyX5WFV9P8nZSZ6+2s6n693/Y5LXTdftJ7Nr8P9hRbeDkvxFVd0sszPuL+juK6rq95L8cVV9JrPZBM/p7rdW1e8ked/U9+zufscq7/v96XKCF0373ZDkhUk+uxfHCAD2OzX7Ih4AAAAYlWn5AAAAMDjhHgAAAAYn3AMAAMDghHsAAAAYnHAPAAAAgxPuAQAAYHDCPQAAAAxOuAcAAIDB/V/nnAU1gSCnoAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 1008x504 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.bar(range(1, 11), compas.decile_score.value_counts(), ec='black')\n",
"plt.title(\"Decile scores of all defendants\")\n",
"plt.ylabel(\"Frequency\")\n",
"plt.xlabel(\"Decile score\")\n",
"plt.xticks(range(1, 11))\n",
"plt.show()\n",
"\n",
"fig, ax = compas.query(\"race in ['Caucasian', 'African-American']\").hist(\n",
" \"decile_score\",\n",
" by=\"race\",\n",
" figsize=(14, 7),\n",
" sharey=True,\n",
" xrot='horizontal',\n",
" ec='black',\n",
" bins=np.arange(0.5, 11.5, 1.0),\n",
" rwidth=0.8)\n",
"\n",
"fig.text(-1.5, 350, \"Frequency\", rotation='vertical')\n",
"fig.text(11.5, -60, \"Decile score\", horizontalalignment='center')\n",
"plt.tight_layout(w_pad=-2)\n",
"plt.show()"
]
},
{
"cell_type": "code",
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\ProgramData\\Anaconda3\\lib\\site-packages\\scipy\\stats\\stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n",
" return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEWCAYAAACKSkfIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8XXWd//HX597s+94lbZN0p6VQoJStyK7gVh1hWHQAxUHHQR2XmVHnN4o44wwzjqgDI6AIiCIgCFZAUfa1pS0USjdI16RJ2rTZ9+37++OctJdL0tw0N7lJ7vv5eNxHz/K9537uyennfO/3fM/3mHMOERGJD4FYByAiImNHSV9EJI4o6YuIxBElfRGROKKkLyISR5T0RUTiiJJ+HDCzTWZ2dqzjiCUz+7iZVZhZi5mdEEH5Z83ssxFu+wwze8ff9sdGHu27tn29mf0qmtuU+KakP8GZ2S4zOz9s2dVm9mL/vHNusXPu2SG2U2pmzswSRinUWPsBcJ1zLsM593qUt30DcLO/7UeivO2o8f++cyMsu8vMSkc3IokFJX0ZE+PgZFICbJqA2xaJKiX9OBD6a8DMlpvZOjNrMrN9ZvZDv9jz/r8NfjPFaWYWMLP/Z2a7zWy/mf3SzLJDtnulv+6gmf1r2Odcb2YPmtmvzKwJuNr/7FfMrMHMqs3sZjNLCtmeM7Mv+E0lzWb2PTOb47+nycweCC0f9h0HjNXMks2sBQgCb5jZ9kHef4GZbTWzRjO7GbCw9Z8xsy1mVm9mT5hZib98OzAb+IO/35L9z73D/457zezfzCzol7/azF40sx/429ppZheFfE6ZmT3nf/+/AAVhcfzWzGr8OJ83s8Uh6+4ys1vM7DH//WvMbI6/rv/v+4Yf56VmVmBmj/p/jzoze8HMhswJZvZpf180m9kOM/tc2Pp/8r97lZl9NvQXhr9/fmBme/zj71YzS/XXHVU8MkzOOb0m8AvYBZwftuxq4MWBygCvAH/jT2cAp/rTpYADEkLe9xmgHC+pZQC/A+7x1y0CWoAVQBJe80l3yOdc789/DK9ykQqcBJwKJPiftwX4h5DPc8AqIAtYDHQCT/mfnw1sBq4aZD8MGmvItucO8t4CoAm4GEgEvgL0AJ/113/M3/Yxfuz/D3h5sL8B8AhwG5AOFAGvAp8L+dt0A3+LdyL6O6AKsJC/zw+BZOB9QDPwq7Dvmemv/xGwIWTdXUAdsNyP89fAfYPtA+A/gFv975wInNkfxxDH3IeAOXgnxrOANuBEf92FQI3/90sD7gn9XD/mVUCe/z3+APzHSOLRa5g5I9YB6DXCP6CXcFqAhpBXG4Mn/eeB7wIFYdsp5b1J/yngCyHzC/yElQB8G/hNyLo0oIt3J/3nh4j9H4CHQ+YdcEbI/Hrgn0Pm/wf40SDbGjTWkG0PlvSvBFaHzBtQyeGk/0fgmpD1AX8flwywf6fgnaxSQ8pfDjzjT18NlIftNwdMBWbhnWzSQ9bfS0jSD4s7x39vtj9/F/DzkPUfBLaG7d/QpH8D8PvB9sswjsFHgC/707/AT+L+/Nz+z/X3ayswJ2T9acDOaMaj15Ff+uk0OXzMOZfT/wK+cISy1wDzga1mttbMPnyEstOB3SHzu/ES/hR/XUX/CudcG3Aw7P0VoTNmNt//+V7jN/l8n7DmC2BfyHT7APMZRxHrUMK/iwuLvQT4sd/s0IBXmzageIBtleDVUqtDyt+GV+PvVxPyWW3+ZIYfR71zrjXsewBgZkEz+08z2+7vv13+qtB9WBMy3cbg+wvgv/F+wfzZb6b5xhHKHmJmF5nZar8JpgHv5NIfw7v2Zdh0Id5Jbn3IvvmTv/yo45HhUdKPM865d5xzl+MloRuBB80sHa82Fq4KL4n166+J7gOqgRn9K/x22fzwjwub/ymwFZjnnMsCvkVY2/kIHCnWoVQDM/tnzMxC5/ES1+dCT6zOuVTn3MsDbKsCr6ZfEFI2yzm3eICyA8WR6/89Qr9HvyuAlcD5eM1dpf0hR7Dt93DONTvnvuacmw18BPiqmZ13pPeYWTLwEF5z3hS/kvF4SAzvOi549348gHfiXhyyb7KdcxlHG48Mn5J+nDGzT5lZoXOuD68pCKAXqAX68NrE+/0G+Ip/cTEDr2Z+v3OuB3gQ+IiZne5fXP0uQyefTLy28xYzW4jXnh0tR4p1KI8Bi83sr8zrZfQlvOaWfrcC3+y/aOpfqL1koA0556qBPwP/Y2ZZ5l1gnmNmZw0VhHNuN7AO+K6ZJZnZCrzk1y8T74RyEK/G/P0IvluofYT8fc3sw2Y21z/JNeEdB71DbCMJ73pCLdDjX4R+f8j6B4BPm9kxZpaG1wzY//36gJ8BN5lZkR9DsZl9YATxyDAp6cefC4FN5vVo+TFwmXOuw29m+HfgJf+n96l47bP34F0H2Al0AF8EcM5t8qfvw6vdNQP78ZLSYL6OV1ttxvvPf38Uv9egsQ7FOXcAuAT4T7yEOg94KWT9w3i/iu7zm1XeAi4aYFP9rsRLjpuBerwT5LQIv8cVwCl4TUjfAX4Zsu6XeM09e/1tr45wm/2uB+72/75/jfc9n8S7JvQK8H9uiPs5nHPNeCfFB/C+2xV4F2b71/8R+AnwDF5TzSv+qv7j4p/95av9ffkk3vUXjiYeGb7+HgMiI+LXrhvwmm52xjoeGR/M7Bi8k2RyhL+6ZJSppi9Hzcw+YmZpfhv0D4CNHL64KHHKvCEvkswsF+8X0h+U8McPJX0ZiZV4F1Cr8H6aX+b001Hgc3ht/tvx2uSjee1GRkjNOyIicUQ1fRGROBLrQbDeo6CgwJWWlsY6DBGRCWX9+vUHnHOFQ5Ubd0m/tLSUdevWxToMEZEJxcx2D11KzTsiInFFSV9EJI4o6YuIxBElfRGROKKkLyISR5T0RUTiiJK+iEgcUdIXEYkjSvoiInFk3N2RO5ndu2bPoOuuOGXWoOtERKJFNX0RkTiipC8iEkeU9EVE4oiSvohIHFHSFxGJI0r6IiJxRElfRCSOKOmLiMQRJX0RkTgSUdI3swvNbJuZlZvZNwZYn2xm9/vr15hZqb+81MzazWyD/7o1uuGLiMhwDDkMg5kFgVuAC4BKYK2ZrXLObQ4pdg1Q75yba2aXATcCl/rrtjvnlkY5bhEROQqR1PSXA+XOuR3OuS7gPmBlWJmVwN3+9IPAeWZm0QtTRESiIZKkXwxUhMxX+ssGLOOc6wEagXx/XZmZvW5mz5nZmSOMV0RERiCSUTYHqrG7CMtUA7OccwfN7CTgETNb7Jxretebza4FrgWYNSs+R5scbAROjb4pItEUSdKvBGaGzM8AqgYpU2lmCUA2UOecc0AngHNuvZltB+YD60Lf7Jy7HbgdYNmyZeEnlAnnSEMoi4jEUiTNO2uBeWZWZmZJwGXAqrAyq4Cr/OmLgaedc87MCv0LwZjZbGAesCM6oYuIyHANWdN3zvWY2XXAE0AQ+IVzbpOZ3QCsc86tAu4A7jGzcqAO78QA8D7gBjPrAXqBzzvn6kbji4iIyNAienKWc+5x4PGwZd8Ome4ALhngfQ8BD40wRhERiRLdkSsiEkeU9EVE4oiSvohIHFHSFxGJI0r6IiJxRElfRCSOKOmLiMQRJX0RkTiipC8iEkeU9EVE4oiSvohIHFHSFxGJIxENuCbR5ZzjraomqhraaWjrIi89ibMXFJEYjPwcrIeuiMjRUNKPgVd31fH7DVUEDLJSEnmjspGtNc1cevJMijJTYh2eiExiSvpjrLK+jUffrGZeUQZXnlZKMGBsrWniwfWV3PJMOZ9dMZuZeWmxDlNEJim16Y+htq4e7n11DxnJCfz1spkEA96jhRdOzeKL584jIzmBe1/dQ2tnT4wjFZHJSkl/DD3/9gGa2ru5Yvks0pPf/SMrOzWRK5aX0NrZwwPrKuhzE/5RwSIyDinpj5E+53ijsoF5RZmDNt8U56bykeOm887+Fp57u3aMIxSReKCkP0Z2H2yjsb2b42fmHLHcstJclhRn88zW/Rxs6Ryj6EQkXijpj5ENFQ0kBQMsmpZ1xHJmxgeXTCMQMB7bWD1G0YlIvFDSHwM9fX28tbeRRdOzSEoYepdnpyZy3sIittY08+TmfWMQoYjECyX9MfB2TQvt3b0cPyM74vecPqeAosxkrv/DJjp7ekcxOhGJJ0r6Y+CNygbSkoLMLcqM+D3BgPGh46ZRWd/Obwa5+1ZEZLiU9EdZn3O8s7+ZxdOzDvXLj9TcwgxOnZ3Hzc9sp61LffdFZOSU9EdZbXMnHd19lOSlD/u9ZsY/fmABB1o6uevlXdEPTkTijpL+KKusbwNgRl7qUb3/pJI8zl1YxG3P7aCxvTuaoYlIHFLSH2V76tpJSQxQkJF81Nv42vvn09jezV0v7YpeYCISl5T0R1llfRszc9MI2PDa80Mtnp7N+ccUcdfLO9W2LyIjoqQ/ijp7eqlp7IjKqJmfP2sO9W3dPLC2IgqRiUi8UtIfRXvr23HAzNyja88Ptaw0j2UlufzshZ109/aNPDgRiUsRJX0zu9DMtplZuZl9Y4D1yWZ2v79+jZmVhq2fZWYtZvb16IQ9MVTUtwMwMzc64+P/3dlz2NvQzqNvVkVleyISf4ZM+mYWBG4BLgIWAZeb2aKwYtcA9c65ucBNwI1h628C/jjycCeWiro28tOTSEuOzrNqzllQxIIpmdz23A6chl4WkaMQSU1/OVDunNvhnOsC7gNWhpVZCdztTz8InGfmXbk0s48BO4BN0Ql5YnDOUVHXFtWnYAUCxqfPKGVrTTO7DrZFbbsiEj8iqYIWA6FXDyuBUwYr45zrMbNGIN/M2oF/Bi4ABm3aMbNrgWsBZs2aOA/2Huzh5ACN7d00d/ZE/dGHK5cW8/3Ht7B6x0HKCoZ/w5eIxLdIavoD9TUMb1sYrMx3gZuccy1H+gDn3O3OuWXOuWWFhYURhDT+VTV0ADAjZ+QXcUOlJgX562Uz2VTVSFOHbtYSkeGJJOlXAjND5mcA4VcSD5UxswQgG6jD+0XwX2a2C/gH4Ftmdt0IY54Qav0HoBRmHv1NWYP51KklOAdrd9ZFfdsiMrlFkvTXAvPMrMzMkoDLgFVhZVYBV/nTFwNPO8+ZzrlS51wp8CPg+865m6MU+7hW29xJZkoCKYnBqG+7tCCdeVMyeHVXHb19uqArIpEbMuk753qA64AngC3AA865TWZ2g5l91C92B14bfjnwVeA93TrjTW1zx4iGXhjKqbPzae7oYUt106h9hohMPhH1JXTOPQ48Hrbs2yHTHcAlQ2zj+qOIb0JyznGgpYslw3hoynDNn5JJVkoCr+2p59ji0fscEZlcdEfuKGjt6qW9u5fCUazpB8w4YVYub+9r1gVdEYmYkv4oqG0evYu4oU6alUufgw17Gkb1c0Rk8lDSHwUH+pP+KNb0AQoykynJS2P97nrdoSsiEVHSHwW1LZ0kBIzstMRR/6yTSnKpbemkok536IrI0JT0R0FtcycFGckjGkM/UkuKs0kMGuvVxCMiEVDSHwW1LZ2j3p7fLzkxyDHTsnhrb6P67IvIkJT0o6y7t4/61q4xS/oAx8/Iob27l/L9RxztQkREST/aDrZ24Rj9i7ih5hVlkJIY4M1KNfGIyJEp6UdZf3fNgjGs6ScEAyyens3m6iY6unvH7HNFZOKJztM95JAD/kBrBRlJY/q5x83IZv3uer736GYWT3/vHbpXnDJxhqwWkdGjmn6U1TZ3kp2aSHJC9AdaO5LZBRmkJyfwRmXjmH6uiEwsSvpRVt/aRV762NbyAYIBY0lxFttqmuhUE4+IDEJJP8oa2rvJSR39m7IGclxxDt29ji01zTH5fBEZ/5T0o6inr4+m9m5yY1DTB5iVn0Z2aqJ68YjIoJT0o6ixrRsH5I7B8AsDCZixpDibd/a10N6lJh4ReS8l/ShqaPeGOM5Ji01NH7xePL3OsalKF3RF5L2U9KOovrULgNwYJv3inFTy05N4c6+Svoi8l5J+FNW3dWNAVmrsbn8wM46bkc32/S006+EqIhJGST+KGtq6yEpNJCEQ29163IwcHPBWlZ6fKyLvpqQfRfVt3eTE6CJuqClZKRRlJrNRvXhEJIySfhQ1tHXFtD0/1HEzstl9sI3GdjXxiMhhSvpR0tvnaGzvjll3zXBLiv0mHl3QFZEQSvpR0tje30d/fNT0CzOTmZadwkYlfREJoaQfJQ1tXnfNWPbRD7ekOJs9dW2HYhMRUdKPkvo2r+18vDTvgNeLB1BtX0QOUdKPkvq2LgzIjtFgawPJS0+iOCeVNzXcsoj4lPSjpKGtm8yUBBKC42uXHj8zh70N7Xp+rogAenJW1NS3dY2r9vx+x83I5o8bq/n3xzZzwaKp71mvJ2qJxJfxVS2dwLw++uOnaadfVkoic4oy2FDRgHMu1uGISIwp6UfB4T7646+mD7B0Zg71bd3sqWuLdSgiEmMRJX0zu9DMtplZuZl9Y4D1yWZ2v79+jZmV+suXm9kG//WGmX08uuGPDy2dPfQ5yB6HNX2AxdOySAwaGyo0LINIvBsy6ZtZELgFuAhYBFxuZovCil0D1Dvn5gI3ATf6y98CljnnlgIXAreZ2aS7jtA/1MF46rkTKjkxyDHTsti4t5Gevr5YhyMiMRRJTX85UO6c2+Gc6wLuA1aGlVkJ3O1PPwicZ2bmnGtzzvX4y1OASdmo3OQn/ayU8Zn0wWviaevqZZuenysS1yJJ+sVARch8pb9swDJ+km8E8gHM7BQz2wRsBD4fchI4xMyuNbN1ZrautrZ2+N8ixsZ7TR9gXlEmWSkJrNtVH+tQRCSGIkn6NsCy8Br7oGWcc2ucc4uBk4FvmlnKewo6d7tzbplzbllhYWEEIY0vTe3dJASMtKRgrEMZVDBgnFiSy9v7mjXypkgciyTpVwIzQ+ZnAFWDlfHb7LOButACzrktQCtw7NEGO141dnSTlZqI2UDnvvFjWUkeDli/W7V9kXgVSdJfC8wzszIzSwIuA1aFlVkFXOVPXww87Zxz/nsSAMysBFgA7IpK5ONIU3v3uG7P75eXnsScwnTW766jT332ReLSkEnfb4O/DngC2AI84JzbZGY3mNlH/WJ3APlmVg58Fejv1rkCeMPMNgAPA19wzh2I9peItcb2brJj+Fzc4VhWmkd9Wzc7altjHYqIxEBEmco59zjweNiyb4dMdwCXDPC+e4B7RhjjuOaco6mjh6xxfBE31KJpWaQmBlmz8yBzizJiHY6IjDHdkTtCrV299Pa5cd1zJ1RiMMDJpXlsrmqivlXj7IvEGyX9EZoIffTDnTo7DzNYveNgrEMRkTGmpD9CE6GPfrictCQWT89m7e46Wjvfc9uEiExiSvoj1NTh1/QnUNIHOGNOPh3dffzutcpYhyIiY0hJf4Qa27sJGGSmTIzeO/1m5qUxIzeVO1/aRV+fum+KxAsl/RFqau8mIzmBwDi/MSucmbFibgE7DrTyp001sQ5HRMaIkv4INbX3TKj2/FDHFmczuyCd/326XA9YEYkTSvoj1NjePeHa8/sFzPjCOXPZUt3EM9v2xzocERkDE6shehxq7Ohm3pSJe5NTe1cvuWmJfOf3m6hu6Dg0fpCenSsyOammPwId3b109fRNqD764YIB433zC6mob6e8tiXW4YjIKFPSH4GJ2Ed/ICfNyiU7NZEnN+9T277IJKekPwKH7sad4Ek/IRjg3IVFVNS3s1VP1hKZ1JT0R6D/xqyJXtMHOHFWLvnpSfxl8z4NuywyiSnpj0B/885EuzFrIMGAcf4xU6hp6mDj3sZYhyMio0RJfwQa23tITwqSGJwcu3HJjGymZqXw5OZ99PT2xTocERkFkyNbxUjTBO6jP5CAebX9g61dPKQxeUQmJSX9EWjq6J4U7fmhjpmWyYzcVH785Dt09vTGOhwRiTIl/RGYyHfjDsbMeP+iqVQ1dnDvmj2xDkdEokxJ/yh1dPfS1tU7oW/MGsycwnROm53PLc+U09al8fZFJhMl/aO0r6kDmBzdNcOZGV//wAIOtHRx50u7Yh2OiESRkv5Rqm6cvEkf4KSSXM5dWMRtz20/1DVVRCY+Jf2j1F/Tz5oEffQH87X3z6epo4efv7Aj1qGISJQo6R+lyV7TB1g8PZsPHTeNO17cyYGWzliHIyJRoKR/lGoaO0hOCJCcGIx1KKPqqxfMp6O7l58+uz3WoYhIFCjpH6Waxo5J111zIHMKM/jEiTO4Z/VuqhvbYx2OiIzQ5G2QHmXVTR2Tumkn1JfOm8cjG/byk6fKWVKcPWAZPXRFZGJQ0j9KNY3tzMhJG/XPGQ83SM3MS+OK5bP49Zo9TM9OIT8jOdYhichRUvPOUejp7aO2uTMumnf6/f25c0kIGk9t1bN0RSYyJf2jUNvSSZ+DrNT4+aFUlJnC1aeX8UZFAzV+d1URmXgiSvpmdqGZbTOzcjP7xgDrk83sfn/9GjMr9ZdfYGbrzWyj/++50Q0/NuKhu+ZAPn/WbJISAjy5eV+sQxGRozRk0jezIHALcBGwCLjczBaFFbsGqHfOzQVuAm70lx8APuKcWwJcBdwTrcBjqSZOk35OWhIr5hWwubqJyvq2WIcjIkchkpr+cqDcObfDOdcF3AesDCuzErjbn34QOM/MzDn3unOuyl++CUgxswl/FbA/6U/GwdaGsmJOAWlJQf6i2r7IhBRJ0i8GKkLmK/1lA5ZxzvUAjUB+WJlPAK875yb8rZ01TR0kJQRIS5rcN2YNJDkxyFnzC3lnfws7altiHY6IDFMkSd8GWBb+5OwjljGzxXhNPp8b8APMrjWzdWa2rra2NoKQYqu6sYNp2SmYDfS1J79TZ+eTnZrInzbV4PQQdZEJJZKkXwnMDJmfAVQNVsbMEoBsoM6fnwE8DFzpnBvwXn7n3O3OuWXOuWWFhYXD+wYxsK+xgylZKbEOI2YSgwHOP2YKlfXteoi6yAQTSdJfC8wzszIzSwIuA1aFlVmFd6EW4GLgaeecM7Mc4DHgm865l6IVdKxVNbYzLTt+kz7ACbNymJqVwp8376OnTw9RF5kohkz6fhv9dcATwBbgAefcJjO7wcw+6he7A8g3s3Lgq0B/t87rgLnAv5rZBv9VFPVvMYb6+hz7mjqYlp0a61BiKmDGhcdOpa61izU76mIdjohEKKK7i5xzjwOPhy37dsh0B3DJAO/7N+DfRhjjuHKgpZPuXsf0nPiu6QPMK8pgbmEGT23dR21zJ4WZE75jlsikpztyh6nK7645Pc5r+uA9VvHDx0+ju9fx749tjnU4IhIBJf1hqmrwhheeppo+4A3PcNb8Qh7ZUMUL74z/nlci8U5Jf5j6k75q+oedNb+QsoJ0/vWRt2jv6o11OCJyBEr6w1Td2EFqYpCctPi7G3cwicEA//7xY9ld18Z3Vr0V63BE5AiU9IepurGdaTnxe2PWYE6fU8AXz5nLA+sq+e26iqHfICIxET9jA0fJ3oYONe0M4N41eyjKSmF2QTrfengjFXXtTM1O0RO1RMYZJf1hqm5oZ8GC8X/XcCwEzLj05Jnc/Ew5d768k789c/agT/7SyUAkNtS8MwxdPX3UtnTG/Y1ZR5KZkshnziijt89xx4s7qWvtinVIIhJCSX8Y9jV14By6MWsIU7JSuGZFGV09ffzshR3srW+PdUgi4lPzzjAc6qOvmv6QpmWncs2KMu5ZvZvbnt/OyqXFnFSSe2i9mn1EYkNJfxj6H5M4PUdJPxLTc1L5+3Pmcv/aPTz0WiXb9jXz4eOmjcnDZwY7qYBOLBLf1LwzDFWN/o1Zat6JWEZyAlefXsb5x0xha3UTP3rybV7ZfkAjc4rEiGr6w1DV0E52aiJpSdptwxEMGOcuLOK44mx+/8Ze/vBmNS9tP8j5xxRx3IwcAiH3PKjZR2R0qaY/DNUNHWraGYGCzGQ+c0YZV59eSnJCgAfWVXLz0+VsrW7SE7hExoiqrMNQ1djB9Dh/eMpImRnzp2QytyiDjXsb+cvmffxy9W5m5qZy3jFTmFeUobudRUaRkv4wVDe2c1JJTqzDGBNHuhAaDQEzjp+Rw7HTs1m3u45nt9Vy18u7mJWXxnkLi5ir5C8yKpT0I9TW1UNDW7ead6IsGDBOKcvnpFm5rN9Tz7PbarnTT/5nzy9k/tTMd7X5i8jIKOlHqKpBD08ZTQnBwLuS/3Pbavnl6t0UZiZzxpwCPrp0OhnJOlxFRkr/iyK0t38cfdX0R1V/8l9WksfGvQ288M4BHtmwlz9vruHDx03jomOncdqcfFISg8DoN0OJTDZK+hHaU9cGwKy8tBhHEh+CAWPpzFyOn5FDRV0bB1u7ePTNah5YV0laUpCTSnI5YWYO9W3dFGYmk5uWRDCgZiCRoSjpR2jPwVaSEwIU6eHfY8rMmJWfzjc+eAzf+9ixrN5xkKe27Gfd7npufqacPr+nZzBg5KcnUZSZzPScVEry05mRm0piUL2SRUIp6Udo98E2ZuWlEVBtMmZSEoOcvaCIsxcUAdDa2cP/Pl1ObXMntc0d7G/upLqxg7eqmgBIDBpLirM5qSSP0vw09QYSQUk/Ynvq2tS0M86kJycwKy/tPX+Xts4edh1sY9u+Jt6sbOS1PQ3MyE3lomOnUVaQHqNoRcYHJf0IOOfYU9fGaXPyYx2KRCAtOYFF07NYND2LDy2ZzhsVDTy1dR8/e2EHi6dn8f7FUyjIUDOdxCc1eEbgYGsXbV29qulPQEkJAU4uy+OrFyzggkVT2FbTzIU/ep6ntuyLdWgiMaGafgR2H/R67pTkK+lPVEkJAc5ZUMQx07J4YG0F19y9jjPnFfCBxVMP3fylQd0kHijpR2BPXSsAs/LUHjzRTc1K4Qtnz+GxjdW88M4Baho7uOzkWaQmBTXCp8