Skip to content
Snippets Groups Projects
Commit 281055e5 authored by Riku-Laine's avatar Riku-Laine
Browse files

Module names and a figure

parent e7bbbbbf
No related branches found
No related tags found
No related merge requests found
......@@ -648,10 +648,10 @@ From the result table we can see that the MAE is at the lowest when the data gen
\caption{Mean absolute error w.r.t true evaluation. See modules used in section \ref{sec:modules_mc}. Bern = Bernoulli, indep. = independent, TH = threshold}
\begin{tabular}{l | c c c c}
Method & Bern + indep. & Bern + non-indep. & TH + indep. & TH + non-indep.\\ \hline
Labeled outcomes & 0.111075 & 0.103235 & 0.108506 &\\
Human evaluation & 0.027298 & NaN (TBA) & 0.049582 &\\
Contraction & 0.004206 & 0.004656 & 0.005557 &\\
Monte Carlo & 0.001292 & 0.016629 & 0.009429 &\\
Labeled outcomes & 0.111075 & 0.103235 & 0.108506 & 0.0970325\\
Human evaluation & 0.027298 & NaN (TBA) & 0.049582 & 0.0033916\\
Contraction & 0.004206 & 0.004656 & 0.005557 & 0.0034591\\
Monte Carlo & 0.001292 & 0.016629 & 0.009429 & 0.0179825\\
\end{tabular}
\label{tab:modules_mc}
\end{table}
......@@ -679,8 +679,8 @@ Monte Carlo & 0.001292 & 0.016629 & 0.009429 &\\
\quad %add desired spacing between images, e. g. ~, \quad, \qquad, \hfill etc.
%(or a blank line to force the subfigure onto a new line)
\begin{subfigure}[b]{0.475\textwidth}
\includegraphics[width=\textwidth]{sl_with_Z_4iter_threshold_lakkarajudecider_defaults_mc}
\caption{Outcome Y from threshold rule, non-independent decisions and $N_{iter}=4$.}
\includegraphics[width=\textwidth]{sl_with_Z_10iter_threshold_lakkarajudecider_defaults_mc}
\caption{Outcome Y from threshold rule, non-independent decisions and $N_{iter}=10$.}
%\label{fig:modules_mc_with_Z}
\end{subfigure}
\caption{Failure rate vs. acceptance rate with varying levels of leniency. Different combinations of deciders and data generation modules. See other modules used in section \ref{sec:modules_mc}}
......@@ -692,7 +692,7 @@ Monte Carlo & 0.001292 & 0.016629 & 0.009429 &\\
Different types of modules (data generation, decider and evaluator) are presented in this section. Summary table is presented last. See section \ref{sec:modular_framework} for a more thorough break-down on the properties of each module.
\begin{algorithm}[] % enter the algorithm environment
\caption{Data generation module: "coin-flip results" without unobservables} % give the algorithm a caption
\caption{Data generation module: outcome from Bernoulli without unobservables} % give the algorithm a caption
\label{alg:dg:coinflip_without_z} % and a label for \ref{} commands later in the document
\begin{algorithmic}[1] % enter the algorithmic environment
\REQUIRE Parameters: Total number of subjects $N_{total}$
......@@ -708,7 +708,7 @@ Different types of modules (data generation, decider and evaluator) are presente
\begin{algorithm}[] % enter the algorithm environment
\caption{Data generation module: "results by threshold" with unobservables} % give the algorithm a caption
\caption{Data generation module: outcome by threshold with unobservables} % give the algorithm a caption
\label{alg:dg:threshold_with_Z} % and a label for \ref{} commands later in the document
\begin{algorithmic}[1] % enter the algorithmic environment
\REQUIRE Parameters: Total number of subjects $N_{total},~\beta_X=1,~\beta_Z=1$ and $\beta_W=0.2$.
......@@ -727,7 +727,7 @@ Different types of modules (data generation, decider and evaluator) are presente
\end{algorithm}
\begin{algorithm}[] % enter the algorithm environment
\caption{Data generation module: "coin-flip results" with unobservables} % give the algorithm a caption
\caption{Data generation module: outcome from Bernoulli with unobservables} % give the algorithm a caption
\label{alg:dg:coinflip_with_z} % and a label for \ref{} commands later in the document
\begin{algorithmic}[1] % enter the algorithmic environment
\REQUIRE Parameters: Total number of subjects $N_{total},~\beta_X=1,~\beta_Z=1$ and $\beta_W=0.2$.
......@@ -761,7 +761,7 @@ Different types of modules (data generation, decider and evaluator) are presente
\end{algorithm}
\begin{algorithm}[] % enter the algorithm environment
\caption{Decider module: "coin-flip decisions" (pseudo-leniencies set at 0.5)} % give the algorithm a caption
\caption{Decider module: decisions from Bernoulli (pseudo-leniencies set at 0.5)} % give the algorithm a caption
\label{alg:decider:coinflip} % and a label for \ref{} commands later in the document
\begin{algorithmic}[1] % enter the algorithmic environment
\REQUIRE Data with features $X, Z$ of size $N_{total}$, knowledge that both of them affect the outcome Y and that they are independent / Parameters: $\beta_X=1, \beta_Z=1$.
......@@ -851,7 +851,7 @@ Different types of modules (data generation, decider and evaluator) are presente
\STATE Sort $\D_{observed}$ by the probabilities $\s$ to ascending order.
\STATE \hskip3.0em $\rhd$ Now the most dangerous subjects are last.
\STATE Calculate the number to release $N_{free} = |\D_{observed}| \cdot r$.
\RETURN $\frac{1}{|\D_{observed}|}\sum_{i=1}^{N_{free}}\delta\{y_i=0\}$
\RETURN $\frac{1}{|\D_{test}|}\sum_{i=1}^{N_{free}}\delta\{y_i=0\}$
\end{algorithmic}
\end{algorithm}
......
figures/sl_with_Z_10iter_threshold_lakkarajudecider_defaults_mc.png

50.3 KiB

0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment