Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
The following hierarchical model was used as an initial approach to the problem. Data was generated with unobservables and both outcome Y and decision T were drawn from Bernoulli distributions. The $\beta$ coefficients were systematically overestimated as shown in figure \ref{fig:posteriors}.
\begin{align} \label{eq1}
1-t~|~x,~z,~\beta_x,~\beta_z & \sim \text{Bernoulli}(\invlogit(\beta_xx + \beta_zz)) \\ \nonumber
Z &\sim N(0, 1) \\ \nonumber
% \alpha_j & \sim N(0, 100), j \in \{1, \ldots, N_{judges} \} \\
\beta_x & \sim N(0, 10^2) \\ \nonumber
\beta_z & \sim N_+(0, 10^2)
\end{align}
\begin{figure}[]
\centering
\begin{subfigure}[b]{0.475\textwidth}
\includegraphics[width=\textwidth]{sl_posterior_betax}
\caption{Posterior of $\beta_x$.}
%\label{fig:random_predictions_without_Z}
\end{subfigure}
\quad %add desired spacing between images, e. g. ~, \quad, \qquad, \hfill etc.
%(or a blank line to force the subfigure onto a new line)
\begin{subfigure}[b]{0.475\textwidth}
\includegraphics[width=\textwidth]{sl_posterior_betaz}
\caption{Posterior of $\beta_z$.}
\label{fig:posteriors}
\end{subfigure}
\caption{Coefficient posteriors from model \ref{eq1}.}
%\label{fig:random_predictions}
\end{figure}
Summary table of different modules.
\begin{table}[H]
\caption{Summary of modules (under construction)}
\begin{tabular}{lll}
\toprule
\multicolumn{3}{c}{Module type} \\[.5\normalbaselineskip]
\textbf{Data generator} & \textbf{Decider} & \textbf{Evaluator} \\
\midrule
{\ul Without unobservables} & Independent decisions & {\ul Labeled outcomes} \\
& 1. draw T from a Bernoulli & \tabitem Data $\D$ with properties $\{x_i, t_i, y_i\}$ \\
{\ul With unobservables} & with $P(T=0|X, Z)$ & \tabitem acceptance rate r \\
\tabitem $P(Y=0|X, Z, W)$ & 2. determine with $F^{-1}(r)$ & \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
{\ul With unobservables} & Non-independent decisions & {\ul True evaluation} \\
\tabitem assign Y by & 3. sort by $P(T=0|X, Z)$ & \tabitem Data $\D$ with properties $\{x_i, t_i, y_i\}$ \\
"threshold rule" & and assign $t$ by $r$ & and \emph{all outcome labels} \\
& & \tabitem acceptance rate r \\
& & \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
& & {\ul Human evaluation} \\
& & \tabitem Data $\D$ with properties $\{x_i, j_i, t_i, y_i\}$ \\
& & \tabitem acceptance rate r \\[.5\normalbaselineskip]
& & \tabitem Data $\D$ with properties $\{x_i, j_i, t_i, y_i\}$ \\
& & \tabitem acceptance rate r \\
& & \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
& & \tabitem Data $\D$ with properties $\{x_i, t_i, y_i\}$ \\
& & \tabitem acceptance rate r \\
& & \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
& & {\ul Monte Carlo evaluator} \\
& & \tabitem Data $\D$ with properties $\{x_i, j_i, t_i, y_i\}$ \\
& & \tabitem acceptance rate r \\
& & \tabitem knowledge that X affects Y \\
& & \tabitem more intricate knowledge about $\M$ ? \\[.5\normalbaselineskip]
\begin{thebibliography}{9} % Might have been apa
\bibitem{dearteaga18}
De-Arteaga, Maria. Learning Under Selective Labels in the Presence of Expert Consistency. 2018.
\bibitem{lakkaraju17}
Lakkaraju, Himabindu. The Selective Labels Problem: Evaluating Algorithmic Predictions in the Presence of Unobservables. 2017.
\end{thebibliography}