Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>C>A</td>\n",
" <td>ACA</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>C>A</td>\n",
" <td>ACC</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 9693 columns</p>\n",
"</div>"
],
"text/plain": [
" Mutation type Trinucleotide ALL::TARGET-10-PAIXPH-03A-01D \\\n",
"0 C>A ACA 0 \n",
"1 C>A ACC 0 \n",
"\n",
" ALL::TARGET-10-PAKHZT-03A-01R ALL::TARGET-10-PAKMVD-09A-01D \\\n",
"0 0 0 \n",
"1 0 0 \n",
"\n",
" ALL::TARGET-10-PAKSWW-03A-01D ALL::TARGET-10-PALETF-03A-01D \\\n",
"0 1 0 \n",
"1 1 0 \n",
"\n",
" ALL::TARGET-10-PALLSD-09A-01D ALL::TARGET-10-PAMDKS-03A-01D \\\n",
"0 0 0 \n",
"1 0 0 \n",
"\n",
" ALL::TARGET-10-PAPJIB-04A-01D ... Head-SCC::V-109 Head-SCC::V-112 \\\n",
"0 2 ... 0 0 \n",
"1 0 ... 1 0 \n",
"\n",
" Head-SCC::V-116 Head-SCC::V-119 Head-SCC::V-123 Head-SCC::V-124 \\\n",
"0 0 0 0 0 \n",
"1 0 0 0 0 \n",
"\n",
" Head-SCC::V-125 Head-SCC::V-14 Head-SCC::V-29 Head-SCC::V-98 \n",
"0 0 0 0 1 \n",
"1 0 1 0 0 \n",
"\n",
"[2 rows x 9693 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"other_wes_mut = pd.read_csv(\"./project_data/catalogs/WES/WES_Other.96.csv\")\n",
"other_wes_mut.head(2)"
]
},
{
"cell_type": "code",
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Cancer Types</th>\n",
" <th>Sample Names</th>\n",
" <th>Accuracy</th>\n",
" <th>SBS1</th>\n",
" <th>SBS2</th>\n",
" <th>SBS3</th>\n",
" <th>SBS4</th>\n",
" <th>SBS5</th>\n",
" <th>SBS6</th>\n",
" <th>SBS7a</th>\n",
" <th>...</th>\n",
" <th>SBS51</th>\n",
" <th>SBS52</th>\n",
" <th>SBS53</th>\n",
" <th>SBS54</th>\n",
" <th>SBS55</th>\n",
" <th>SBS56</th>\n",
" <th>SBS57</th>\n",
" <th>SBS58</th>\n",
" <th>SBS59</th>\n",
" <th>SBS60</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>ALL</td>\n",
" <td>TARGET-10-PAIXPH-03A-01D</td>\n",
" <td>0.529</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>ALL</td>\n",
" <td>TARGET-10-PAKHZT-03A-01R</td>\n",
" <td>0.696</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 68 columns</p>\n",
"</div>"
],
"text/plain": [
" Cancer Types Sample Names Accuracy SBS1 SBS2 SBS3 SBS4 \\\n",
"0 ALL TARGET-10-PAIXPH-03A-01D 0.529 0 0 0 0 \n",
"1 ALL TARGET-10-PAKHZT-03A-01R 0.696 0 0 0 0 \n",
"\n",
" SBS5 SBS6 SBS7a ... SBS51 SBS52 SBS53 SBS54 SBS55 SBS56 SBS57 \\\n",
"0 0 0 0 ... 0 0 0 1 0 0 0 \n",
"1 0 0 0 ... 0 0 0 1 0 0 0 \n",
"\n",
" SBS58 SBS59 SBS60 \n",
"0 0 0 0 \n",
"1 0 0 0 \n",
"\n",
"[2 rows x 68 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"other_wes_act = pd.read_csv(\"./project_data/activities/WES/WES_Other.activities.csv\")\n",
"other_wes_act.head(2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Imports and helpers"
]
},
{
"cell_type": "code",
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"import numpy as np\n",
"import pandas as pd\n",
"import sklearn\n",
"from sklearn.decomposition import PCA\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"#import torch \n",
"\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"\n",
"from sklearn.metrics import accuracy_score\n",
"from sklearn.metrics import roc_auc_score\n",
"from sklearn.metrics import roc_curve\n",
"from sklearn.metrics import classification_report\n",
"\n",
"from sklearn.model_selection import cross_val_score, train_test_split, KFold\n",
"from sklearn.model_selection import StratifiedShuffleSplit\n",
"from sklearn.model_selection import StratifiedKFold, GridSearchCV\n",
"from sklearn.model_selection import learning_curve\n",
"\n",
"from sklearn.preprocessing import LabelEncoder\n",
"\n",
"# These ones are work in progress\n",
"def plot_roc_auc(X_tst, y_test, model, is_multi_class=False):\n",
" probs = model.predict_proba(X_tst)\n",
" probs = probs[:, 1]\n",
" if is_multi_class:\n",
" auc = roc_auc_score(y_test, probs, multi_class='ovo')\n",
" else:\n",
" auc = roc_auc_score(y_test, probs, multi_class='ovo')\n",
" \n",
" fp_rate, tp_rate, thresholds = roc_curve(y_test, probs)\n",
" \n",
" plt.figure(figsize=(7,6))\n",
" plt.axis('scaled')\n",
" plt.xlim([0,1])\n",
" plt.ylim([0,1])\n",
" plt.title(\"AUC & ROC\")\n",
" plt.plot(fp_rate, tp_rate, 'g')\n",
" plt.fill_between(fp_rate, tp_rate, facecolor = \"green\", alpha = 0.7)\n",
" plt.text(0.95, 0.05, f'AUC = {auc}', ha='right', fontsize=12, weight='bold', color='blue')\n",
" plt.xlabel(\"False Positive Rate\")\n",
" plt.ylabel(\"True Positive Rate\")\n",
"\n",
"def plot_confusion_mat(y_test, y_pred, labs=None, size=None):\n",
" cm = sklearn.metrics.confusion_matrix(y_test, y_pred)\n",
" if size is None:\n",
" plt.figure(figsize=(12,10))\n",
" else:\n",
" plt.figure(figsize=size)\n",
" if labs is None:\n",
" sns.heatmap(cm, square=False, annot=True, fmt='d', cmap='viridis', cbar=True)\n",
" else:\n",
" sns.heatmap(cm, square=False, annot=True, fmt='d', cmap='viridis', xticklabels=labs, yticklabels=labs, cbar=True)\n",
" plt.xlabel('Predicted label')\n",
" plt.ylabel('True label')\n",
" #plt.ylim(0, 2)\n",
"\n",
"def plot_learning_curve(model, X, y):\n",
" N, train_lc, val_lc = learning_curve(model, X, y, cv=7, train_sizes=np.linspace(0.3, 1, 25))\n",
" plt.figure(figsize=(7,6))\n",
" plt.title(\"Learning curve\")\n",
" plt.plot(N, np.mean(train_lc, 1), color='blue', label='training score')\n",
" plt.plot(N, np.mean(val_lc, 1), color='red', label='validation score')\n",
" #plt.hlines(N, np.mean([train_lc[-1], val_lc[-1]]), N[0], N[-1], color='gray', label='mean', linestyle='dashed')\n",
"\n",
"def plot_trn_tst_dist(y_all, y_train, y_test, y_pred, in_cols=False):\n",
" #fig = None\n",
" #ax = None\n",
" if in_cols:\n",
" fig, ax = plt.subplots(2,2)\n",
" else:\n",
" fig, ax = plt.subplots(4,1)\n",
"\n",
" fig.set_size_inches(15,8)\n",
"\n",
" plt_sets = [y_all, y_train, y_test, y_pred]\n",
" plt_labels = [\"All\", \"Train\", \"Test\", \"Pred\"]\n",
" plt_set_df = pd.DataFrame()\n",
" for i in range(len(plt_sets)):\n",
" s = pd.Series(plt_sets[i]).value_counts().sort_index()\n",
" plt_set_df[plt_labels[i]] = s\n",
" \n",
" pd.DataFrame({plt_labels[i]: s}).plot(ax=ax.flat[i], kind=\"bar\")\n",
" #sns.countplot(x=s, \n",
" # palette=sns.hls_palette(2),\n",
" # ax=ax[i])\n",
" ax.flat[i].tick_params(axis=\"x\", rotation=90)\n",
"\n",
" fig.tight_layout()\n",
" with pd.option_context('display.max_rows', None,\n",
" 'display.max_columns', None,\n",
" 'display.precision', 2,\n",
" ):\n",
" print(plt_set_df)\n",
"\n",
"\n",
" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Dataset preprocess, combine profile data to a single data frame\n",
"\n",
"From all profile sets, a combined data frame is made, which has samples in the rows and features in the columns."
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Profile data:\n",
"\n",
"---Data set diagnostics print---\n",
"\n",
"Missing entries in mutations: 0\n",
"The shape of the mutations data frame (20343, 97)\n",
"Checking normalization: sum of some rows:\n",
" cancer::TK74_LCIS2 1.0\n",
"RCC::TCGA 1.0\n",
"AdenoCA::TCGA 1.0\n",
"AdenoCA::TCGA 1.0\n",
"Melanoma::TCGA 1.0\n",
"dtype: float64\n",
"\n",
"\n",
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
"Tumor counts:\n",
" AdenoCA 7712\n",
"SCC 2188\n",
"cancer 1639\n",
"HCC 1318\n",
"Melanoma 1231\n",
"BNHL 822\n",
"RCC 775\n",
"GBM 605\n",
"Medullo 557\n",
"CA 462\n",
"cell 389\n",
"CMDI 357\n",
"LGG 326\n",
"CLL 302\n",
"Papillary 297\n",
"neoplasm 247\n",
"ALL 240\n",
"Ewings 231\n",
"AML 230\n",
"30 212\n",
"bone 203\n",
"Name: tumor_types, dtype: int64\n",
"\n",
"\n",
"Tumor types with smallish counts: 7\n",
"Papillary 297\n",
"neoplasm 247\n",
"ALL 240\n",
"Ewings 231\n",
"AML 230\n",
"30 212\n",
"bone 203\n",
"Name: tumor_types, dtype: int64\n",
"\n",
"\n",
"Unique tumor types: 21\n",
"['30', 'ALL', 'AML', 'AdenoCA', 'BNHL', 'CA', 'CLL', 'CMDI', 'Ewings', 'GBM', 'HCC', 'LGG', 'Medullo', 'Melanoma', 'Papillary', 'RCC', 'SCC', 'bone', 'cancer', 'cell', 'neoplasm']\n"
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
]
}
],
"source": [
"\n",
"def prepare_mut_df(raw_mutation_dfs, is_profile, small_sample_limit=None):\n",
"\n",
" mutations_all = pd.DataFrame()\n",
"\n",
" for df in raw_mutation_dfs:\n",
" # Make a copy of the original data frame and start processing from there\n",
" mutations = df.copy()\n",
" \n",
" if is_profile:\n",
" mutations['mut_tri'] = mutations.apply(lambda a: '{}_{}'.format(a['Mutation type'], a['Trinucleotide']), axis=1)\n",
" mutations = mutations.set_index('mut_tri').drop(['Mutation type', 'Trinucleotide'], axis=1)\n",
" mutations = mutations.T\n",
" else:\n",
" mutations['mut_tri'] = mutations.apply(lambda a: '{}::{}'.format(a['Cancer Types'], a['Sample Names']), axis=1)\n",
" mutations = mutations.set_index('mut_tri').drop(['Cancer Types', 'Sample Names', 'Accuracy'], axis=1)\n",
" \n",
" # Rename some index names\n",
" renamed_items = list(mutations.index)\n",
" index_items = list(mutations.index)\n",
"\n",
" # Combine rows for low count labels\n",
" for i in range(len(index_items)):\n",
" result = index_items[i]\n",
" parts = result.split('-')\n",
" if len(parts) > 1:\n",
" result = parts[1]\n",
" else:\n",
" result = parts[0]\n",
" \n",
" #result = result.split('-')[0]\n",
" #for to_sub in ['Adeno', 'Bone', 'Breast', 'Cervix', 'CNS', 'Eye', 'Liver', 'Lymph', 'Lung', 'Kidney', 'Myeloid', 'Panc' ]:\n",
" # result = re.sub( to_sub + r'(-\\w*)', to_sub, result)\n",
" \n",
" renamed_items[i] = result.replace('Ca', 'CA')\n",
" \n",
" mutations.rename(index=dict(zip(index_items, renamed_items)), inplace = True)\n",
" \n",
" # Normalize \n",
" row_sums = mutations.sum(axis=1)\n",
" mutations = mutations.divide(row_sums, axis = 0)\n",
"\n",
" mutations_all = pd.concat([mutations_all, mutations])\n",
"\n",
" mutations_all.sort_index(inplace=True)\n",
"\n",
" # Do we need to renormalize after obtaining the full dataframe?\n",
" \n",
" # Figure out tumor types based on the first part of the index\n",
" tumor_types = [a.split(':')[0] for a in mutations_all.index]\n",
" \n",
" #print(\"ttt\", tumor_types)\n",
" mutations_all[\"tumor_types\"] = tumor_types\n",
"\n",
" # Get rid of types with very few samples if the limit is specified\n",
" if small_sample_limit is not None:\n",
" mutations_all = cull_small_sample_counts(mutations_all, small_sample_limit)\n",
"\n",
" tumor_types = mutations_all[\"tumor_types\"] \n",
" # Prepare a list with all the types appearing only once\n",
" unique_tumor_types = sorted(list(set(tumor_types)))\n",
" # Attach this back to the frame\n",
" \n",
" return (mutations_all, unique_tumor_types)\n",
"\n",
"def cull_small_sample_counts(mutations, small_sample_limit):\n",
" \n",
" counts = mutations[\"tumor_types\"].value_counts()\n",
" big_counts = counts[list(counts > small_sample_limit)]\n",
" big_index = mutations[\"tumor_types\"].isin(list(big_counts.index))\n",
" mutations = mutations[big_index]\n",
"\n",
" return mutations\n",
"\n",
"def print_dset_diag(mut_df, unique_tumor_types, small_sample_limit):\n",
" # Check if the data frame is ok\n",
" print(\"\\n---Data set diagnostics print---\\n\")\n",
" print(\"Missing entries in mutations:\", mut_df.isnull().sum().sum())\n",
" print(\"The shape of the mutations data frame\", mut_df.shape)\n",
"\n",
" # Check to see if the rows are normalized to one, take a sample from the data frame\n",
" norm_df = mut_df.sample(n=5, random_state=5)\n",
" print(\"Checking normalization: sum of some rows:\\n\", norm_df.iloc[:,0:-1].sum(axis=1))\n",
" print(\"\\n\")\n",
"\n",
" # Check some counts of tumor types\n",
" tumor_counts = mut_df[\"tumor_types\"].value_counts() #.sort_values(ascending=True)\n",
" print(\"Tumor counts:\\n\", tumor_counts)\n",
" print(\"\\n\")\n",
"\n",
" small_counts = tumor_counts < 1.5*small_sample_limit\n",
" print(\"Tumor types with smallish counts:\", sum(small_counts))\n",
"\n",
" print(tumor_counts[small_counts])\n",
" print(\"\\n\")\n",
"\n",
" # Tumor types\n",
" print(\"Unique tumor types: \", len(unique_tumor_types))\n",
" print(unique_tumor_types)\n",
"\n",
"\n",
"\n",
