\caption{Outcome Y from threshold rule, non-independent decisions and $N_{iter}=10$.}
%\label{fig:modules_mc_with_Z}
\end{subfigure}
\caption{Failure rate vs. acceptance rate with varying levels of leniency. Different combinations of deciders and data generation modules. See other modules used in section \ref{sec:modules_mc}}
...
...
@@ -692,7 +692,7 @@ Monte Carlo & 0.001292 & 0.016629 & 0.009429 &\\
Different types of modules (data generation, decider and evaluator) are presented in this section. Summary table is presented last. See section \ref{sec:modular_framework} for a more thorough break-down on the properties of each module.
\begin{algorithm}[] % enter the algorithm environment
\caption{Data generation module: "coin-flip results" without unobservables}% give the algorithm a caption
\caption{Data generation module: outcome from Bernoulli without unobservables}% give the algorithm a caption
\label{alg:dg:coinflip_without_z}% and a label for \ref{} commands later in the document
\begin{algorithmic}[1] % enter the algorithmic environment
\REQUIRE Parameters: Total number of subjects $N_{total}$
...
...
@@ -708,7 +708,7 @@ Different types of modules (data generation, decider and evaluator) are presente
\begin{algorithm}[] % enter the algorithm environment
\caption{Data generation module: "results by threshold" with unobservables}% give the algorithm a caption
\caption{Data generation module: outcome by threshold with unobservables}% give the algorithm a caption
\label{alg:dg:threshold_with_Z}% and a label for \ref{} commands later in the document
\begin{algorithmic}[1] % enter the algorithmic environment
\REQUIRE Parameters: Total number of subjects $N_{total},~\beta_X=1,~\beta_Z=1$ and $\beta_W=0.2$.
...
...
@@ -727,7 +727,7 @@ Different types of modules (data generation, decider and evaluator) are presente
\end{algorithm}
\begin{algorithm}[] % enter the algorithm environment
\caption{Data generation module: "coin-flip results" with unobservables}% give the algorithm a caption
\caption{Data generation module: outcome from Bernoulli with unobservables}% give the algorithm a caption
\label{alg:dg:coinflip_with_z}% and a label for \ref{} commands later in the document
\begin{algorithmic}[1] % enter the algorithmic environment
\REQUIRE Parameters: Total number of subjects $N_{total},~\beta_X=1,~\beta_Z=1$ and $\beta_W=0.2$.
...
...
@@ -761,7 +761,7 @@ Different types of modules (data generation, decider and evaluator) are presente
\end{algorithm}
\begin{algorithm}[] % enter the algorithm environment
\caption{Decider module: "coin-flip decisions" (pseudo-leniencies set at 0.5)}% give the algorithm a caption
\caption{Decider module: decisions from Bernoulli (pseudo-leniencies set at 0.5)}% give the algorithm a caption
\label{alg:decider:coinflip}% and a label for \ref{} commands later in the document
\begin{algorithmic}[1] % enter the algorithmic environment
\REQUIRE Data with features $X, Z$ of size $N_{total}$, knowledge that both of them affect the outcome Y and that they are independent / Parameters: $\beta_X=1, \beta_Z=1$.
...
...
@@ -851,7 +851,7 @@ Different types of modules (data generation, decider and evaluator) are presente
\STATE Sort $\D_{observed}$ by the probabilities $\s$ to ascending order.
\STATE\hskip3.0em $\rhd$ Now the most dangerous subjects are last.
\STATE Calculate the number to release $N_{free}= |\D_{observed}| \cdot r$.