Newer
Older
\caption{Summary of modules (under construction)}
\begin{tabular}{lll}
\toprule
\multicolumn{3}{c}{Module type} \\[.5\normalbaselineskip]
\textbf{Data generator} & \textbf{Decider} & \textbf{Evaluator} \\
\midrule
{\ul Without unobservables} & Independent decisions & {\ul Labeled outcomes} \\
& 1. draw T from a Bernoulli & \tabitem Data $\D$ with properties $\{x_i, t_i, y_i\}$ \\
{\ul With unobservables} & with $P(T=0|X, Z)$ & \tabitem acceptance rate r \\
\tabitem $P(Y=0|X, Z, W)$ & 2. determine with $F^{-1}(r)$ & \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
{\ul With unobservables} & Non-independent decisions & {\ul True evaluation} \\
\tabitem assign Y by & 3. sort by $P(T=0|X, Z)$ & \tabitem Data $\D$ with properties $\{x_i, t_i, y_i\}$ \\
"threshold rule" & and assign $t$ by $r$ & and \emph{all outcome labels} \\
& & \tabitem acceptance rate r \\
& & \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
& & {\ul Human evaluation} \\
& & \tabitem Data $\D$ with properties $\{x_i, j_i, t_i, y_i\}$ \\
& & \tabitem acceptance rate r \\[.5\normalbaselineskip]
& & \tabitem Data $\D$ with properties $\{x_i, j_i, t_i, y_i\}$ \\
& & \tabitem acceptance rate r \\
& & \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
& & \tabitem Data $\D$ with properties $\{x_i, t_i, y_i\}$ \\
& & \tabitem acceptance rate r \\
& & \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
& & {\ul Monte Carlo evaluator} \\
& & \tabitem Data $\D$ with properties $\{x_i, j_i, t_i, y_i\}$ \\
& & \tabitem acceptance rate r \\
& & \tabitem knowledge that X affects Y \\
& & \tabitem more intricate knowledge about $\M$ ? \\[.5\normalbaselineskip]
\begin{thebibliography}{9} % Might have been apa
\bibitem{dearteaga18}
De-Arteaga, Maria. Learning Under Selective Labels in the Presence of Expert Consistency. 2018.
\bibitem{lakkaraju17}
Lakkaraju, Himabindu. The Selective Labels Problem: Evaluating Algorithmic Predictions in the Presence of Unobservables. 2017.
\end{thebibliography}