"profile_raw_data_sets = [PCAWG_wgs_mut, TCGA_wes_mut, nonPCAWG_wgs_mut, other_wes_mut]\n",
"profile_mut_all, prf_unique_tumor_types = prepare_mut_df(profile_raw_data_sets, True, small_sample_limit)\n",
"\n",
"# Print some diagnostics from the prepared data set\n",
"print(\"Profile data:\")\n",
"print_dset_diag(profile_mut_all, prf_unique_tumor_types, small_sample_limit)\n",
"\n",
"# Data matrix X for fitting, omit the tumor labeling from there, use that information in constructing true y\n",
"# Note: this contains profile data only\n",
"#X_prf = profile_mut_all.drop(\"tumor_types\", axis=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Dataset preprocess for activites data"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Activities data:\n",
"\n",
"---Data set diagnostics print---\n",
"\n",
"Missing entries in mutations: 0\n",
"The shape of the mutations data frame (20343, 66)\n",
"Checking normalization: sum of some rows:\n",
" mut_tri\n",
"cancer::TK74_LCIS2 1.0\n",
"RCC::TCGA 1.0\n",
"AdenoCA::TCGA 1.0\n",
"AdenoCA::TCGA 1.0\n",
"Melanoma::TCGA 1.0\n",
"dtype: float64\n",
"\n",
"\n",
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
"Tumor counts:\n",
" AdenoCA 7712\n",
"SCC 2188\n",
"cancer 1639\n",
"HCC 1318\n",
"Melanoma 1231\n",
"BNHL 822\n",
"RCC 775\n",
"GBM 605\n",
"Medullo 557\n",
"CA 462\n",
"cell 389\n",
"CMDI 357\n",
"LGG 326\n",
"CLL 302\n",
"Papillary 297\n",
"neoplasm 247\n",
"ALL 240\n",
"Ewings 231\n",
"AML 230\n",
"30 212\n",
"bone 203\n",
"Name: tumor_types, dtype: int64\n",
"\n",
"\n",
"Tumor types with smallish counts: 7\n",
"Papillary 297\n",
"neoplasm 247\n",
"ALL 240\n",
"Ewings 231\n",
"AML 230\n",
"30 212\n",
"bone 203\n",
"Name: tumor_types, dtype: int64\n",
"\n",
"\n",
"Unique tumor types: 21\n",
"['30', 'ALL', 'AML', 'AdenoCA', 'BNHL', 'CA', 'CLL', 'CMDI', 'Ewings', 'GBM', 'HCC', 'LGG', 'Medullo', 'Melanoma', 'Papillary', 'RCC', 'SCC', 'bone', 'cancer', 'cell', 'neoplasm']\n"
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
]
}
],
"source": [
"act_raw_data_sets = [PCAWG_wgs_act, TCGA_wes_act, nonPCAWG_wgs_act, other_wes_act]\n",
"act_mut_all, act_unique_tumor_types = prepare_mut_df(act_raw_data_sets, is_profile=False, small_sample_limit=small_sample_limit)\n",
"\n",
"# Print some diagnostics from the prepared data set\n",
"print(\"Activities data:\")\n",
"print_dset_diag(act_mut_all, act_unique_tumor_types, small_sample_limit)\n",
"\n",
"# Data matrix X for fitting, omit the tumor labeling from there, use that information in constructing true y\n",
"# Note: this contains profile data only\n",
"X_act = act_mut_all.drop(\"tumor_types\", axis=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Check profile data content"
]
},
{
"cell_type": "code",
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Some content from the full profile set:\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>mut_tri</th>\n",
" <th>C>A_ACA</th>\n",
" <th>C>A_ACC</th>\n",
" <th>C>A_ACG</th>\n",
" <th>C>A_ACT</th>\n",
" <th>C>A_CCA</th>\n",
" <th>C>A_CCC</th>\n",
" <th>C>A_CCG</th>\n",
" <th>C>A_CCT</th>\n",
" <th>C>A_GCA</th>\n",
" <th>C>A_GCC</th>\n",
" <th>...</th>\n",
" <th>T>G_CTT</th>\n",
" <th>T>G_GTA</th>\n",
" <th>T>G_GTC</th>\n",
" <th>T>G_GTG</th>\n",
" <th>T>G_GTT</th>\n",
" <th>T>G_TTA</th>\n",
" <th>T>G_TTC</th>\n",
" <th>T>G_TTG</th>\n",
" <th>T>G_TTT</th>\n",
" <th>tumor_types</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.100000</td>\n",
" <td>0.100000</td>\n",
" <td>0.000000</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.040000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.02</td>\n",
" <td>0.08</td>\n",
" <td>0.020000</td>\n",
" <td>0.020000</td>\n",
" <td>0.040000</td>\n",
" <td>0.140000</td>\n",
" <td>0.000000</td>\n",
" <td>...</td>\n",
" <td>0.04</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.02</td>\n",
" <td>0.0</td>\n",
" <td>30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.153846</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.076923</td>\n",
" <td>0.000000</td>\n",
" <td>0.076923</td>\n",
" <td>0.076923</td>\n",
" <td>0.000000</td>\n",
" <td>...</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.000000</td>\n",
" <td>0.032258</td>\n",
" <td>0.032258</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.000000</td>\n",
" <td>0.032258</td>\n",
" <td>0.032258</td>\n",
" <td>0.032258</td>\n",
" <td>0.032258</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.100000</td>\n",
" <td>0.100000</td>\n",
" <td>0.000000</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>...</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>30</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 97 columns</p>\n",
"</div>"
],
"text/plain": [
"mut_tri C>A_ACA C>A_ACC C>A_ACG C>A_ACT C>A_CCA C>A_CCC C>A_CCG \\\n",
"30 0.000000 0.000000 0.000000 0.00 0.00 0.000000 0.000000 \n",
"30 0.040000 0.000000 0.000000 0.02 0.08 0.020000 0.020000 \n",
"30 0.153846 0.000000 0.000000 0.00 0.00 0.076923 0.000000 \n",
"30 0.000000 0.032258 0.032258 0.00 0.00 0.000000 0.032258 \n",
"30 0.100000 0.100000 0.000000 0.00 0.00 0.000000 0.000000 \n",
"\n",
"mut_tri C>A_CCT C>A_GCA C>A_GCC ... T>G_CTT T>G_GTA T>G_GTC \\\n",
"30 0.100000 0.100000 0.000000 ... 0.00 0.0 0.0 \n",
"30 0.040000 0.140000 0.000000 ... 0.04 0.0 0.0 \n",
"30 0.076923 0.076923 0.000000 ... 0.00 0.0 0.0 \n",
"30 0.032258 0.032258 0.032258 ... 0.00 0.0 0.0 \n",
