Newer
Older
The following hierarchical model was used as an initial approach to the problem. Data was generated with unobservables and both outcome Y and decision T were drawn from Bernoulli distributions. The $\beta$ coefficients were systematically overestimated as shown in figure \ref{fig:posteriors}.
\begin{align} \label{eq1}
1-t~|~x,~z,~\beta_x,~\beta_z & \sim \text{Bernoulli}(\invlogit(\beta_xx + \beta_zz)) \\ \nonumber
Z &\sim N(0, 1) \\ \nonumber
% \alpha_j & \sim N(0, 100), j \in \{1, \ldots, N_{judges} \} \\
\beta_x & \sim N(0, 10^2) \\ \nonumber
\beta_z & \sim N_+(0, 10^2)
\end{align}
\begin{figure}[]
\centering
\includegraphics[width=\textwidth]{sl_posterior_betax}
\caption{Posterior of $\beta_x$.}
%\label{fig:random_predictions_without_Z}
\end{subfigure}
\quad %add desired spacing between images, e. g. ~, \quad, \qquad, \hfill etc.
%(or a blank line to force the subfigure onto a new line)
\includegraphics[width=\textwidth]{sl_posterior_betaz}
\caption{Posterior of $\beta_z$.}
\end{subfigure}
\caption{Coefficient posteriors from model \ref{eq1}.}
Summary table of different modules.
\begin{table}[H]
\caption{Summary of modules (under construction)}
\begin{tabular}{lll}
\toprule
\multicolumn{3}{c}{Module type} \\[.5\normalbaselineskip]
\textbf{Data generator} & \textbf{Decider} & \textbf{Evaluator} \\
\midrule
{\ul Without unobservables} & Independent decisions & {\ul Labeled outcomes} \\
& 1. draw T from a Bernoulli & \tabitem Data $\D$ with properties $\{x_i, t_i, y_i\}$ \\
{\ul With unobservables} & with $P(T=0|X, Z)$ & \tabitem acceptance rate r \\
\tabitem $P(Y=0|X, Z, W)$ & 2. determine with $F^{-1}(r)$ & \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
{\ul With unobservables} & Non-independent decisions & {\ul True evaluation} \\
\tabitem assign Y by & 3. sort by $P(T=0|X, Z)$ & \tabitem Data $\D$ with properties $\{x_i, t_i, y_i\}$ \\
"threshold rule" & and assign $t$ by $r$ & and \emph{all outcome labels} \\
& & \tabitem acceptance rate r \\
& & \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
& & {\ul Human evaluation} \\
& & \tabitem Data $\D$ with properties $\{x_i, j_i, t_i, y_i\}$ \\
& & \tabitem acceptance rate r \\[.5\normalbaselineskip]
& & \tabitem Data $\D$ with properties $\{x_i, j_i, t_i, y_i\}$ \\
& & \tabitem acceptance rate r \\
& & \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
& & \tabitem Data $\D$ with properties $\{x_i, t_i, y_i\}$ \\
& & \tabitem acceptance rate r \\
& & \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
& & {\ul Monte Carlo evaluator} \\
& & \tabitem Data $\D$ with properties $\{x_i, j_i, t_i, y_i\}$ \\
& & \tabitem acceptance rate r \\
& & \tabitem knowledge that X affects Y \\
& & \tabitem more intricate knowledge about $\M$ ? \\[.5\normalbaselineskip]
\begin{thebibliography}{9} % Might have been apa
\bibitem{dearteaga18}
De-Arteaga, Maria. Learning Under Selective Labels in the Presence of Expert Consistency. 2018.
\bibitem{lakkaraju17}
Lakkaraju, Himabindu. The Selective Labels Problem: Evaluating Algorithmic Predictions in the Presence of Unobservables. 2017.
\end{thebibliography}