QFNe9EYM/BdsxgRq5uzJoMEoIBVi4t5uNLi9lR28pPn9tOfZue5SvxQUk/ArvrWpmalXLoLlCZHE4uy+MzK8po6ezmtue2U+M/GU1kMlPSj0CFumtOWmUF6Vx75hwAbn9hOzsPtMY4IpHRFVHSN7MLzWybmZWb2TcGWJ9sZvf769eYWam/PN/MnjGzFjO7Obqhj53+G7NkcpqancLnzppDZnIid74PdbKxAAAR60lEQVS0k01VjbEOSWTUDJn0zSwI3AJcBCwCLjezRWHFrgHqnXNzgZuAG/3lHcC/Al+PWsRjrL2rl/3Nneq5M8nlpiXxuffNZlp2Cveu2cPaXXWxDklkVERS018OlDvndjjnuoD7gJVhZVYCd/vTDwLnmZk551qdcy/iJf8JqaLe6645UzX9SS8tOYFrVsxm3pQMHn59L6t3HIx1SCJRF0nSLwYqQuYr/WUDlnHO9QCNQMS3r5rZtWa2zszW1dbWRvq2MXG4j766a8aDpIQAnzqlhIVTM1n1RhUvbz8Q65BEoiqSpD/QKFXhT7GOpMygnHO3O+eWOeeWFRYWRvq2MdE/pHKJavpxIyEY4IpTZrFoWhaPvlmtMftlUokk6VcCM0PmZwBVg5UxswQgG5gUjaJ7DraSmZxATlpirEORMZQQCHDZ8pnMn5LBvzyykYdfr4x1SCJREUnSXwvMM7MyM0sCLgNWhZVZBVzlT18MPO2ci7imP56V17ZQVpiuYXnjUEIgwCdPKeHUsny+/ts3NV6PTApDJn2/jf464AlgC/CAc26Tmd1gZh/1i90B5JtZOfBV4FC3TjPbBfwQuNrMKgfo+TOubatpZsGUzFiHITGSGAzw86uWsWhaFtfd+zpvVjbEOiSREYlo7B3n3OPA42HLvh0y3QFcMsh7S0cQX0wdaOnkQEsXC6Yq6cez9OQE7rh6GR+/5WU+c9c6Hv7C6erNJROW7sg9gm01zQAsnJoV40gk1ooyU7j7MyfT1dPL1Xe+SmNbd6xDEjkqSvpHsNVP+qrpC8Dcokxuv3IZFXXt/O096+js6Y11SCLDpqGVj2BbTRP56UkU6mHo4jt1dj7/fclxfPm+DVxy6ytcumzmey7yayhmGc9U0z+CbTXNquXLe6xcWsw/fmABb1Y28tTW/bEOR2RYlPQH0dfneHtfi5K+DOgLZ8/hxFm5PL11Pxsq6mMdjkjElPQHsaeujfbuXhYq6csAzIyPnTCd0vx0HnptL7sPakhmmRiU9Adx+CKueu7IwLybt2aRnZrIr1bvpr5VT9+S8U8XcgexraYZM5g/JSPWoQiM2/Fv0pMTuPK0Em59bjt3v7KLz581J9YhiRyRavqD2LaviVl5aaQl6bwoR1aUmcIVy0s40NLJb17dQ3dvX6xDEhmUkv4gtmr4BRmGuUUZrFxazDv7W/jW7zYySYaekklISX8AbV097DrQqou4Miwnl+ZxzoIifru+kpuefCfW4YgMSG0XA1i/u54+ByeV5sU6FJlgzj+miKb2bn7y1DvsPNDKabMPP0tIN23JeKCkP4BXth8kIWAsK8mNdSgywXhdOYtp6+7lD29UkRwMcKKOIxlH1LwzgNU7DnLcjGzSk3VOlOELBozLTp7J3MIMHnqtUsMxy7iirBamtbOHNysbufZ9s2MdiowTR9NdNDEY4FOnlnDnyzu5f20FvX1OzTsyLqimH2bd7np6+hynzYn4ue4iA0pKCPDp08soK0znwfWV/HrN7liHJKKkH+6V7QdJDBonqR1WoiApIcBVp5Uyf0om//LwW/zgiW309ak7p8SOmnfCrN5xkONn5OimLImaxGCAT546i017m7j5mXJ2Hmzlfy45npTEYKxDkzikmn6Ils4eNu5tVNOORF1CIMB/fmIJ37xoIY9vrGblzS8dejKbyFhS0g+xdmcdvX2OU2cr6Uv0mRmfO2sOd316OQdbO/nozS9y50s76VVzj4whJf0Qj22sJj0pqPZ8GRX3rtnDvWv2sLe+nb89czYl+Wl89w+b+cj/vsi6XXWxDk/ihJK+r7G9m0ffrGLlCcVqa5VRl5mSyFWnlXL58lnUt3Vx8a2vcPWdr7Jmx0GN2yOjSknf98jre+no7uOK5epLLWPDzFhSnM1TXzuLf/zAAjZWNnLp7av50E9e5Ocv7GB/c0esQ5RJyMZbrWLZsmVu3bp1Y/qZzjku+vELJCUEWHXdivesH69jucvk0t3bx2t76lm/u57K+nbM4Njp2Zw5r4Az5xVyUkkuSQmqp8nAzGy9c27ZUOXULxF4bU8DW2ua+Y+/WhLrUCSOJQYDnFKWzyll+exv6iAYMF545wC3P7+D/3t2O2lJQU4py+P0OQWcNiefRdOyCAQs1mHLBKOkD/x6zW7Sk4J89PjpsQ5FBICirBSuOGUWXzxvHs0d3azeUcfzb9fy0vYDPLNtCwCpiUHKCtKZNyWDhVOz+Luz9dQuGVrcJ/1Xd9bx8Ot7ufr0Ug2wJuNSZkoiFyyawgWLpgBw67Pb2XGghe21reyobWFzdRO/p4p7XtnFwmlZLJyaSXFOKmberwCN+SOh4jrLNXd085X7NzArL42vv39BrMMRiUhWaiJLZ+aydGYuzjn2N3eytaaZrdVNPLN1P09v3U9WSgKLpmexaFo23b19JAZ1LUA8cZ30r1+1merGdn77+dNVy5dxJ5IOBGbGlKwUpmSlcNb8Qlo7e9hW08zm6ibW765n9Y46HlxfwTkLizhrfiEr5hZQlJUyBtHLeBWXma6ju5f/eHwLD71WyRfPnaubsWTSSE9O4MSSXE4syaWrp4/y/S109PTy9Nb9/H5DFQCzC9I5YVYuS2dmM6cwg7LCdKZmpRxqDpLJLaKkb2YXAj8GgsDPnXP/GbY+GfglcBJwELjUObfLX/dN4BqgF/iSc+6JqEU/TM45Nu5t5Ju/28imqiauWVHGl8+bF6twREZVUkKARdOzAFg6M4fqxg7K97ew+2Arf3yrmodeqzxUNi0pSGl+OjNyU8nPSKYgI4m89CTyM5LJTk0kIzmBzJQE0pMTyPBfQfUcmpCGTPpmFgRuAS4AKoG1ZrbKObc5pNg1QL1zbq6ZXQbcCFxqZouAy4DFwHTgSTOb75zrjfYX6dfT20dHTx9tXT10dPXR0N7FzgOtvL2vmT+9VcP22layUxP52ZXLDl0YE5nsAmYU56RSnJMKFOKco7G9mwMtXRxo6Tz0eqOygd4+R11rF0MNCZSWFPROACkJZCaHnBD8+bTkBFITg6QkBkhJDJKSECQ5MeAv638FSAwGSAgYgYCREDCCASMhECAQ8AaqC4Ys758ei18l/fcwOQfOn3eH5h2htzj1T/eHZebtc8NrgjN/2Xj4NRVJTX85UO6c2wFgZvcBK4HQpL8SuN6ffhC42bxvtxK4zznXCew0s3J/e69EJ/zD3qho4JJbX6Grt2/A9WawvDSPa1bM5oNLppKTlhTtEEQmDDMjJy2JnLQk5hZlvGd9n3O0d/XS0tlDZ3cvHT19dPb0HZ7u7vXme3rp6O6jvbuXhrbudy3r6umjd5Ru/gz4STVawpP6aDIDwz8pGBjegoDBB5dM44d/vXRUPz+SpF8MVITMVwKnDFbGOddjZo1Avr98ddh7i8M/wMyuBa71Z1vMbFtE0Q/TLuCB6G+2ADgQ/c1OSNoXh2lfHKZ9cdgR98U24KZLj3rbJZEUiiTpD3Q6DT8XDlYmkvfinLsduD2CWMYdM1sXya3P8UD74jDti8O0Lw4bD/siks67lcDMkPkZQNVgZcwsAcgG6iJ8r4iIjJFIkv5aYJ6ZlZlZEt6F2VVhZVYBV/nTFwNPO+8qyCrgMjNLNrMyYB7wanRCFxGR4Rqyecdvo78OeAKvy+YvnHObzOwGYJ1zbhVwB3CPf6G2Du/EgF/uAbyLvj3A349mz50YmZDNUqNE++Iw7YvDtC8Oi/m+GHdDK4uIyOjRgBwiInFESV9EJI4o6UfIzGaa2TNmtsXMNpnZl/3leWb2FzN7x/83bgbyMbOgmb1uZo/682VmtsbfF/f7F/4nPTPLMbMHzWyrf3ycFq/HhZl9xf//8ZaZ/cbMUuLluDCzX5jZfjN7K2TZgMeBeX5iZuVm9qaZnThWcSrpR64H+Jpz7hjgVODv/WEmvgE85ZybBzzlz8eLLwNbQuZvBG7y90U93vAc8eDHwJ+ccwuB4/H2SdwdF2ZWDHwJWOacOxav40f/sCzxcFzcBVwYtmyw4+AivN6M8/BuTP3pGMXo33qs17BfwO/xxiPaBkzzl00DtsU6tjH6/jP8g/hc4FG8G/EOAAn++tOAJ2Id5xjshyxgJ36niJDlcXdccPjO/Dy8noGPAh+Ip+MCKAXeGuo4AG4DLh+o3Gi/VNM/CmZWCpwArAGmOOeqAfx/i2IX2Zj6EfBPQP9gR/lAg3Oux58fcMiNSWg2UAvc6Td1/dzM0onD48I5txf4AbAHqAYagfXE53HRb7DjYKDhbcZkvyjpD5OZZQAPAf/gnGuKdTyxYGYfBvY759aHLh6gaDz0B04ATgR+6pw7AWglDppyBuK3V68EyvBG1U3Ha8YIFw/HxVBi9v9FSX8YzCwRL+H/2jn3O3/xPjOb5q+fBuyPVXxj6Azgo2a2C7gPr4nnR0COPwwHxM+QG5VApXNujT//IN5JIB6Pi/OBnc65WudcN/A74HTi87joN9hxELMhapT0I+QPFX0HsMU598OQVaFDUFyF19Y/qTnnvumcm+GcK8W7UPe0c+6TwDN4w3BA/OyLGqDCzPofsnwe3h3ocXdc4DXrnGpmaf7/l/59EXfHRYjBjoNVwJV+L55Tgcb+ZqDRpjtyI2RmK4AXgI0cbsf+Fl67/gPALLyD/hLnXF1MgowBMzsb+Lpz7sNmNhuv5p8HvA58ynnPUpjUzGwp8HMgCdgBfBqvQhV3x4WZfRe4FK+32+vAZ/Haqif9cWFmvwHOxhs+eR/wHeARBjgO/JPizXi9fdqATzvn1o1JnEr6IiLxQ807IiJxRElfRCSOKOmLiMQRJX0RkTiipC8iEkeU9GVcMLOPm5kzs4Vj8FmF/qiPr5vZmUcod3b/CKJDbO83/kiJX4lCbHeZ2cVDlxzwvUvN7IMjjUEmNyV9GS8uB17Ef9TmKDsP2OqcO8E598JINmRmU4HTnXPHOeduik54R20poKQvR6SkLzHnj2d0Bt6Qu5eFLA+Y2f/547M/amaP99eCzewkM3vOzNab2RP9t7qHbbfEzJ7ya+FPmdks/0aq/wI+aGYbzCw17D0X+uPivwj8VcjydH+89LX+L4SV/qo/A0X+ts40szlm9ic/rhf6f7n4NfifmNnLZrYj5HuYmd1sZpvN7DFCBmYzs2/7n/eWmd3u39CDmT1rZjea2atm9rb/uUnADcClfiyXjvgPI5NTrIci1Usv4FPAHf70y8CJ/vTFwON4lZOpeGOxXwwk+uUK/XKXAr8YYLt/AK7ypz8DPOJPXw3cPED5FLyRD+fhDYj1APCov+77eHeSAuQAb+MNKFbKu4fSfQqY50+fgjdEBXhjrf/W/y6LgHJ/+V8Bf8Ebe3460ABc7K/LC9nuPcBH/Olngf/xpz8IPHmk76WXXqGv/kGQRGLpcrwB28C7Xf9y4DVgBfBb51wfUGNmz/hlFgDHAn/xK79BvKF8w53G4dr6PXg1/CNZiDdg2DsAZvYrvAdcALwfb5C5r/vzKXi31rf3v9n/xXI68Fs/LoDkkO0/4n+XzWY2xV/2PuA3zrleoMrMng4pf46Z/ROQhjeEwSa8Exl4g5mBN3Rx6RDfS+QQJX2JKTPLxxul81gzc3gJ3PnJbqDhZ/GXb3LOnTbMj4tkzJHByhjwCefctnct9J6t0C+AN3b80kG2ETreTOh3e89nmlkK8H94T6GqMLPr8U404dvqRf+PZRjUpi+xdjHwS+dciXOu1Dk3E+9JVCvwLux+wm/bn4I3mBV4TxkqNLPTwBvy2swWD7Dtlzl8jeCT/vaOZCtQZmZz/PnLQ9Y9AXwxpF39hPA3O+/5CjvN7BK/jJnZ8UN85vPAZeY9b3gacI6/vD/BH/B/QUTSo6cZyIygnMQxJX2JtcuBh8OWPQRc4f9bCbyF93i5NXhD0HbhJcEbzewNYANes0q4LwGfNrM3gb/Be6bvoJxzHXjNOY/5F3J3h6z+Ht61hDfNe/D19wbZzCeBa/y4NuE9VORIHgbewRu99afAc34sDcDP/OWPAGuH2A54Qxgv0oVcORKNsinjmpllOOda/GagV4EznDeGvYgcBbUFynj3qJnl4I1V/z0lfJGRUU1fRCSOqE1fRCSOKOmLiMQRJX0RkTiipC8iEkeU9EVE4sj/B7R7un7/i6mRAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.distplot(compas.age)\n",
"plt.title(\"Histogram of defendants' ages\")\n",
"plt.xlabel(\"Age of defendant\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"metadata": {
"scrolled": false
},
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>is_recid</th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" </tr>\n",
" <tr>\n",
" <th>age_cat</th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>25 - 45</th>\n",
" <td>1784</td>\n",
" <td>1748</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Greater than 45</th>\n",
" <td>847</td>\n",
" <td>446</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Less than 25</th>\n",
" <td>551</td>\n",
" <td>796</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"is_recid 0 1\n",
"age_cat \n",
"25 - 45 1784 1748\n",
"Greater than 45 847 446\n",
"Less than 25 551 796"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>is_recid</th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" </tr>\n",
" <tr>\n",
" <th>sex</th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Female</th>\n",
" <td>740</td>\n",
" <td>435</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Male</th>\n",
" <td>2442</td>\n",
" <td>2555</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"is_recid 0 1\n",
"sex \n",
"Female 740 435\n",
"Male 2442 2555"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>is_recid</th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" </tr>\n",
" <tr>\n",
" <th>race</th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th rowspan=\"3\" valign=\"top\">African-American</th>\n",
" <th>25 - 45</th>\n",
" <td>847.0</td>\n",
" <td>1051.0</td>\n",