"30 0.000000 0.000000 0.000000 ... 0.00 0.0 0.0 \n",
"\n",
"mut_tri T>G_GTG T>G_GTT T>G_TTA T>G_TTC T>G_TTG T>G_TTT tumor_types \n",
"30 0.1 0.0 0.0 0.0 0.00 0.0 30 \n",
"30 0.0 0.0 0.0 0.0 0.02 0.0 30 \n",
"30 0.0 0.0 0.0 0.0 0.00 0.0 30 \n",
"30 0.0 0.0 0.0 0.0 0.00 0.0 30 \n",
"30 0.0 0.0 0.0 0.0 0.00 0.0 30 \n",
"\n",
"[5 rows x 97 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(\"Some content from the full profile set:\")\n",
"profile_mut_all.head(5)"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABaYAAAFhCAYAAACLRX2NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABNnElEQVR4nO3de1iUdf7/8dcA4ikOgaiUlmWmWF/TctMs3VYry1BJt6VAW9vS/ZWla1qipZBmhYdKS7OTtpZbGyGo1K61spntmnZYyxZJRUzdEBU0UZHDML8/5mJG8kSA92ec+/m4rr2+MDfEe15fHGZec9+fj8PlcrkEAAAAAAAAAIBFAkwPAAAAAAAAAACwF4ppAAAAAAAAAIClKKYBAAAAAAAAAJaimAYAAAAAAAAAWIpiGgAAAAAAAABgKYppAAAAAAAAAIClalVM//Of/1RcXJwGDx6sgQMH6qOPPpIk5efnKz4+Xv3791d8fLx27Njh+Z66HgMAAAAAAAAA+DeHy+Vyne4LXC6Xrr32Wi1dulSXX365cnNzdffdd+urr77SiBEjNHToUA0ePFjLly9Xenq6lixZIkm655576nSstg4cOKKqqtOOflZFRp6noqLDxn6+ryAHL7JwIwcvsnAjBzdy8CILN3LwIgs3cvAiCzdycCMHL7JwIwcvsnAjBy+ycCMHN1/IISDAofPPb37SY0G1+w8EqKSkRJJUUlKili1b6sCBA8rJydHixYslSbGxsZo+fbqKi4vlcrnqdCwiIqLWd6qqymW0mK6eAeRwPLJwIwcvsnAjBzdy8CILN3LwIgs3cvAiCzdycCMHL7JwIwcvsnAjBy+ycCMHN1/O4YzFtMPh0AsvvKAHH3xQzZo105EjR/TKK6+ooKBArVq1UmBgoCQpMDBQLVu2VEFBgVwuV52O/ZJiOjLyvLrc3wYVFRViegSfQA5eZOFGDl5k4UYObuTgRRZu5OBFFm7k4EUWbuTgRg5eZOFGDl5k4UYOXmThRg5uvpzDGYvpyspKvfLKK1qwYIGuueYaffXVVxo3bpxmzpxpxXynVFR02GjjHxUVon37Soz9fF9BDl5k4UYOXmThRg5u5OBFFm7k4EUWbuTgRRZu5OBGDl5k4UYOXmThRg5eZOFGDm6+kENAgOOUJxifsZjevHmz9u7dq2uuuUaSdM0116hp06Zq3LixCgsL5XQ6FRgYKKfTqb179yo6Oloul6tOxwAAAAAAAAAA/i/gTF/QunVr7dmzR9u3b5ck5eXlaf/+/br44osVExOjrKwsSVJWVpZiYmIUERGhyMjIOh0DAAAAAAAAAPi/M54xHRUVpZSUFI0dO1YOh0OS9Mwzzyg8PFwpKSlKSkrSggULFBoaqtTUVM/31fUYAAAAAAAAAMC/nbGYlqRBgwZp0KBBJ9zevn17paWlnfR76noMAAAAAAAAAODfzriUBwAAAAAAAAAADYliGgAAAAAAAABgKYppAAAAAAAAAIClKKYBAAAAAAAAAJaq1eaHAOwjJLSpmjSu30NDVFRIvb7/WFmlSg6V1uu/AQAAAAAAAN9FMQ2ghiaNgzRw/HKjM6ycM1glRicAAAAAAADA2cRSHgAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALBU0Jm+YPfu3Ro9erTn85KSEh0+fFgbNmxQfn6+kpKSdPDgQYWHhys1NVXt2rWTpDofAwAAAAAAAAD4tzOeMd2mTRstX77c879+/fopNjZWkpScnKyEhAStWrVKCQkJmjp1quf76noMAAAAAAAAAODfftFSHuXl5Vq5cqWGDh2qoqIi5eTkeErq2NhY5eTkqLi4uM7HAAAAAAAAAAD+74xLeRwvOztbrVq10hVXXKHvvvtOrVq1UmBgoCQpMDBQLVu2VEFBgVwuV52ORURE1HqWyMjzfsnoZ0VUVIjpEXwCOXiRRcPxlyz95X7UFzm4kYMXWbiRgxdZuJGDF1m4kYMbOXiRhRs5eJGFGzl4kYUbObj5cg6/qJhOT0/X0KFDz9Ysv0hR0WFVVbmM/fyoqBDt21di7Of7CnLw8pcsfOUBy1+y9If7UV/k4EYOXmThRg5eZOFGDl5k4UYObuTgRRZu5OBFFm7k4EUWbuTg5gs5BAQ4TnmCca2X8igsLNQXX3yhgQMHSpKio6NVWFgop9MpSXI6ndq7d6+io6PrfAwAAAAAAAAA4P9qXUxnZGTo17/+tc4//3xJUmRkpGJiYpSVlSVJysrKUkxMjCIiIup8DAAAAAAAAADg/2q9lEdGRoYef/zxGrelpKQoKSlJCxYsUGhoqFJTU+t9DAAAAAAAAADg32pdTK9ateqE29q3b6+0tLSTfn1djwEAAAAAAAAA/Futl/IAAAAAAAAAAKAhUEwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUrUqpsvKypScnKxbbrlFAwcO1JQpUyRJ+fn5io+PV//+/RUfH68dO3Z4vqeuxwAAAAAAAAAA/q1WxfSsWbPUuHFjrVq1SitXrtTYsWMlScnJyUpISNCqVauUkJCgqVOner6nrscAAAAAAAAAAP7tjMX0kSNHlJmZqbFjx8rhcEiSWrRooaKiIuXk5Cg2NlaSFBsbq5ycHBUXF9f5GAAAAAAAAADA/wWd6Qt27dql8PBwvfTSS1q/fr2aN2+usWPHqkmTJmrVqpUCAwMlSYGBgWrZsqUKCgrkcrnqdCwiIqLWg0dGnleX+9ugoqJCTI/gE8jBiywajr9k6S/3o77IwY0cvMjCjRy8yMKNHLzIwo0c3MjBiyzcyMGLLNzIwYss3MjBzZdzOGMxXVlZqV27dqlz586aOHGivvnmG/2///f/NHfuXCvmO6WiosOqqnIZ+/lRUSHat6/E2M/3FeTg5S9Z+MoDlr9k6Q/3o77IwY0cvMjCjRy8yMKNHLzIwo0c3MjBiyzcyMGLLNzIwYss3MjBzRdyCAhwnPIE4zMW0xdccIGCgoI8S29cddVVOv/889WkSRMVFhbK6XQqMDBQTqdTe/fuVXR0tFwuV52OAQAAAAAAAAD83xnXmI6IiFCPHj30r3/9S5KUn5+voqIitWvXTjExMcrKypIkZWVlKSYmRhEREYqMjKzTMQAAAAAAAACA/zvjGdOS9OSTT2ry5MlKTU1VUFCQZs6cqdDQUKWkpCgpKUkLFixQaGioUlNTPd9T12MAAAAAAAAAAP9Wq2K6bdu2euutt064vX379kpLSzvp99T1GAAAAAAAAADAv51xKQ8AAAAAAAAAABoSxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALBUUG2+qG/fvgoODlbjxo0lSRMmTFDv3r2Vn5+vpKQkHTx4UOHh4UpNTVW7du0kqc7HAAAAAAAAAAD+rdZnTM+bN0/Lly/X8uXL1bt3b0lScnKyEhIStGrVKiUkJGjq1Kmer6/rMQAAAAAAAACAf6vzUh5FRUXKyclRbGysJCk2NlY5OTkqLi6u8zEAAAAAAAAAgP+r1VIeknv5DpfLpWuuuUaPPPKICgoK1KpVKwUGBkqSAgMD1bJlSxUUFMjlctXpWERERK0Hj4w875fcz7MiKirE9Ag+gRy8yKLh+EuW/nI/6osc3MjBiyzcyMGLLNzIwYss3MjBjRy8yMKNHLzIwo0cvMjCjRzcfDmHWhXTS5cuVXR0tMrLyzVjxgxNmzZNI0aMOMujnV5R0WFVVbmM/fyoqBDt21di7Of7CnLw8pcsfOUBy1+y9If7UV/k4EYOXmThRg5eZOFGDl5k4UYObuTgRRZu5OBFFm7k4EUWbuTg5gs5BAQ4TnmCca2W8oiOjpYkBQcHKyEhQV9//bWio6NVWFgop9MpSXI6ndq7d6+io6PrfAwAAAAAAAAA4P/OWEwfPXpUJSXuZt3lcunDDz9UTEyMIiMjFRMTo6ysLElSVlaWYmJiFBERUedjAAAAAAAAAAD/d8alPIqKivTwww/L6XSqqqpK7du3V3JysiQpJSVFSUlJWrBggUJDQ5Wamur5vroeAwAAAAAAAAD4tzMW023btlVmZuZJj7Vv315paWkNegwAAAAAAAAA4N9qtcY0AAAAAAAAAAANhWIaAAAAAAAAAGApimkAAAAAAAAAgKUopgEAAAAAAAAAlqKYBgAAAAAAAABYimIaAAAAAAAAAGApimkAAAAAAAAAgKUopgEAAAAAAAAAlqKYBgAAAAAAAABYimIaAAAAAAAAAGApimkAAAAAAAAAgKUopgEAAAAAAAAAlqKYBgAAAAAAAABYimIaAAAAAAAAAGApimkAAAAAAAAAgKUopgEAAAAAAAAAlqKYBgAAAAAAAABYimIaAAAAAAAAAGApimkAAAAAAAAAgKUopgEAAAAAAAAAlqKYBgAAAAAAAABYimIaAAAAAAAAAGApimkAAAAAAAAAgKUopgEAAAAAAAAAlvpFxfRLL72kjh07asuWLZKk/Px8xcfHq3///oqPj9eOHTs8X1vXYwAAAAAAAAAA/1brYvq///2vNm7cqAsuuMBzW3JyshISErRq1SolJCRo6tSp9T4GAAAAAAAAAPBvtSqmy8vLNW3aNCUnJ8vhcEiSioqKlJOTo9jYWElSbGyscnJyVFxcXOdjAAAAAAAAAAD/F1SbL5o7d64GDRqktm3bem4rKChQq1atFBgYKEkKDAxUy5YtVVBQIJfLVadjERERDX3/AAAAAAAAAAA+5ozF9H/+8x9t2rRJEyZMsGKeWouMPM/0CIqKCjE9gk8gBy+yaDj+kqW/3I/6Igc3cvAiCzdy8CILN3LwIgs3cnAjBy+ycCMHL7JwIwcvsnAjBzdfzuGMxfQXX3yh7du3q1+/fpKkPXv26L777tOkSZNUWFgop9OpwMBAOZ1O7d27V9HR0XK5XHU69ksUFR1WVZWrbve6AURFhWjfvhJjP99XkIOXv2ThKw9Y/pKlP9yP+iIHN3LwIgs3cvAiCzdy8CILN3JwIwcvsnAjBy+ycCMHL7JwIwc3X8ghIMBxyhOMz7jG9KhRo/TZZ58pOztb2dnZat26td544w0NGDBAMTExysrKkiRlZWUpJiZGERERioyMrNMxAAAAAAAAAID/q9Ua06eSkpKipKQkLViwQKGhoUpNTa33MQAAAAAAAACAf/vFxXR2drbn4/bt2ystLe2kX1fXYwAAAAAAAAAA/3bGpTwAAAAAAAAAAGhIFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSQbX5ogcffFC7d+9WQECAmjVrpilTpigmJkb5+flKSkrSwYMHFR4ertTUVLVr106S6nwMAAAAAAAAAODfanXGdGpqqlasWKHMzEz94Q9/0OTJkyVJycnJSkhI0KpVq5SQkKCpU6d6vqeuxwAAAAAAAAAA/q1WxXRISIjn48OHD8vhcKioqEg5OTmKjY2VJMXGxionJ0fFxcV1PgYAAAAAAAAA8H+1WspDkh5//HH961//ksvl0uuvv66CggK1atVKgYGBkqTAwEC1bNlSBQUFcrlcdToWERFR68EjI8/7JffzrIiKCjnzF9kAOXiRRcPxlyz95X7UFzm4kYMXWbiRgxdZuJGDF1m4kYMbOXiRhRs5eJGFGzl4kYUbObj5cg61LqZnzJghScrMzNTMmTM1duzYszZUbRQVHVZVlcvYz4+KCtG+fSXGfr6vIAcvf8nCVx6w/CVLf7gf9UUObuTgRRZu5OBFFm7k4EUWbuTgRg5eZOFGDl5k4UYOXmThRg5uvpBDQIDjlCcY12opj+PFxcVp/fr1at26tQoLC+V0OiVJTqdTe/fuVXR0tKKjo+t0DAAAAAAAAADg/85YTB85ckQFBQWez7OzsxUWFqbIyEjFxMQoKytLkpSVlaWYmBhFRETU+RgAAAAAAAAAwP+dcSmP0tJSjR07VqWlpQoICFBYWJgWLlwoh8OhlJQUJSUlacGCBQoNDVVqaqrn++p6DAAAAAAAAADg385YTLdo0ULvvffeSY+1b99eaWlpDXoMAAAAAAAAAODffvEa0wAAAAAAAAAA1AfFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsFSQ6QEAAAAAAADsJiS0qZo0rn8tExUVUufvPVZWqZJDpfWeAQDqgmIaAAAAAADAYk0aB2ng+OVGZ1g5Z7BKjE4AwM5YygMAAAAAAAAAYCmKaQAAAAAAAACApc5YTB84cEAjR45U//79NXDgQD300EMqLi6WJOXn5ys+Pl79+/dXfHy8duzY4fm+uh4DAAAAAAAAAPi3MxbTDodD999/v1atWqWVK1eqbdu2mj17tiQpOTlZCQkJWrVqlRISEjR16lTP99X1GAAAAAAAAADAv52xmA4PD1ePHj08n3ft2lU//vijioqKlJOTo9jYWElSbGyscnJyVFxcXOdjAAAAAAAAAAD/F/RLvriqqkrvvPOO+vbtq4KCArVq1UqBgYGSpMDAQLVs2VIFBQVyuVx1OhYREVHrWSIjz/slo58VUVEhpkfwCeTgRRYNx1+y9Jf7UV/k4EYOXmThRg5eZOFGDl5k4UYObuTgRRZu5NBw/CVLf7kfDYEs3MjBzZdz+EXF9PTp09WsWTMNGzZMOTk5Z2umWikqOqyqKpexnx8VFaJ9+0qM/XxfQQ5e/pKFrzxg+UuW/nA/6osc3MjBiyzcyMGLLNzIwYss3MjBjRy8yMLNX3LgtVfD8ZffiYZAFm7k4OYLOQQEOE55gnGti+nU1FT98MMPWrhwoQICAhQdHa3CwkI5nU4FBgbK6XRq7969io6OlsvlqtMxAAAAAAAAAID/O+Ma05L0/PPP67vvvtP8+fMVHBwsSYqMjFRMTIyysrIkSVlZWYqJiVFERESdjwEAAAAAAAAA/N8Zz5jeunWrFi5cqHbt2umuu+6SJLVp00bz589XSkqKkpKStGDBAoWGhio1NdXzfXU9BgAAAAAAAADwb2cspjt06KDvv//+pMfat2+vtLS0Bj0GAAAAAAAAAPBvtVrKAwAAAAAAAACAhkIxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwVJDpAQAAAAAAAAC7CwltqiaN61/VRUWF1Pl7j5VVquRQab1nAGqDYhoAAAAAAAAwrEnjIA0cv9zoDCvnDFaJ0QlgJyzlAQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwVJDpAQAAAAB/EBLaVE0a1+/pdVRUSL2+/1hZpUoOldbrvwEAAABYgWIaAAAAaABNGgdp4PjlRmdYOWewSoxOAAAAANQOxTQAAAAA4KzhagIAAHAyFNMAAAAAgLOGqwkAAMDJsPkhAAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALHXGYjo1NVV9+/ZVx44dtWXLFs/t+fn5io+PV//+/RUfH68dO3bU+xgAAAAAAAAAwP+dsZju16+fli5dqgsvvLDG7cnJyUpISNCqVauUkJCgqVOn1vsYAAAAAAAAAMD/nbGY7t69u6Kjo2vcVlRUpJycHMXGxkqSYmNjlZOTo+Li4jofAwAAAAAAAADYQ1BdvqmgoECtWrVSYGCgJCkwMFAtW7ZUQUGBXC5XnY5FRET8ohkiI8+ry+gNKioqxPQIPoEcvMii4fhLlv5yP+qLHNzIwYss3MjBiywajr9k6S/3o77IoeH4S5b+cj/qixwajr9k6S/3wxf4S5b+cj/qy5dzqFMx7QuKig6rqspl7OdHRYVo374SYz/fV5CDl79k4SsPWP6SpT/cj/oiBzdy8CILN3Lw8pcs+BvacPzld6K+/CUH/m00HH/5nagvf8mBfxsNh9+JhuUvWfrD/agvX8ghIMBxyhOM61RMR0dHq7CwUE6nU4GBgXI6ndq7d6+io6PlcrnqdAwAAAAAAAAAYA9nXGP6ZCIjIxUTE6OsrCxJUlZWlmJiYhQREVHnYwAAAAAAAAAAezjjGdNPPfWUPvroI+3fv1/33nuvwsPD9cEHHyglJUVJSUlasGCBQkNDlZqa6vmeuh4DAAAAAAAAAPi/MxbTTzzxhJ544okTbm/fvr3S0tJO+j11PQYAAAAAAAAA8H/n7OaHAHA2hYQ2VZPG9X+IrM/mFcfKKlVyqLTeMwAAAAAAAPgaimkAOIkmjYM0cPxyozOsnDNY7CEMAAAAAAD8EcU0AAAAAACwTENcnVifKxMlrk4EAF9AMQ0AAAAAACzD1YkAAEkKMD0AAAAAAAAAAMBeKKYBAAAAAAAAAJaimAYAAAAAAAAAWIo1pgEAAFBnDbGBlVS/TazYwAoAAAA491BMAwAAoM7YwAoAAABAXVBMAwAAAEAD84WrCSSuKAAAAL6LYhoAAAAAGpgvXE0gcUUBAADwXWx+CAAAAAAAAACwFGdMAwBOicuQAQAAAADA2UAxDQA4JS5DBgAAAAAAZwNLeQAAAAAAAAAALMUZ0wAAAAAAAAB8AktK2gfFNAAAqDWeJAIAAAA4m1hS0j4opgEAQK3xJBHAmfjCG1i8eQUAAOD7KKYBAKiFhihaOEsYgB34whtYvHkFX+QLb9pIPJ8AAPgOimkAAGqBogUAANSHLzyXkHg+AQDwHRTTNscZgG6+cPaCL+QAAKg9/oYCAAAAOJv8/TWHLYtpXyghJd94MekL79r7wjv25AAA+KX42wEAANAw/L18A+rK319z2LKY9oX/p0q8mAQAAAAAAPCFnoaOBrBegOkBAAAAAAAAAAD2QjENAAAAAAAAALCUsWI6Pz9f8fHx6t+/v+Lj47Vjxw5TowAAAAAAAAAALGSsmE5OTlZCQoJWrVqlhIQETZ061dQoAAAAAAAAAAALGdn8sKioSDk5OVq8eLEkKTY2VtOnT1dxcbEiIiJq9d8ICHDUa4aW5zet1/c3lPrej4bgC1mQg5sv5CCRRTVycPOFHCSyqEYOXmThRg5uvpCDRBbVyMHNF3KQyKIaOXiRhRs5uPlCDhJZVCMHN1/IQSKLavXJ4XTf63C5XK46/5fr6LvvvtPEiRP1wQcfeG4bMGCAZs2apSuuuMLqcQAAAAAAAAAAFmLzQwAAAAAAAACApYwU09HR0SosLJTT6ZQkOZ1O7d27V9HR0SbGAQAAAAAAAABYyEgxHRkZqZiYGGVlZUmSsrKyFBMTU+v1pQEAAAAAAAAA5y4ja0xLUl5enpKSknTo0CGFhoYqNTVVl156qYlRAAAAAAAAAAAWMlZMAwAAAAAAAADsic0PAQAAAAAAAACWopgGAAAAAAAAAFiKYhoAAAAAAAAAYCmKaQAAAAAAAACApSimAQAAAAAAAACWopgGGlBJSYnpEQAAAAAAAACfRzH9Cxw4cECbN2/W5s2bdeDAAdPj+IxJkyaZHsFnDBw40PQIRpWXl2vFihUaMWKE6VF8ypYtW0yPYFRhYaFefvll3XLLLaZH8Ql/+MMfTI8AAACAc9Dq1au1fPnyE25PS0tTdna2gYlgmtPp1F//+lfTYxi3bdu20/7PrsrLy1VaWur5ny8KMj3AuWDnzp2aMmWKcnJy1LJlS0nS3r171blzZz355JNq166d2QENW7dunekRfIbL5TI9ghGbNm3S+++/r7///e/6v//7P8XFxZkeyaeMGjVKn3zyiekxLFVRUaHVq1fr/fff14YNG3THHXfo6aefNj2WT9i+fbvpESw1dOhQORyOUx5///33LZzGtxQVFWnXrl3q2rWr6VEss3Tp0tMeT0xMtGgS85xOp8rLy9W0adMat5eWlio4OFiBgYGGJrOey+VSeXm5GjduLEnauHGjKioqJEmdO3dW8+bNTY5nxNq1a/Xvf/9bDodDvXr10g033GB6JBg0depUDRs2TJdffrnpUWDYa6+9ppdeeumE23/9619rzJgx6tu3r4GpzNmxY4cmTZqkwsJCZWdn67///a+ys7P18MMPmx7NMoGBgVq+fLni4+NNj2LUqFGjTnnM4XBo9erVFk5j3qpVq/T0009r7969ktzPtRwOhzZv3mx4shNRTNfCY489poSEBC1evFgBAe6TzKuqqrRy5UpNnDjR9u9O2bWMPZnTlS/+5sCBA1q+fLnS09NVUVGhuLg4NW3aVK+//rrp0XyOnf6N5ObmKj09XVlZWercubPi4uKUl5enJ5980vRoMGTixImmR/ApCQkJeuWVV+RyuRQXF6fQ0FD16dPHNjlNnz5dV155pTp06GB6FONmz56tSy+9VHfeeWeN29PS0rRnzx499thjhiaz3gsvvKDS0lJNnjxZkvSnP/1JkZGRKi8v1y233GKrgkFyF0/Lly/X7bffLklKTU3V999/r/vuu8/wZGZ89tln2rx5s8rKyjy3PfTQQwYnst4ll1yihx9+WC1atFBiYqJuueUWBQXZ56V8WlqaXC6Xfve739W4fcmSJWrevLmGDh1qaDLrHTlyRC1atDjh9pYtW+ro0aMGJjIrJSVFDzzwgObMmSNJiomJ0WOPPWa7vxu9evXS3//+d916662mRzGGKwZqmjlzpl588UVdeeWVnh7TV9nnr1k9HDx4UIMGDapxW0BAgAYPHqyXX37Z0FS+w05lrKTTXgZSWVlp4SRm9e7dW927d9eTTz6pq6++WpL7SSNOZKd/I3Fxcbruuuu0bNkyRUdHS3IXDrCva6+91vQIPuXo0aMKCQnR8uXLNXDgQE2YMEGDBw+2TTE9Y8YMZWZmatu2bYqLi1NsbKzCwsJMj2XEp59+qgkTJpxwe2JiogYPHmyrYnrNmjU1zqYPDw9Xenq6nE6nhg0bZruCYcWKFXr33Xd13nnnSZKGDx+uu+++25bF9OzZs7Vp0yZt27ZN/fr10+rVq3XdddeZHsty9957r+699159+umn+stf/qJnn31Wv/3tbxUfH69WrVqZHu+se+edd7RkyZITbo+Li9OIESNsVUwfO3bslMd89TL9s6mkpER9+vTRc889J8nd0zRq1MjwVNZ7++23dfDgQTVp0kRNmzb1nB1rp6vbz/T7//Mr1PxdVFSUunTpYnqMWqGYroXw8HBlZWXp9ttv9xRMLpdLK1euVGhoqOHprHGqS7FdLpeKiooMTGTO6S4Rqb4E1Q7uuecerVy5Us8995yGDh2q/v37mx7JqDVr1pzy2PFn+Pi7KVOmaNmyZUpMTNSQIUM0ePBg0yMZ0bNnz1M+Ztpxk9SPP/5Yr776queNvQ4dOmjUqFG66aabDE9mvfLycknS+vXrNWDAAAUEBNhqyYahQ4dq6NCh2r17tzIyMnT33Xfr8ssv1wMPPKCOHTuaHs9Sp/r/fWBgoK3e0JTcWRy/XMeAAQMkubOoXtLDbqpL6Z9/bDdr1qxRRkaGhgwZomnTpmn06NG2vgqra9euysvLU25urjZu3Kj3339ff/jDH/x+f5eKioqT/jsIDQ211YlBktSxY0etXLnyhL2NPvjgA1tejVT9d6L672ZhYaHPnx16NqSnp5sewbhu3brJ4XCc9GplX13C4mwaPny4XnjhBd188801eqrLLrvM4FQnRzFdC88++6ySk5M1bdo0tWrVSi6XS4WFhYqJidGzzz5rejxL2OVMrtrgEhG3xx57TOPHj9eaNWuUnp6up59+Wk6nU59//rl69uxpejzLnW4JE1988D9bEhMTlZiYqO+//17p6emKj4/XkSNHlJ6erv79+9vmxTVPDr3WrFmjJ598Ug899JCuuuoquVwuffvtt0pJSVGjRo3061//2vSIlrr22mvVv39/uVwupaSk6NChQ7Z8AdWmTRuNGDFCLVq00Lx583T99dfbrpiu3ozm52fwHDlyxPMGhl0cOnSoxufHnwRgxw3Hr7zySk2aNEl33nmnHA6H0tLSdOWVV5oey4jg4GAFBQXJ4XCooqJCrVq10p49e0yPZbnvvvtOS5cu1b/+9S/Fxsbq7bffVps2bXT48GHFxsb6fTF9ujMhjxw5YuEk5o0fP17Dhw/XJ598oquuukqS9M0332j9+vV66623DE9nvYSEBD300EM6cOCAXnzxRWVmZmrcuHGmx7LchRdeqMOHD+uHH37QFVdcYXocI3Jzc02P4FMKCwv15ptvKjMz0/Naw1fX2na47LT4aT0VFxeroKBAkhQdHa2IiAjDE/mGefPmacyYMabHgGHFxcXKyMhQRkaGDh06pE8//dT0SDDg55t5VW+C+M477+jbb7/Vf/7zH8MTmjdp0iQ988wzpsewzH333ac//vGPJyzp8eWXX2rBggVatGiRocnMcLlcys3NVdu2bXXeeeepuLhYe/bsUefOnU2PZgmXy6W1a9dq2bJl2rJli2677TbFxcWpbdu2pkez3Ny5c5WXl6enn37a86ZdSUmJpk6dqosuushWL6yrN+z6+ebJK1as0Mcff6wXX3zRzGCGHD16VPPnz/dcgt2rVy89+OCDatasmeHJrHfPPffolVdeUWpqqkpKShQVFaWvvvrKdsvHDRw4UMOGDdPgwYPVpEmTGsfeffdd3XXXXYYms8bEiRN12WWXaeTIkTVuX7RokTZv3qxZs2YZmsyMffv2aenSpcrJyZHL5dIVV1yhhIQEtWzZ0vRoRnz55Zf65z//KZfLpb59+6p79+6mR7LcmjVrNHXqVAUGBio7O1ubNm3S/PnztXDhQtOjGZGfn6+8vDzddNNNOnLkiCoqKhQeHm56LEv95je/0V//+tdz4nGBYroWcnNzNXnyZAUEBCg1NVWpqalav369wsPDtXDhQsXExJge0agbb7xRn3zyiekxLHP8unbVazcd/7Gd1nE6lW+//facWc8IDSs1NfWkm3ktWbJE33//vWbMmGFoMt9ht8fM/v37a9WqVb/4mL862T4FISEhtlgjVHLvTxAVFaUhQ4aoR48eJyxZYacrTCorK5WUlKTVq1erXbt2kqQdO3aob9++Sk1NtdXGZjt27NCwYcPUo0cPzxmA3377rT7//HO9/fbbnnxgP/v371doaKicTqcWL16skpISDR8+XBdccIHp0SzjdDr10ksvaezYsaZHMWb//v0aNmyYwsPDazxGFBcX6+2331ZUVJThCa3z85NAqpWWlio4ONhWy4PBa+jQoVq4cKFGjhypzMxMSe5lsT788EOzgxmwbNkyvfrqq54TpLZv365p06bpzTffND2apRITE2vs3+HL7POMtx6eeuopjR49WiUlJbr//vs1btw4vfrqq8rOzlZqaqrtfsF/zm7vbTRr1kzh4eEaMmSI+vTpY8tLsCXp1VdfVfPmzZWYmFjj9tdee02SbFdMd+rU6ZRrCttpTatTbeY1bNiwEzaRtSs7PmbW5Zi/GjVqlAoKChQSEiLJfYZsZGSkgoOD9dxzz6lr165mBzzLGjVqpIMHD2rRokVavHhxjX8Pvnp54dkSFBSk2bNn64cffqhx1tvFF19sejTLtWvXTsuWLdNf/vIXffbZZ5KkmJgYLVu27Jw406ehnOkF5M+fc9lBixYtPB8/+OCDBicxJzAwUF999ZXpMYxq0aKFMjMztXLlSs/j5ZAhQxQbG2u7Dc1mz5590pNA0tLStGfPHlttnCtJ27dv18svv6xdu3bVWG/8/fffNziVGT9/gyY4ONjQJGYtWbJE6enpnr+Zl156qfbv3294Kut16dJFjzzyiG699dYaa0z74jKKFNO1cOTIEfXr10+S+7LL6nKlb9++mjdvnsnRfILdNuhZvXq11q9fr4yMDC1ZskT9+vXTkCFDbHWWlyStXLnypOvo3nPPPbrzzjtPuNTO33399deS3KXj3XffrXfffdfwRGacajOvgIAA2z1WnIrdcigpKTnl5qCHDx+2eBrz+vXrpx49eng2fvzHP/6hb7/9Vtdff71mzJjh95ens0+D19atW7Vv3z716tWrRhm9du1aRUdH2+55RcuWLfWnP/3J9BhGfffdd6ZH8Dnbt2/XwoULtXPnTluXTr/+9a/1xhtvKC4ursabunYpZQ8fPqyDBw+eUMbu2rVL559/vm32MJFOfRJIYmKiBg8ebLtiurp4GzJkiK3PFm/evLn279/veZ2xfv16z0kQdtOoUaMaGypLsuXvRvVziuPXnnc4HBTT56rjz+a5/vrraxyrqqqyehwjxowZc8qzQX/66ScDE5nVo0cP9ejRQ0ePHtUHH3yg4cOH6+GHH1ZCQoLp0Sx1sndhj383zk6Of5EQGBhoyzNBJTbzqjZ06NBTPmYWFRUZmMic6OjoU24O2rp1a4unMW/Dhg16/PHHPZ/fdNNNeu211/TII4/o2LFjBiczo6ysTFu3blWbNm1st/bfnDlzTlrEhoWFafbs2bZaF3Ljxo3asmWLfve730lyP+88ePCgJOmhhx46YY16f2Wn/Qdqa+zYsRo8eLDuuOMOWxYL1arXUJ41a5YcDoftrsibOXOm+vTpozZt2tS4fePGjfriiy80bdo0Q5NZ71QngQQGBtru5AfJ3cf8v//3/0yPYdyECRM0cuRI7d69W8OHD9eOHTv08ssvmx7LiPDwcOXn53v+PSxfvtyWrznOpc1QKaZroXqH0/POO09PPfWU5/Y9e/bY5l3q3/zmN6c81qlTJwsn8R15eXnKyMjQxx9/rD59+qhHjx6mR7JUWVmZKisrT1gDs6Ki4rQ7Z9uB3ZZqON6AAQM0ceLEk27mdeuttxqezjrjx49XeXn5CW9QHD161HaX1Z1LT4qsUFVVpa+//lpXX321JOk///mP5zHTDktDff7555o2bZrCwsL06KOPaty4caqsrNTRo0f17LPPqn///qZHtMzu3btP+hyqS5cu+t///mdgInPmz5+v++67z/P5tm3b9Nhjj+no0aNatGiRbYrpU11dUs0Xz3I624KCgnT//febHsO43Nxc0yMY9eWXX560fB44cKCt3sSTOAnk57p27arc3FzbdhLVunTpoiVLlniu4u3WrZtCQ0MNT2XG5MmTNX78eOXn56tv375q0qSJ7R4nJOmLL75Q586d1bx5c6WlpWnTpk0aOXKkT244TjFdC/Pnzz/p7aGhoVqwYIHF05hxxx131Ph87969yszMVHp6ulwul63WfPvLX/6i5cuXKzg4WHfccYcyMzNt8wbF8fr06aNnn31WkyZN8rxrX1VVpVmzZql3796GpzPLjmcrVBs9erSSkpLUu3fvEzbzevjhh80OZ6G1a9eechPIPXv2qFevXoYms96Z3qiy2+NncnKyxo0bpyZNmsjhcKi0tFRz5szRkSNHNGLECNPjnXUzZ87UxIkTVVJSoj/+8Y+aP3++rr32Wn3//fd67LHHbFVMV1RU1OmYPyoqKlLPnj09nwcHB+vGG2+UdOZ1l/3Jqa4ukXz38tuzrXfv3vr000/Vp08f06PAoNO9cWu3592cBFLTt99+q2XLlumSSy6pceWu3Zb72bJli9q0aeP5O3H06FFt3bpVHTp0MDyZ9QoKCvT666/rwIEDcrlcioiI0Pfff6+LLrrI9GiWmjZtmlasWKGtW7dq8eLFGjRokB5//HEtWbLE9GgnoJiuh2bNmtnqcv3KykplZ2crPT1dGzduVGVlpd544w2/36jp56ZNm6bOnTurVatWWrNmzQlnt8ydO9fQZNYaN26c/vjHP+rmm29W586dJUk5OTlq3bq1ZwNEO+nZs6fnifGhQ4d03XXXSfJufrhu3TqT41mGzbzcWP/Pq1u3bp5/Gz+/msBOlyFX6969uz7++GPl5+fL5XLp0ksv9ZxF//M3gf1RVVWV50XTvHnzPGfCduzY0eRYRkRERCgnJ8fzN7RaTk6O7ZY1+fkyNsdfaXHgwAGrxzGGK0xOdN111+nBBx9UQECAgoODbfe8qlpubq6Sk5OVm5tb46xYO/0NLS4uVkRExAm32e1KRU4CqWny5MmmR/AJSUlJ+utf/+r5PCgoSBMnTtSyZcsMTmXGzJkzlZGR4Xm8qKqq8txmJ0FBQXI4HPr000919913a/jw4fr73/9ueqyTophGrTzzzDP64IMPdPnll+uOO+7Q3LlzNWDAANuV0tLp1/8rKCiwcBKzmjdvrrffflv//ve/PQVkYmKip5C1m5NtBGlnF198se3K6OOx/p/Xr371Kx07dkxxcXGKjY1VWFiY6ZGMczqdCg4OltPp1M6dOyXJNhvdHf/7//ONaeywlMnxHnzwQT3wwAN66KGH9H//93+SpE2bNmnBggV68sknDU9nrcDAQO3bt09RUVGS5Nmwae/evbb7vZBOvaSHHc+Ynjp1qp555hldccUVtvxdqJaSkqI//elPeuaZZ/T6669r6dKlJzyG+rM777xTY8aM0YwZMzzPL3/44QdNmTLlhKvT/N3JTgL53//+p969e5+wxKIdVL/BffToUUmy1YmDx3M6nWrUqJHn8+rnmXZU/QZmtYCAAFtmUVlZqa+++kqrVq3SjBkzJMlnc7DfIxfq5J133lG3bt00atQoz6WWditXqrGsSU29evXStdde69lg4GTrTtvBhRdeaHoE+BDW//N66623tHv3bmVkZOiuu+7S5ZdfriFDhqh37962LBmWLl2q2bNnKzw83PN31OFwaPXq1YYns8bu3bs1duzYEz6ufmFtJ71799aMGTO0YMECzZgxQw6HQ507d9a0adNstyTW7373O40bN65G6bRz5049/vjjtiudpJpLepSXl2vz5s3q3LmzLYvpsLAwWy5P8HPl5eW67rrr5HK51LJlS40bN07Dhw/XqFGjTI9mid///vcqLi7WoEGDPMs1lJWVacSIEYqNjTU8nbUmTJig+++/X506dVJYWJgGDRqkkJAQLV68WOPGjbPdY+auXbs0fvx4bd682fN3dNasWT65ju7ZFBQUpF27dnnu986dO227YWzz5s31zTff6KqrrpIkffPNN7Z8w2Ls2LGaNm2aevbsqQ4dOig/P99nTxxzuOx27Qvq5NChQ1q5cqXS09P1008/KS4uTunp6frkk09Mj2YEy5p4bdq0SWPGjPFcXllZWakXX3xRV1xxhenRLDVmzJhTvlnjcDj0wgsvWDsQjJo7d67y8vJOuv7fRRddpHHjxhme0Jx//OMfmjJliu6///4am53ZRb9+/bRkyRLbvpl1psso7bCcSbUvvvjC83H10/Hj/4786le/snwmk55//nktXrxYTZo0keQtne6//37PGdR2tW3bNi1evNhzxpOdLFy4UGFhYbrttttqrB9rt/0J7rzzTqWlpWnYsGF64okn1KpVKw0dOlTZ2dmmR7PMvn379MMPP3iWv2rRooX+/Oc/a9myZTUeT/3dgAED9OGHH0qS/vznP2vNmjVatGiR9uzZoz/+8Y9avny54Qmtde+99+r222/X0KFDJUnLli1TVlaWFi9ebHgya/3zn//UlClTPG9grlmzRk899ZRnvwY7+c9//qOHH37YczXitm3b9NJLL9myqzlXUEzjF8vNzdX777+vrKwstW/fXgMHDtRdd91leizL/HxZk5tvvlkDBgyw1RPD4911110aO3asZwmPzz//XC+88ILeffddw5NZ62Rly6FDh7RkyRIdOHDAs0My7KGyslJJSUlavXr1Cev/paam2u6qApfLpbVr1yojI0O5ubm67bbbFB8fr1atWpkezXJ33XWX7R4fj5eXl6ft27fr5ptvliQ9/fTTKikpkSTdc889iomJMTmepapfREvS9u3b1b59+xoFtd02bpLcl2Jv27ZNknt5m2bNmunGG2+07YkQx/vtb39ry9+JTp06nXCbHfcnWLx4seLi4rRp0yaNHTtWVVVVGjNmjG3e4E1LS9OTTz6p8PBwnX/++Ro/frwmTJigG264QY888oitNjW74447PK87xowZo549eyohIUGSFBcXp8zMTIPTWW/w4MEnlPEnu80O8vPz9e9//1uSdMMNN/js2bFW+Omnn7Rx40a5XC5169bNtksJfvbZZ9q8ebPKyso8tz300EMGJzo5e70yRoPo1KmTnnjiCU2cOFEff/yx5/Jsu2BZk5pKS0trrCvds2dPlZaWGpzIjOPP8isvL9eSJUv05ptvqn///rZb3gVsAnm8WbNm6R//+Ie6deumu+66Sz169DA9klG9evXSzJkzdfvtt9c4+88ua0zPmzdPAwYM8Hy+Zs0a3XPPPTp69KheffVVPf/88wans9bxexPExcXZsnT8uWbNmqlLly41brPjOTTHrzFdVVWlTZs2qaqqyuBE5uTm5poewSfce++9kqQ+ffpow4YNKisr81yRZQdvvvmmMjIy1KFDB3311Vf6/e9/r9mzZ9t2mZfCwkKFhYVpw4YNGjNmjOf248snuwgICND27dt16aWXSnKXs3ZdwuKSSy7RJZdcYnoMnxAWFmbL5a+ON3v2bG3atEnbtm1Tv379tHr1ap/dD4xiGnXWqFEjDRgwoMYLTDv47LPPtHLlSs2cOdOzrImvLiJvhaZNm+rzzz/3lPQbNmyw3eWV1aqqqpSWlqaXX35Z1157rd599121adPG9FgwyO6bQErSG2+8oUsuuURbt27VrFmzTjhutzKu+kym43fFttMa0zt37lT//v09nzdt2lSJiYmS5Pm/dmTnN7jPxI7ZHL/GdFBQkNq2bau5c+canMisAwcO6JtvvpHD4dBVV12l8PBw0yNZpvoKglOxy5uaQUFB6tChgyTpmmuuUZs2bWxbSo8aNUpxcXFq1KiRrrnmGs/vwMaNG3XBBRcYns5648aNU2JioueKq9zcXM2cOdPwVNb7+uuvNWvWLO3atUtOp9OzAeC6detMjwZD1qxZo4yMDA0ZMkTTpk3T6NGjfXZzbYpp4BcKDQ1VYmKiEhMTPcuaHDt2TImJibZb1kSSJk+erLFjx3rWe6uoqNC8efMMT2W9v/3tb5o7d64uueQSvfbaa54nz4DdLVq0SOXl5SdsOnL06FHP44ad2HXZp2qVlZU1Pp8zZ47n40OHDlk9DnzE6cq3n//O2MFbb71legSfsXbtWj366KOe0un777/XrFmzdP311xuezBqn29zQTm9qVlRUKC8vz3MFRUBAQI3P7VLQS9Jtt92m7t27a//+/TWWuomOjtb06dMNTmZGnz599MEHH+ibb76Ry+VS165dFRERYXosyz3++ON68MEH1bVrV1tuLo4TBQcHKygoSA6HQxUVFWrVqpX27NljeqyTopgG6sHuy5pIUpcuXfTRRx8pPz9fLpdLl156qRo1amR6LMuNGzdOF1xwgRo1aqSXXnrphON2PtMJ9rZ27VpdeumlJ+wSv2TJEu3Zs0e9evUyNJm1ysvLFRwcfMqljuxypUlFRYUOHz7suQS9ffv2kqTDhw+rvLzc5GiWO76MLSsrq1GySPYqWk5Xvh2/5I2/W7p06WmP2/Gqgueff15Lly71PFbk5eXp0UcftU0xbfc3M6sdO3ZMI0eOrHFb9ed2KuirRUVFKSoqqsZtdty34+fsXMg2adJEAwcOND0GfEjz5s1VWlqqbt26KSkpSVFRUT67zA2bHwKot9LSUu3Zs6fGkiZ2ekEtuXeAPt3lxsevQQ3Yye23364VK1ac8ETI6XRq8ODBysrKMjSZtao3K+rUqZMcDkeNAtJOG3m9+OKL2rp1q55++mlPOX348GE98cQTuuSSSzR27FjDE1qnb9++pzxmx6IF0qRJkyS5l67YsGGDZy3IdevW6YYbbrDlFWmDBg3SihUrznibvzrTvi12eVMTOJWPPvpIU6ZM0ZVXXqmqqirl5uZq+vTpuummm0yPZqnnn39eV199te3XVYbX/v37FRoaKqfTqcWLF6ukpETDhw/3ySV/KKYB1MvSpUs1e/ZshYeHe4pZO76gdjqd+uijjxQWFqZevXrpz3/+s9atW6d27dpp9OjRCgkJMT0iYMTAgQO1cuXKX3wM/qmyslJJSUlavXq12rVrJ0nasWOH+vXrp2effVZBQVzMB4wePVpJSUlq27atJGnXrl167rnnbLU5aLURI0Zo0KBBGjJkiCQpIyNDy5cv15tvvml2MIuc7M3ManZ6UxM4ldtuu00LFizwbPq3Y8cOPfDAA/rb3/5meDJr9ezZUwcPHlTz5s0VHBzMGtM4p/DsH0C9LFq0SFlZWbrwwgtNj2LUk08+qS1btqi8vFxt2rRRWVmZbrzxRn3xxReaOnWqLV9MApJ7CYvS0tITzuo6cuSI7ZZukKS0tDRdd911tt0YNSgoSLNnz9YPP/ygnJwcSVLnzp1tv0kocLz//e9/nlJaktq2bav8/HyDE5kzbdo0TZgwQcnJyXI4HIqJiTnpRrr+Kjc31/QIgE8LCwvzlNKS1K5dO1ttkFotPT3d9AjwEWPGjDntldy+uMQoxTSAeomKirJ9KS1JX375pT744AOVlpbqhhtu0Oeff67g4GDFx8dr0KBBpscDjBkwYIAmTpxYY+mGkpISTZ06Vbfeeqvh6ayXk5OjN954QxUVFerZs6euu+469ezZUy1atDA9mqUuvvhiymjgFMLDwzV//nzP2vzp6em2LFok6aKLLtJ7772nI0eOyOVyef6OALC36mVubrjhBr388sv67W9/K5fLpWXLlunmm282PJ31eD2Oar/5zW9Mj/CLsZQHgHqZN2+ejh07pttvv73GBkV2W2M6Li5OmZmZJ3wsedeWBezoVEs39O3bV6mpqbZdumHPnj365JNP9Oqrr6qgoIDLsQF4FBYWasaMGVq/fr0k9yXakydPtu3mZjt37tTOnTtr7GVil3VUf//73+vPf/6zevbsWeMMOC7Th92xzE1NBQUFmjVrlnJzc1VWVua53W7La+LcZM9XgwAaTHUB+/e//91zmx3XmC4vL1deXp5cLleNjyXVeHIA2M3Pl25wuVy64oorbHu27Hfffad169Zp3bp12rdvn2644QbPBmcAIEmtWrWy5UaHJzNnzhylpaWpffv2CggIkOR