Skip to content
Snippets Groups Projects
notes.tex 72.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • 
    The following hierarchical model was used as an initial approach to the problem. Data was generated with unobservables and both outcome Y and decision T were drawn from Bernoulli distributions. The $\beta$ coefficients were systematically overestimated as shown in figure \ref{fig:posteriors}.
    
    \begin{align} \label{eq1}
     1-t~|~x,~z,~\beta_x,~\beta_z & \sim \text{Bernoulli}(\invlogit(\beta_xx + \beta_zz)) \\ \nonumber
     Z &\sim N(0, 1) \\ \nonumber
    % \alpha_j & \sim N(0, 100), j \in \{1, \ldots, N_{judges} \} \\
      \beta_x & \sim N(0, 10^2) \\ \nonumber
      \beta_z & \sim N_+(0, 10^2) 
    \end{align}
    
    
    \begin{figure}[]
        \centering
    
    Riku-Laine's avatar
    Riku-Laine committed
        \begin{subfigure}[b]{0.45\textwidth}
    
            \includegraphics[width=\textwidth]{sl_posterior_betax}
            \caption{Posterior of $\beta_x$.}
            %\label{fig:random_predictions_without_Z}
        \end{subfigure}
        \quad %add desired spacing between images, e. g. ~, \quad, \qquad, \hfill etc. 
          %(or a blank line to force the subfigure onto a new line)
    
    Riku-Laine's avatar
    Riku-Laine committed
        \begin{subfigure}[b]{0.45\textwidth}
    
            \includegraphics[width=\textwidth]{sl_posterior_betaz}
            \caption{Posterior of $\beta_z$.}
    
    Riku-Laine's avatar
    Riku-Laine committed
            %\label{fig:posteriors}
    
        \end{subfigure}
        \caption{Coefficient posteriors from model \ref{eq1}.}
    
    Riku-Laine's avatar
    Riku-Laine committed
        \label{fig:posteriors}
    
    \subsection{Summary table}
    
    Summary table of different modules.
    
    \begin{table}[H]
    
    Riku-Laine's avatar
    Riku-Laine committed
      \centering
    
      \caption{Summary of modules (under construction)}
    
    Riku-Laine's avatar
    Riku-Laine committed
      \begin{tabular}{lll}
        \toprule
        \multicolumn{3}{c}{Module type} \\[.5\normalbaselineskip]
        \textbf{Data generator} & \textbf{Decider} & \textbf{Evaluator}  \\
        \midrule
    
        {\ul Without unobservables}	& Independent decisions		& {\ul Labeled outcomes} \\
         					 	& 1. draw T from a Bernoulli	& \tabitem Data $\D$ with properties $\{x_i, t_i, y_i\}$ \\
        {\ul With unobservables}       	& with $P(T=0|X, Z)$			& \tabitem acceptance rate r \\
        \tabitem $P(Y=0|X, Z, W)$ 	& 2. determine with $F^{-1}(r)$	& \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
    
         {\ul With unobservables}	& Non-independent decisions  	& {\ul True evaluation} \\
         \tabitem assign Y by		& 3. sort by $P(T=0|X, Z)$		& \tabitem Data $\D$ with properties $\{x_i, t_i, y_i\}$ \\
         "threshold rule"			& and assign $t$ by $r$  		& and \emph{all outcome labels} \\
         						&   						& \tabitem acceptance rate r \\
         						&   						& \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
    
         
         &  & {\ul Human evaluation} \\
         &  & \tabitem Data $\D$ with properties $\{x_i, j_i, t_i, y_i\}$ \\
         &  & \tabitem acceptance rate r \\[.5\normalbaselineskip]
         
    
    Riku-Laine's avatar
    Riku-Laine committed
         &  & {\ul Contraction algorithm} \\
    
         &  & \tabitem Data $\D$ with properties $\{x_i, j_i, t_i, y_i\}$ \\
         &  & \tabitem acceptance rate r \\
         &  & \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
         
    
         &  & {\ul Causal model} \\
    
    Riku-Laine's avatar
    Riku-Laine committed
         &  & \tabitem Data $\D$ with properties $\{x_i, t_i, y_i\}$ \\
         &  & \tabitem acceptance rate r \\
         &  & \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
    
         
         &  & {\ul Monte Carlo evaluator} \\
         &  & \tabitem Data $\D$ with properties $\{x_i, j_i, t_i, y_i\}$ \\
         &  & \tabitem acceptance rate r \\
    
    Riku-Laine's avatar
    Riku-Laine committed
         &  & \tabitem knowledge that X affects Y \\
         &  & \tabitem more intricate knowledge about $\M$ ? \\[.5\normalbaselineskip]
    
    Riku-Laine's avatar
    Riku-Laine committed
        \bottomrule
      \end{tabular}
    
      \label{tab:modules}
    
    Riku-Laine's avatar
    Riku-Laine committed
    \end{table}
    
    
    \begin{thebibliography}{9} % Might have been apa
    
    Riku-Laine's avatar
    Riku-Laine committed
    
    \bibitem{dearteaga18}
       De-Arteaga, Maria. Learning Under Selective Labels in the Presence of Expert Consistency. 2018. 
    \bibitem{lakkaraju17} 
       Lakkaraju, Himabindu. The Selective Labels Problem: Evaluating Algorithmic Predictions in the Presence of Unobservables. 2017. 
    
    \end{thebibliography}
    
    
    \end{document}