Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Project Tasks"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the first few assignments, we have learned how to infer part based components (known as mutational signatures) generated by particular mutational processes using Non-negative Matrix Factorization (NMF). By doing this, we are trying to reconstruct the mutation catalog in a given sample with mutational signatures and their contributions.\n",
"\n",
"In this group project, you will use similar mutational profiles and signature activities to predict cancer types but with much larger sample size. \n",
"You should:\n",
"* Separate the data into training and test groups within each cancer type.\n",
"* Find out which features are informative for the prediction of the cancer type (label). You should combine the profiles and activities and use each data type independently.\n",
"* Implement different models for classification of the samples given the input data and evaluate the model performance using test data to avoid overfitting. Explain briefly how does each model that you have used work.\n",
"* Report model performance, using standard machine learning metrics such as confusion matrices etc. \n",
"* Compare model performance across methods and across cancer types, are some types easier top predict than others.\n",
"* Submit a single Jupyter notebook as the final report and present that during the last assignment session "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The data include both mutational catalogs from multiple cancers and the predicted activities in the paper [\"Alexandrov LB, et al. (2020) The repertoire of mutational signatures in human cancer\"](https://www.nature.com/articles/s41586-020-1943-3). The data either are generated from whole human genome (WGS) or only exomes regions (WES). Since the exome region only constitutes about 1% of human genome, the total mutation numbers in these samples are, of course, much smaller. So if you plan to use WGS together with WES data, remember to normalize the profile for each sample to sum up to 1.\n",
"\n",
"Note that, the data is generated from different platforms by different research groups, some of them (e.g. labeled with PCAWG, TCGA) are processed with the same bioinformatics pipeline. Thus, these samples will have less variability related to data processing pipelines."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cancer types might be labeled under the same tissue, e.g. 'Bone-Benign','Bone-Epith', which can also be combined together or take the one has more samples."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here is a link to background reading [\"Pan-Cancer Analysis of Whole Genomes\"](https://www.nature.com/collections/afdejfafdb). Have a look especially the paper [\"A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns\"](https://www.nature.com/articles/s41467-019-13825-8)."
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import re"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mutational catalogs and activities - WGS data"
]
},
{
"cell_type": "code",
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Mutation type</th>\n",
" <th>Trinucleotide</th>\n",
" <th>Biliary-AdenoCA::SP117655</th>\n",
" <th>Biliary-AdenoCA::SP117556</th>\n",
" <th>Biliary-AdenoCA::SP117627</th>\n",
" <th>Biliary-AdenoCA::SP117775</th>\n",
" <th>Biliary-AdenoCA::SP117332</th>\n",
" <th>Biliary-AdenoCA::SP117712</th>\n",
" <th>Biliary-AdenoCA::SP117017</th>\n",
" <th>Biliary-AdenoCA::SP117031</th>\n",
" <th>...</th>\n",
" <th>Uterus-AdenoCA::SP94540</th>\n",
" <th>Uterus-AdenoCA::SP95222</th>\n",
" <th>Uterus-AdenoCA::SP89389</th>\n",
" <th>Uterus-AdenoCA::SP90503</th>\n",
" <th>Uterus-AdenoCA::SP92460</th>\n",
" <th>Uterus-AdenoCA::SP92931</th>\n",
" <th>Uterus-AdenoCA::SP91265</th>\n",
" <th>Uterus-AdenoCA::SP89909</th>\n",
" <th>Uterus-AdenoCA::SP90629</th>\n",
" <th>Uterus-AdenoCA::SP95550</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>C>A</td>\n",
" <td>ACA</td>\n",
" <td>269</td>\n",
" <td>114</td>\n",
" <td>105</td>\n",
" <td>217</td>\n",
" <td>52</td>\n",
" <td>192</td>\n",
" <td>54</td>\n",
" <td>196</td>\n",
" <td>...</td>\n",
" <td>117</td>\n",
" <td>233</td>\n",
" <td>94</td>\n",
" <td>114</td>\n",
" <td>257</td>\n",
" <td>139</td>\n",
" <td>404</td>\n",
" <td>97</td>\n",
" <td>250</td>\n",
" <td>170</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>C>A</td>\n",
" <td>ACC</td>\n",
" <td>148</td>\n",
" <td>56</td>\n",
" <td>71</td>\n",
" <td>123</td>\n",
" <td>36</td>\n",
" <td>139</td>\n",