+nmmXYrp62RIu0wdqYpmbmiZPnqwBAwZo8+bNmj17tt555x1ddNFFpseCQXv37tVTTz2l9evXy+FwqEePHnr88cfVsmVL06OdgDOmAaAB9O3b95TH7FjUAzi5Tp06qVu3bho/fry6d+9uehwAPqi0tFSvvPKKdu3apTlz5igvL0/5+fm66aabTI9muZtvvlkZGRks4SGpoqJC+fn5cjgcuuSSS2x7xRGAE1VfsVu9sXhVVZVGjBihJUuWmB4NhowYMULdu3evsSzYhg0bfHLzYP6aAai3devWKS8vT8OGDVNRUZEOHTpUYxMKO8jOzjY9AoBzwHvvvafPP/9c8+fPV1FRka6++mr16tVLt9xyi+nRAPiIlJQURUVFec4IbN26tcaPH2/LYjoqKopSWu69TMaPH68mTZp4rs577rnndPXVV5seDYAPaNSokSSpWbNm+vHHH9WiRQv9+OOPhqeCSQcOHNBDDz3k+fzBBx/UqlWrDE50ahTTAOrl1Vdf1Zo1a7Rv3z4NGzZMFRUVmjx5st555x3TowGAz+nSpYu6dOmiwYMH65NPPtErr7yiv/71r7ZbCxHAqW3ZskWpqan67LPPJEnNmzdXVVWV4anM6Nq1qx555BHdeuutNfYysctSHtWmTZum2bNn61e/+pUkd1GdkpKiFStWGJ4MgC/o3r27Dh48qLvvvltDhgxRcHCwLTcZh9fFF1+sH374wbN84s6dO9WhQwfDU50cxTSAesnKylJ6errnEpHWrVvr8OHDhqcCAN80bdo0rVu3TmVlZerZs6f+9Kc/qWfPnqbHAuBDqs98q1ZWVnbSDb7sYNOmTZKkt956y3ObndaYrta4cWNPKS25S6gmTZoYnAiAL+ndu7cCAwMVFxena6+9Vj/++KMqKipMjwWDDh8+rMGDB+uaa66RJH399df61a9+pbFjx0qS5s6da3K8GiimAdRLkyZNTngBdfyu4QAA6ccff9QFF1ygjh076t5771Xbtm09x/773//65EYkAMzo3r27Fi5cqPLycq1fv16LFy8+7V4W/uz4QtrOunfvrhUrVmjQoEGSpJUrV6pPnz6GpwLgK2bOnKmMjAxJ0gUXXKDWrVtr6NChnttgPwMHDtTAgQM9n8fGxhqc5vQopgHUS+vWrfXll1/K4XCoqqpKCxcu9NlLRADAlNGjRysjI0Px8fH67W9/q/fff99z7IknnuCFAwCPcePG6fXXX1fz5s01e/Zs9e3bV6NGjTI9ljElJSXKz89XWVmZ57bjzx62g4yMDC1evFhPPPGEJKm8vFzh4eF6++235XA4tG7dOsMTAjDJ5XLVODksICBATqfT4EQw7Y477jA9Qq1RTAOolylTpmjixInaunWrrrrqKnXv3l2zZ882PRYA+JTjL8OvrKw85TEA9rV06VLPx6GhoYqLi/N8/u677yoxMdHAVGZ9+OGHSk1N1aFDh9SyZUvt3LlTnTp1st2beenp6aZHAODDmjdvrm+++UZXXXWVJOmbb75Rs2bNDE8Fk4qLizV9+nStW7dODodDvXr10uOPP66IiAjTo52AYhpAvURFRWnRokUqLS1VVVWVmjdvbnokAPA5x5/F8vPljlj+CIAkTZ8+XVdeeSVXnh1n4cKFWrZsme677z5lZmbqX//6lz766CPTY1nuwgsvND0CAB/26KOPavTo0brsssskSdu2bdNLL71keCqYlJycrMsuu0xJSUlyuVx67733NHXqVJ/8vaCYBlAna9asOe1xu21KAwCnU1ZWpry8PLlcrhofVx8DgBkzZigzM1Pbtm1TXFycYmNjFRYWZnoso4KCghQZGem5JP3666/Xiy++aHgq6xUUFGjWrFnKzc2t8Tdj9erVBqcC4Cu6deumDz74QBs3bpTL5VK3bt1s//fD7nbu3Fnj7+WYMWM0ePBggxOdGsU0gDp5/fXXJbnXuNu0aZMuv/xySdKWLVvUtWtXimkAOM6xY8c0cuRIz+fHf8wZ0wAkaejQoRo6dKh2796tjIwM3X333br88sv1wAMPqGPHjqbHMyI4OFgul0sXX3yx3nrrLV144YU6cOCA6bEsN3nyZA0YMECbN2/W7Nmz9c477+iiiy4yPRYAHxIWFsZrcHhUVVWpqKhIkZGRkqSioiJVVVUZnurkKKYB1En1LumPPvqoJk+e7FnP6ttvv62xqRcAQMrOzjY9AoBzRJs2bTRixAi1aNFC8+bN0/XXX2/bYnrs2LE6fPiwJkyYoJSUFJWUlCg5Odn0WJY7cOCA7rzzTi1ZskTdunXTVVddpREjRpgeCwDgo+677z7FxcXpxhtvlMPh0Jo1a/TII4+YHuukKKYB1EteXp6nlJakLl26KCUlxdxAAAAA5yCXy6W1a9dq2bJl2rJli2677Ta99957atu2renRjLnuuuskSSEhIXrzzTfNDmNQo0aNJEnNmjXTjz/+qBYtWujHH380PBUAwFfFxcWpc+fO2rBhg1wul+655x7PGuS+hmIaQL0EBQVp+fLlnvWKVqxYoaAgHloAAAB+iT59+igqKkpDhgzR6NGj5XA4VFZWpm3btkmSz76gPBuWLl162uOJiYkWTWLewYMHdd555+mnn35SQkKChgwZouDgYN16662mRwMA+LALLrhA3bp10xVXXGF6lNNyuKp33gGAOti2bZsee+wxbd26VQEBAerQoYOSkpLUvXt306MBAACcM/r27ev52OFw6PiXaQ6Hw1Yb3U2aNOm0x5955hmLJjHrww8/1KRJk9S8eXOVl5frxRdf1MUXX6zDhw979ncBAODn1qxZo6lTpyowMFDZ2dnatGmT5s+fr4ULF5oe7QQU0wAaxI8//qiMjAytWLFCLpdLH330kemRAAAAgHPWwIEDNXPmTMXExOjzzz/X/PnzPfu8AABwKkOHDtXChQs1cuRIZWZmSpIGDBigDz/80OxgJ8H19gDqrLKyUtnZ2UpPT9fGjRtVWVmpRYsW1VhzGgAAAKiL0tJSvfLKK9q1a5fmzJmjvLw85efn66abbjI9miUCAgIUExMjSerZs6eeffZZwxMBAM4VUVFRNT4PDg42NMnpBZgeAMC56ZlnntGNN96od999V7GxsVqzZo3CwsIopQEAANAgUlJSVFlZqdzcXElS69at9dJLLxmeyjoVFRXKy8vTtm3btG3bNpWXl9f4HACAk2nevLn2798vh8MhSVq/fr1CQkIMT3VynDENoE7eeecddevWTaNGjVLPnj0lyfOgBwAAANTXli1blJqaqs8++0yS+4V2VVWV4amsc+zYMY0cObLGbdWf223dcQBA7U2YMEEjR47U7t27NXz4cO3YsUMvv/yy6bFOimIaQJ189tlnWrlypWbOnKmffvpJcXFxcjqdpscCAACAn2jUqFGNz8vKymSnLZKys7NNjwAAOAd16dJFS5Ys0ddffy1J6tatm0JDQw1PdXJsfgig3nJzc/X+++8rKytL7du318CBA3XXXXeZHgsAAADnsJkzZyo0NFQrVqxQcnKyFi9erI4dO2rcuHGmRwMAwOeVl5fXOIGwadOmBqc5OYppAA2moqJCH3/8sTIyMvTaa6+ZHgcAAADnsIqKCr3++uueM4f79u2rUaNGKTAw0PBkAAD4ro8++khPPfWU9u3bJ0lyuVxyOBzavHmz4clORDENAAAAAPAZS5cuPe3xxMREiyYBAODcc/PNNys1NVVdu3ZVQECA6XFOizWmAQAAAAA+Y/r06bryyivVoUMH06MAAHDOCQsL09VXX216jFrhjGkAAAAAgM9IT09XZmamjh07pri4OMXGxiosLMz0WAAAnBNeeeUVhYSEaMCAAWrcuLHndtaYBgAAAACgFnbv3q2MjAz97W9/0+WXX64HHnhAHTt2ND0WAAA+rVOnTp6PHQ6HT68xzVIeAAAAAACf06ZNG40YMUItWrTQvHnzdP3111NMAwBwBrm5uaZHqDXOmAYAAAAA+AyXy6W1a9dq2bJl2rJli2677TbFxcWpbdu2pkcDAAANiGIaAAAAAOAzevfuraioKA0ZMkQ9evSQw+Gocfyyyy4zNBkAAGhIFNMAAAAAAJ/Rt29fz8fVa2Me//nq1atNjAUAABoYxTQAAAAAAAAAwFIBpgcAAAAAAAAAANgLxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAs9f8BHyqn5Q0U+4gAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1800x360 with 1 Axes>"
]
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(25, 5))\n",
"sns.set_theme()\n",
"profile_mut_all[\"tumor_types\"].value_counts().sort_index().plot(kind=\"bar\")\n",
"#sns.countplot(x=profile_mut_all[\"tumor_types\"], palette=sns.hls_palette(2))\n",
"plt.xticks(rotation=90);\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Check activites data content"
]
},
{
"cell_type": "code",
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Some content from the full act set:\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>SBS1</th>\n",
" <th>SBS2</th>\n",
" <th>SBS3</th>\n",
" <th>SBS4</th>\n",
" <th>SBS5</th>\n",
" <th>SBS6</th>\n",
" <th>SBS7a</th>\n",
" <th>SBS7b</th>\n",
" <th>SBS7c</th>\n",
" <th>SBS7d</th>\n",
" <th>...</th>\n",
" <th>SBS52</th>\n",
" <th>SBS53</th>\n",
" <th>SBS54</th>\n",
" <th>SBS55</th>\n",
" <th>SBS56</th>\n",
" <th>SBS57</th>\n",
" <th>SBS58</th>\n",
" <th>SBS59</th>\n",
" <th>SBS60</th>\n",
" <th>tumor_types</th>\n",
" </tr>\n",
" <tr>\n",
" <th>mut_tri</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>30</td>\n",