diff --git a/analysis_and_scripts/notes.tex b/analysis_and_scripts/notes.tex index 97699981fb1a4431803f08d0d74660a19dde5e13..f9c105db79d4605e02126c668193242960ebe851 100644 --- a/analysis_and_scripts/notes.tex +++ b/analysis_and_scripts/notes.tex @@ -648,10 +648,10 @@ From the result table we can see that the MAE is at the lowest when the data gen \caption{Mean absolute error w.r.t true evaluation. See modules used in section \ref{sec:modules_mc}. Bern = Bernoulli, indep. = independent, TH = threshold} \begin{tabular}{l | c c c c} Method & Bern + indep. & Bern + non-indep. & TH + indep. & TH + non-indep.\\ \hline -Labeled outcomes & 0.111075 & 0.103235 & 0.108506 &\\ -Human evaluation & 0.027298 & NaN (TBA) & 0.049582 &\\ -Contraction & 0.004206 & 0.004656 & 0.005557 &\\ -Monte Carlo & 0.001292 & 0.016629 & 0.009429 &\\ +Labeled outcomes & 0.111075 & 0.103235 & 0.108506 & 0.0970325\\ +Human evaluation & 0.027298 & NaN (TBA) & 0.049582 & 0.0033916\\ +Contraction & 0.004206 & 0.004656 & 0.005557 & 0.0034591\\ +Monte Carlo & 0.001292 & 0.016629 & 0.009429 & 0.0179825\\ \end{tabular} \label{tab:modules_mc} \end{table} @@ -679,8 +679,8 @@ Monte Carlo & 0.001292 & 0.016629 & 0.009429 &\\ \quad %add desired spacing between images, e. g. ~, \quad, \qquad, \hfill etc. %(or a blank line to force the subfigure onto a new line) \begin{subfigure}[b]{0.475\textwidth} - \includegraphics[width=\textwidth]{sl_with_Z_4iter_threshold_lakkarajudecider_defaults_mc} - \caption{Outcome Y from threshold rule, non-independent decisions and $N_{iter}=4$.} + \includegraphics[width=\textwidth]{sl_with_Z_10iter_threshold_lakkarajudecider_defaults_mc} + \caption{Outcome Y from threshold rule, non-independent decisions and $N_{iter}=10$.} %\label{fig:modules_mc_with_Z} \end{subfigure} \caption{Failure rate vs. acceptance rate with varying levels of leniency. Different combinations of deciders and data generation modules. See other modules used in section \ref{sec:modules_mc}} @@ -692,7 +692,7 @@ Monte Carlo & 0.001292 & 0.016629 & 0.009429 &\\ Different types of modules (data generation, decider and evaluator) are presented in this section. Summary table is presented last. See section \ref{sec:modular_framework} for a more thorough break-down on the properties of each module. \begin{algorithm}[] % enter the algorithm environment -\caption{Data generation module: "coin-flip results" without unobservables} % give the algorithm a caption +\caption{Data generation module: outcome from Bernoulli without unobservables} % give the algorithm a caption \label{alg:dg:coinflip_without_z} % and a label for \ref{} commands later in the document \begin{algorithmic}[1] % enter the algorithmic environment \REQUIRE Parameters: Total number of subjects $N_{total}$ @@ -708,7 +708,7 @@ Different types of modules (data generation, decider and evaluator) are presente \begin{algorithm}[] % enter the algorithm environment -\caption{Data generation module: "results by threshold" with unobservables} % give the algorithm a caption +\caption{Data generation module: outcome by threshold with unobservables} % give the algorithm a caption \label{alg:dg:threshold_with_Z} % and a label for \ref{} commands later in the document \begin{algorithmic}[1] % enter the algorithmic environment \REQUIRE Parameters: Total number of subjects $N_{total},~\beta_X=1,~\beta_Z=1$ and $\beta_W=0.2$. @@ -727,7 +727,7 @@ Different types of modules (data generation, decider and evaluator) are presente \end{algorithm} \begin{algorithm}[] % enter the algorithm environment -\caption{Data generation module: "coin-flip results" with unobservables} % give the algorithm a caption +\caption{Data generation module: outcome from Bernoulli with unobservables} % give the algorithm a caption \label{alg:dg:coinflip_with_z} % and a label for \ref{} commands later in the document \begin{algorithmic}[1] % enter the algorithmic environment \REQUIRE Parameters: Total number of subjects $N_{total},~\beta_X=1,~\beta_Z=1$ and $\beta_W=0.2$. @@ -761,7 +761,7 @@ Different types of modules (data generation, decider and evaluator) are presente \end{algorithm} \begin{algorithm}[] % enter the algorithm environment -\caption{Decider module: "coin-flip decisions" (pseudo-leniencies set at 0.5)} % give the algorithm a caption +\caption{Decider module: decisions from Bernoulli (pseudo-leniencies set at 0.5)} % give the algorithm a caption \label{alg:decider:coinflip} % and a label for \ref{} commands later in the document \begin{algorithmic}[1] % enter the algorithmic environment \REQUIRE Data with features $X, Z$ of size $N_{total}$, knowledge that both of them affect the outcome Y and that they are independent / Parameters: $\beta_X=1, \beta_Z=1$. @@ -851,7 +851,7 @@ Different types of modules (data generation, decider and evaluator) are presente \STATE Sort $\D_{observed}$ by the probabilities $\s$ to ascending order. \STATE \hskip3.0em $\rhd$ Now the most dangerous subjects are last. \STATE Calculate the number to release $N_{free} = |\D_{observed}| \cdot r$. -\RETURN $\frac{1}{|\D_{observed}|}\sum_{i=1}^{N_{free}}\delta\{y_i=0\}$ +\RETURN $\frac{1}{|\D_{test}|}\sum_{i=1}^{N_{free}}\delta\{y_i=0\}$ \end{algorithmic} \end{algorithm} diff --git a/figures/sl_with_Z_10iter_threshold_lakkarajudecider_defaults_mc.png b/figures/sl_with_Z_10iter_threshold_lakkarajudecider_defaults_mc.png new file mode 100644 index 0000000000000000000000000000000000000000..6f390eb26d00f13c681968263bcd7b6a684d74ca Binary files /dev/null and b/figures/sl_with_Z_10iter_threshold_lakkarajudecider_defaults_mc.png differ