Skip to content
Snippets Groups Projects
notes.tex 70.6 KiB
Newer Older
  • Learn to ignore specific revisions
  •   \caption{Summary of modules (under construction)}
    
    Riku-Laine's avatar
    Riku-Laine committed
      \begin{tabular}{lll}
        \toprule
        \multicolumn{3}{c}{Module type} \\[.5\normalbaselineskip]
        \textbf{Data generator} & \textbf{Decider} & \textbf{Evaluator}  \\
        \midrule
    
        {\ul Without unobservables}	& Independent decisions		& {\ul Labeled outcomes} \\
         					 	& 1. draw T from a Bernoulli	& \tabitem Data $\D$ with properties $\{x_i, t_i, y_i\}$ \\
        {\ul With unobservables}       	& with $P(T=0|X, Z)$			& \tabitem acceptance rate r \\
        \tabitem $P(Y=0|X, Z, W)$ 	& 2. determine with $F^{-1}(r)$	& \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
    
         {\ul With unobservables}	& Non-independent decisions  	& {\ul True evaluation} \\
         \tabitem assign Y by		& 3. sort by $P(T=0|X, Z)$		& \tabitem Data $\D$ with properties $\{x_i, t_i, y_i\}$ \\
         "threshold rule"			& and assign $t$ by $r$  		& and \emph{all outcome labels} \\
         						&   						& \tabitem acceptance rate r \\
         						&   						& \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
    
         
         &  & {\ul Human evaluation} \\
         &  & \tabitem Data $\D$ with properties $\{x_i, j_i, t_i, y_i\}$ \\
         &  & \tabitem acceptance rate r \\[.5\normalbaselineskip]
         
    
    Riku-Laine's avatar
    Riku-Laine committed
         &  & {\ul Contraction algorithm} \\
    
         &  & \tabitem Data $\D$ with properties $\{x_i, j_i, t_i, y_i\}$ \\
         &  & \tabitem acceptance rate r \\
         &  & \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
         
    
         &  & {\ul Causal model} \\
    
    Riku-Laine's avatar
    Riku-Laine committed
         &  & \tabitem Data $\D$ with properties $\{x_i, t_i, y_i\}$ \\
         &  & \tabitem acceptance rate r \\
         &  & \tabitem knowledge that X affects Y \\[.5\normalbaselineskip]
    
         
         &  & {\ul Monte Carlo evaluator} \\
         &  & \tabitem Data $\D$ with properties $\{x_i, j_i, t_i, y_i\}$ \\
         &  & \tabitem acceptance rate r \\
    
    Riku-Laine's avatar
    Riku-Laine committed
         &  & \tabitem knowledge that X affects Y \\
         &  & \tabitem more intricate knowledge about $\M$ ? \\[.5\normalbaselineskip]
    
    Riku-Laine's avatar
    Riku-Laine committed
        \bottomrule
      \end{tabular}
    
      \label{tab:modules}
    
    Riku-Laine's avatar
    Riku-Laine committed
    \end{table}
    
    
    \begin{thebibliography}{9} % Might have been apa
    
    Riku-Laine's avatar
    Riku-Laine committed
    
    \bibitem{dearteaga18}
       De-Arteaga, Maria. Learning Under Selective Labels in the Presence of Expert Consistency. 2018. 
    \bibitem{lakkaraju17} 
       Lakkaraju, Himabindu. The Selective Labels Problem: Evaluating Algorithmic Predictions in the Presence of Unobservables. 2017. 
    
    \end{thebibliography}
    
    
    \end{document}