" <th>Greater than 45</th>\n",
" <td>261.0</td>\n",
" <td>207.0</td>\n",
" <th>Less than 25</th>\n",
" <td>294.0</td>\n",
" <td>515.0</td>\n",
" <th rowspan=\"3\" valign=\"top\">Asian</th>\n",
" <th>25 - 45</th>\n",
" <td>10.0</td>\n",
" <td>4.0</td>\n",
" <th>Greater than 45</th>\n",
" <td>7.0</td>\n",
" <td>4.0</td>\n",
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
" <th>Less than 25</th>\n",
" <td>4.0</td>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"3\" valign=\"top\">Caucasian</th>\n",
" <th>25 - 45</th>\n",
" <td>620.0</td>\n",
" <td>508.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Greater than 45</th>\n",
" <td>442.0</td>\n",
" <td>186.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Less than 25</th>\n",
" <td>167.0</td>\n",
" <td>180.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"3\" valign=\"top\">Hispanic</th>\n",
" <th>25 - 45</th>\n",
" <td>180.0</td>\n",
" <td>111.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Greater than 45</th>\n",
" <td>81.0</td>\n",
" <td>28.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Less than 25</th>\n",
" <td>51.0</td>\n",
" <td>58.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"3\" valign=\"top\">Native American</th>\n",
" <th>25 - 45</th>\n",
" <td>5.0</td>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Greater than 45</th>\n",
" <td>NaN</td>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Less than 25</th>\n",
" <td>NaN</td>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th rowspan=\"3\" valign=\"top\">Other</th>\n",
" <th>25 - 45</th>\n",
" <td>122.0</td>\n",
" <td>72.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Greater than 45</th>\n",
" <td>56.0</td>\n",
" <td>19.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Less than 25</th>\n",
" <td>35.0</td>\n",
" <td>39.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"is_recid 0 1\n",
"race age_cat \n",
"African-American 25 - 45 847.0 1051.0\n",
" Greater than 45 261.0 207.0\n",
" Less than 25 294.0 515.0\n",
"Asian 25 - 45 10.0 4.0\n",
" Greater than 45 7.0 4.0\n",
" Less than 25 4.0 2.0\n",
"Caucasian 25 - 45 620.0 508.0\n",
" Greater than 45 442.0 186.0\n",
" Less than 25 167.0 180.0\n",
"Hispanic 25 - 45 180.0 111.0\n",
" Greater than 45 81.0 28.0\n",
" Less than 25 51.0 58.0\n",
"Native American 25 - 45 5.0 2.0\n",
" Greater than 45 NaN 2.0\n",
" Less than 25 NaN 2.0\n",
"Other 25 - 45 122.0 72.0\n",
" Greater than 45 56.0 19.0\n",
" Less than 25 35.0 39.0"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"tab = compas.groupby(['age_cat', 'is_recid']).size()\n",
"display(tab.unstack())\n",
"\n",
"tab = compas.groupby(['sex', 'is_recid']).size()\n",
"display(tab.unstack())\n",
"\n",
"tab = compas.groupby(['race', 'age_cat', 'is_recid']).size()\n",
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From above it is clear that there are no Native American recidivists of age over 45 or under 25. There are some other value combinations that might be problematic. Therefore the procedure of estimating $P(X=x)$ has to be considered carefully."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Synthetic data\n",
"In the chunk below, we generate the synthetic data as described by Lakkaraju et al. The default values and definitions of $Y$ and $T$ values follow their description.\n",
"* M = `nJudges_M`, number of judges\n",
"* N = `nSubjects_N`, number of subjects assigned to each judge\n",
"* betas $\\beta_i$ = `beta_i`, where $i \\in \\{X, Z, W\\}$ are coefficients for the respected variables\n",
"* R = `acceptanceRate_R`, acceptance rates\n",
"* X = `X`, invidual's features observable to all (models and judges)\n",
"* Z = `Z`, information observable for judges only\n",
"* W = `W`, unobservable / inaccessible information\n",
"* T = `decision_T`, bail-or-jail decisions where $T=0$ represents jail decision and $T=1$ bail decision.\n",
"* Y = `result_Y`, result variable, if $Y=0$ person will or would recidivate and if $Y=1$ person will or would not commit a crime."
]
},
{
"cell_type": "code",
"metadata": {
"scrolled": false
},
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>count</th>\n",
" <th>mean</th>\n",
" <th>std</th>\n",
" <th>min</th>\n",
" <th>25%</th>\n",
" <th>50%</th>\n",
" <th>75%</th>\n",
" <th>max</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>judgeID_J</th>\n",
" <td>50000.0</td>\n",
" <td>49.500000</td>\n",
" <td>28.866359</td>\n",
" <td>0.000000</td>\n",
" <td>24.750000</td>\n",
" <td>49.500000</td>\n",
" <td>74.250000</td>\n",
" <td>99.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>acceptanceRate_R</th>\n",
" <td>50000.0</td>\n",
" <td>0.478235</td>\n",
" <td>0.230644</td>\n",
" <td>0.103756</td>\n",
" <td>0.264643</td>\n",
" <td>0.473985</td>\n",
" <td>0.647587</td>\n",
" <td>0.890699</td>\n",
" </tr>\n",
" <tr>\n",
" <th>X</th>\n",
" <td>50000.0</td>\n",
" <td>-0.003875</td>\n",
" <td>0.996715</td>\n",
" <td>-4.659953</td>\n",
" <td>-0.671782</td>\n",
" <td>-0.001726</td>\n",
" <td>0.668077</td>\n",
" <td>3.831790</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Z</th>\n",
" <td>50000.0</td>\n",
" <td>0.006964</td>\n",
" <td>0.998001</td>\n",
" <td>-4.852118</td>\n",
" <td>-0.666258</td>\n",
" <td>0.004730</td>\n",
" <td>0.679477</td>\n",
" <td>4.241772</td>\n",
" </tr>\n",
" <tr>\n",
" <th>W</th>\n",
" <td>50000.0</td>\n",
" <td>0.010863</td>\n",
" <td>0.996944</td>\n",
" <td>-4.029138</td>\n",
" <td>-0.666574</td>\n",
" <td>0.012306</td>\n",
" <td>0.679578</td>\n",
" <td>4.285856</td>\n",
" </tr>\n",
" <tr>\n",
" <th>result_Y</th>\n",
" <td>50000.0</td>\n",
" <td>0.496500</td>\n",
" <td>0.499993</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>1.000000</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>probabilities_T</th>\n",
" <td>50000.0</td>\n",
" <td>0.500794</td>\n",
" <td>0.279762</td>\n",
" <td>-0.335627</td>\n",
" <td>0.276723</td>\n",
" <td>0.501317</td>\n",
" <td>0.723352</td>\n",
" <td>1.295719</td>\n",
" </tr>\n",
" <tr>\n",
" <th>decision_T</th>\n",
" <td>50000.0</td>\n",
" <td>0.477260</td>\n",
" <td>0.499488</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>1.000000</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" count mean std min 25% \\\n",
"judgeID_J 50000.0 49.500000 28.866359 0.000000 24.750000 \n",
"acceptanceRate_R 50000.0 0.478235 0.230644 0.103756 0.264643 \n",
"X 50000.0 -0.003875 0.996715 -4.659953 -0.671782 \n",
"Z 50000.0 0.006964 0.998001 -4.852118 -0.666258 \n",
"W 50000.0 0.010863 0.996944 -4.029138 -0.666574 \n",
"result_Y 50000.0 0.496500 0.499993 0.000000 0.000000 \n",
"probabilities_T 50000.0 0.500794 0.279762 -0.335627 0.276723 \n",
"decision_T 50000.0 0.477260 0.499488 0.000000 0.000000 \n",
"\n",
" 50% 75% max \n",
"judgeID_J 49.500000 74.250000 99.000000 \n",
"acceptanceRate_R 0.473985 0.647587 0.890699 \n",
"X -0.001726 0.668077 3.831790 \n",
"Z 0.004730 0.679477 4.241772 \n",
"W 0.012306 0.679578 4.285856 \n",
"result_Y 0.000000 1.000000 1.000000 \n",
"probabilities_T 0.501317 0.723352 1.295719 \n",
"decision_T 0.000000 1.000000 1.000000 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 26137\n",
"1 23863\n",
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
"Name: decision_T, dtype: int64\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>decision_T</th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" </tr>\n",
" <tr>\n",
" <th>result_Y</th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0.0</th>\n",
" <td>20083</td>\n",
" <td>5092</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1.0</th>\n",
" <td>6054</td>\n",
" <td>18771</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"0.0 20083 5092\n",
"1.0 6054 18771"
"output_type": "display_data"
"# Set seed for reproducibility\n",
"npr.seed(0)\n",
"\n",
"def generateData(nJudges_M=100,\n",
" nSubjects_N=500,\n",
" beta_X=1.0,\n",
" beta_Z=1.0,\n",
" beta_W=0.2):\n",
"\n",
" # Assign judge IDs as running numbering from 0 to nJudges_M - 1\n",
" judgeID_J = np.repeat(np.arange(0, nJudges_M, dtype=np.int32), nSubjects_N)\n",
"\n",
" # Sample acceptance rates uniformly from a closed interval\n",
" # from 0.1 to 0.9 and round to tenth decimal place.\n",
" acceptance_rates = np.round(npr.uniform(.1, .9, nJudges_M), 10)\n",
"\n",
" # Replicate the rates so they can be attached to the corresponding judge ID.\n",
" acceptanceRate_R = np.repeat(acceptance_rates, nSubjects_N)\n",
"\n",
" # Sample the variables from standard Gaussian distributions.\n",
" X = npr.normal(size=nJudges_M * nSubjects_N)\n",
" Z = npr.normal(size=nJudges_M * nSubjects_N)\n",
" W = npr.normal(size=nJudges_M * nSubjects_N)\n",
"\n",
" probabilities_Y = 1 / (1 + np.exp(-(beta_X * X + beta_Z * Z + beta_W * W)))\n",
"\n",
" # 0 if P(Y = 0| X = x; Z = z; W = w) >= 0.5 , 1 otherwise\n",
" result_Y = 1 - probabilities_Y.round()\n",
"\n",
" probabilities_T = 1 / (1 + np.exp(-(beta_X * X + beta_Z * Z)))\n",
" probabilities_T += npr.normal(0, .1, nJudges_M * nSubjects_N)\n",
"\n",
" # Initialize decision values as 1\n",
" decision_T = np.ones(nJudges_M * nSubjects_N)\n",
"\n",
" # Initialize the dataframe\n",
" df_init = pd.DataFrame(\n",
" np.column_stack((judgeID_J, acceptanceRate_R, X, Z, W, result_Y,\n",
" probabilities_T, decision_T)),\n",
" columns=[\n",
" \"judgeID_J\", \"acceptanceRate_R\", \"X\", \"Z\", \"W\", \"result_Y\",\n",
" \"probabilities_T\", \"decision_T\"\n",
" ])\n",
"\n",
" # Sort by judges then probabilities\n",
" data = df_init.sort_values(\n",
" by=[\"judgeID_J\", \"probabilities_T\"], ascending=False)\n",
"\n",
" # Iterate over the data. Subject is in the top (1-r)*100% if\n",
" # his within-judge-index is over acceptance threshold times\n",
" # the number of subjects assigned to each judge. If subject\n",
" # is over the limit they are assigned a zero, else one.\n",
" data.reset_index(drop=True, inplace=True)\n",
"\n",
" data['decision_T'] = np.where(\n",
" (data.index.values % nSubjects_N) <\n",
" ((1 - data['acceptanceRate_R']) * nSubjects_N), 0, 1)\n",
"\n",
" return data\n",
"\n",
"\n",
"df = generateData()\n",
"\n",
"# Basic stats of the created data set.\n",
"display(df.describe().T)\n",
"print(df.decision_T.value_counts())\n",
"\n",
"tab = df.groupby(['result_Y', 'decision_T']).size()\n",
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(25000, 8)\n",
"(25000, 8)\n",
"(11866, 8)\n",
"(11997, 8)\n"
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>decision_T</th>\n",
" </tr>\n",
" <tr>\n",
" <th>result_Y</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0.0</th>\n",
" </tr>\n",
" <tr>\n",
" <th>1.0</th>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"0.0 2495\n",
"1.0 9371"
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Split the data set to test and train\n",
"from sklearn.model_selection import train_test_split\n",
"train, test = train_test_split(df, test_size=0.5, random_state=0)\n",
"\n",
"print(train.shape)\n",
"print(test.shape)\n",
"\n",
"train_labeled = train[train.decision_T == 1]\n",
"\n",
"print(train_labeled.shape)\n",
"\n",
"tab = train_labeled.groupby(['result_Y', 'decision_T']).size()\n",
"tab.unstack()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Contraction algorithm\n",
"Below is an implementation of Lakkaraju's team's algorithm presented in [their paper](https://helka.finna.fi/PrimoRecord/pci.acm3098066). Relevant parameters to be passed to the function are presented in the description."
]
},
{
"cell_type": "code",
"def contraction(df,\n",
" judgeIDJ_col,\n",
" decisionT_col,\n",
" resultY_col,\n",
" modelProbS_col,\n",
" accRateR_col,\n",
" r,\n",
" binning=False):\n",
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
" '''\n",
" This is an implementation of the algorithm presented by Lakkaraju\n",
" et al. in their paper \"The Selective Labels Problem: Evaluating \n",
" Algorithmic Predictions in the Presence of Unobservables\" (2017).\n",
" \n",
" Parameters:\n",
" df = The (Pandas) data frame containing the data, judge decisions,\n",
" judge IDs, results and probability scores.\n",
" judgeIDJ_col = String, the name of the column containing the judges' IDs\n",
" in df.\n",
" decisionT_col = String, the name of the column containing the judges' decisions\n",
" resultY_col = String, the name of the column containing the realization\n",
" modelProbS_col = String, the name of the column containing the probability\n",
" scores from the black-box model B.\n",
" accRateR_col = String, the name of the column containing the judges' \n",
" acceptance rates\n",
" r = Float between 0 and 1, the given acceptance rate.\n",
" binning = Boolean, should judges with same acceptance rate be binned\n",
" \n",
" Returns:\n",
" u = The estimated failure rate at acceptance rate r.\n",
" '''\n",
" # Sort first by acceptance rate and judge ID.\n",
" sorted_df = df.sort_values(\n",
" by=[accRateR_col, judgeIDJ_col], ascending=False)\n",
"\n",
" if binning:\n",
" # Get maximum leniency\n",
" max_leniency = sorted_df[accRateR_col].values[0].round(1)\n",
"\n",
" # Get list of judges that are the most lenient\n",
" most_lenient_list = sorted_df.loc[sorted_df[accRateR_col].round(1) ==\n",
" max_leniency, judgeIDJ_col]\n",
"\n",
" # Subset to obtain D_q\n",
" D_q = sorted_df[sorted_df[judgeIDJ_col].isin(\n",
" most_lenient_list.unique())]\n",
" else:\n",
" # Get most lenient judge\n",
" most_lenient_ID = sorted_df[judgeIDJ_col].values[0]\n",
" # Subset\n",
" D_q = sorted_df[sorted_df[judgeIDJ_col] == most_lenient_ID]\n",
" R_q = D_q[D_q[decisionT_col] == 1]\n",
"\n",
" number_to_remove = int(\n",
" np.round((1 - r) * D_q.shape[0] - (D_q.shape[0] - R_q.shape[0])))\n",
"\n",
" R_B = R_sort_q[number_to_remove:R_sort_q.shape[0]]\n",
"\n",
" return np.sum(R_B[resultY_col] == 0) / D_q.shape[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Our model is defined by the probabilistic expression \n",
"P(Y=0 | \\text{do}(R=r)) = \\sum_x \\underbrace{P(Y=0|X=x, T=1)}_\\text{1} \n",
"\\overbrace{P(T=1|R=r, X=x)}^\\text{2} \n",
"\\underbrace{P(X=x)}_\\text{3}\n",
"As a picture (Z not in model):\n",
"\n",
"\n",
"\n",
"Our model will be constructed sequentially.\n",
"Input: Training and test data sets $(\\mathbf{x}, t, y) \\in \\mathcal{D}$ and acceptance rate $r$. \n",
"Returns: $P(Y=0 | \\text{do}(R=r))$\n",
"1. Model $P(X=x)$ in a suitable way and assign to $\\mathcal{M}_0$\n",
"* Build model $\\mathcal{M}_1$ predicting response $Y$ with predictors $X$ from the labeled observations (where $T=1$) in training data.\n",
"* Predict $P(Y=0|X=x)$ for every observation in the test data using model $\\mathcal{M}_1$.\n",
"* Initialize `sum = 0`\n",
"* For every point in the parameter space (for every $x$ in $X$)\n",
" 1. $p_x \\leftarrow P(X=x)$ from $\\mathcal{M}_0$\n",
" * $\\mathcal{D_x} \\leftarrow \\{\\mathcal{D} | X = x\\}$\n",
" * Assign first $r\\cdot 100\\%$ observations from $\\mathcal{D_x}$ to $\\mathcal{D}_{rx}$\n",
" * $p_t \\leftarrow \\dfrac{|\\{\\mathcal{D}_{rx}|T=1\\}|}{|\\mathcal{D}_{rx}|}$ (part 2 of eq. $\\ref{model}$) Pitääkö tähänkin treenaa joku oma luokittelija?\n",
" * $p_y$ will be predicted from the model $\\mathcal{M}_1$\n",
" * `sum +=` $p_y \\cdot p_t \\cdot p_x$\n",
"* Return `sum`\n",
"**Constructing $\\mathcal{M}_0$, preliminary ideas:**\n",
"* Approximate $P(X=x)$ with frequencies (makes independence assumption, make variables factors first)\n",
"* Construct Bayesian network.\n",
"\n",
"Functions:\n",
"\n",
"* $f(x)$ gives probability of recidivism given personal properties and predictive model.\n",
"* `ep` counts performance of the predictive model given a data, model and leniency rate like Michael's pdf."
]
},
{
"cell_type": "code",
"def causal(x_list, df_test, df_train, result_col, feature_cols, x_model, y_model,\n",
" Gives probability of negative event given a leniency r.\n",
" \n",
" Parameters:\n",
" x_list = list of all possible x values\n",
" df_test = pandas dataframe, test data\n",
" df_train = pandas dataframe, training data\n",
" feature_cols = String (list), name of columns containing individual features.\n",
" y_cols = String, name of column containgn the result variable\n",
" x_model = model predicting probability of given combination of private features\n",
" y_model = model predicting probability of recidivism given private features\n",
" leniency_r = float, leniency level between .0.0 and 1.0\n",
" '''\n",
" probability = 0\n",
" for x in x_list:\n",
"\n",
" D_tx = df_test[(y_model(df_test[feature_cols]) < leniency_r)\n",
" & (df_test[feature_cols] == x)]\n",
" if D_tx.shape[0] == 0:\n",
" continue\n",
" p_t = np.sum(D_tx.decision_T == 1) / D_tx.shape[0]\n",
" probability += p_y[0, 0] * p_t * p_x\n",
" return probability\n",
"\n",
"\n",
"def f(x, model):\n",