" <td>54</td>\n",
" <td>102</td>\n",
" <td>...</td>\n",
" <td>90</td>\n",
" <td>167</td>\n",
" <td>59</td>\n",
" <td>64</td>\n",
" <td>268</td>\n",
" <td>75</td>\n",
" <td>255</td>\n",
" <td>78</td>\n",
" <td>188</td>\n",
" <td>137</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 2782 columns</p>\n",
"</div>"
],
"text/plain": [
" Mutation type Trinucleotide Biliary-AdenoCA::SP117655 \\\n",
"0 C>A ACA 269 \n",
"1 C>A ACC 148 \n",
"\n",
" Biliary-AdenoCA::SP117556 Biliary-AdenoCA::SP117627 \\\n",
"0 114 105 \n",
"1 56 71 \n",
"\n",
" Biliary-AdenoCA::SP117775 Biliary-AdenoCA::SP117332 \\\n",
"0 217 52 \n",
"1 123 36 \n",
"\n",
" Biliary-AdenoCA::SP117712 Biliary-AdenoCA::SP117017 \\\n",
"0 192 54 \n",
"1 139 54 \n",
"\n",
" Biliary-AdenoCA::SP117031 ... Uterus-AdenoCA::SP94540 \\\n",
"0 196 ... 117 \n",
"1 102 ... 90 \n",
"\n",
" Uterus-AdenoCA::SP95222 Uterus-AdenoCA::SP89389 Uterus-AdenoCA::SP90503 \\\n",
"0 233 94 114 \n",
"1 167 59 64 \n",
"\n",
" Uterus-AdenoCA::SP92460 Uterus-AdenoCA::SP92931 Uterus-AdenoCA::SP91265 \\\n",
"0 257 139 404 \n",
"1 268 75 255 \n",
"\n",
" Uterus-AdenoCA::SP89909 Uterus-AdenoCA::SP90629 Uterus-AdenoCA::SP95550 \n",
"0 97 250 170 \n",
"1 78 188 137 \n",
"\n",
"[2 rows x 2782 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## PCAWG data is performed by the same pipeline\n",
"PCAWG_wgs_mut = pd.read_csv (\"./project_data/catalogs/WGS/WGS_PCAWG.96.csv\")\n",
"PCAWG_wgs_mut.head(2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Accuracy is the cosine similarity of reconstruct catalog to the observed catalog "
]
},
{
"cell_type": "code",
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Cancer Types</th>\n",
" <th>Sample Names</th>\n",
" <th>Accuracy</th>\n",
" <th>SBS1</th>\n",
" <th>SBS2</th>\n",
" <th>SBS3</th>\n",
" <th>SBS4</th>\n",
" <th>SBS5</th>\n",
" <th>SBS6</th>\n",
" <th>SBS7a</th>\n",
" <th>...</th>\n",
" <th>SBS51</th>\n",
" <th>SBS52</th>\n",
" <th>SBS53</th>\n",
" <th>SBS54</th>\n",
" <th>SBS55</th>\n",
" <th>SBS56</th>\n",
" <th>SBS57</th>\n",
" <th>SBS58</th>\n",
" <th>SBS59</th>\n",
" <th>SBS60</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Biliary-AdenoCA</td>\n",
" <td>SP117655</td>\n",
" <td>0.968</td>\n",
" <td>1496</td>\n",
" <td>1296</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1825</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Biliary-AdenoCA</td>\n",
" <td>SP117556</td>\n",
" <td>0.963</td>\n",
" <td>985</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>922</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 68 columns</p>\n",
"</div>"
],
"text/plain": [
" Cancer Types Sample Names Accuracy SBS1 SBS2 SBS3 SBS4 SBS5 SBS6 \\\n",
"0 Biliary-AdenoCA SP117655 0.968 1496 1296 0 0 1825 0 \n",
"1 Biliary-AdenoCA SP117556 0.963 985 0 0 0 922 0 \n",
"\n",
" SBS7a ... SBS51 SBS52 SBS53 SBS54 SBS55 SBS56 SBS57 SBS58 SBS59 \\\n",
"0 0 ... 0 0 0 0 0 0 0 0 0 \n",
"1 0 ... 0 0 0 0 0 0 0 0 0 \n",
"\n",
" SBS60 \n",
"0 0 \n",
"1 0 \n",
"\n",
"[2 rows x 68 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## Activities:\n",
"PCAWG_wgs_act = pd.read_csv (\"./project_data/activities/WGS/WGS_PCAWG.activities.csv\")\n",
"PCAWG_wgs_act.head(2)"
]
},
{
"cell_type": "code",
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Mutation type</th>\n",
" <th>Trinucleotide</th>\n",
" <th>ALL::PD4020a</th>\n",
" <th>ALL::SJBALL011_D</th>\n",
" <th>ALL::SJBALL012_D</th>\n",
" <th>ALL::SJBALL020013_D1</th>\n",
" <th>ALL::SJBALL020422_D1</th>\n",
" <th>ALL::SJBALL020579_D1</th>\n",
" <th>ALL::SJBALL020589_D1</th>\n",
" <th>ALL::SJBALL020625_D1</th>\n",
" <th>...</th>\n",
" <th>Stomach-AdenoCa::pfg316T</th>\n",
" <th>Stomach-AdenoCa::pfg317T</th>\n",
" <th>Stomach-AdenoCa::pfg344T</th>\n",
" <th>Stomach-AdenoCa::pfg373T</th>\n",
" <th>Stomach-AdenoCa::pfg375T</th>\n",
" <th>Stomach-AdenoCa::pfg378T</th>\n",
" <th>Stomach-AdenoCa::pfg398T</th>\n",
" <th>Stomach-AdenoCa::pfg413T</th>\n",
" <th>Stomach-AdenoCa::pfg416T</th>\n",
" <th>Stomach-AdenoCa::pfg424T</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>C>A</td>\n",
" <td>ACA</td>\n",
" <td>35</td>\n",
" <td>9</td>\n",
" <td>2</td>\n",
" <td>7</td>\n",
" <td>5</td>\n",
" <td>7</td>\n",
" <td>3</td>\n",
" <td>5</td>\n",
" <td>...</td>\n",
" <td>133</td>\n",
" <td>185</td>\n",
" <td>202</td>\n",
" <td>185</td>\n",
" <td>96</td>\n",
" <td>134</td>\n",
" <td>12</td>\n",
" <td>279</td>\n",
" <td>75</td>\n",
" <td>135</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>C>A</td>\n",
" <td>ACC</td>\n",
" <td>16</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>10</td>\n",
" <td>5</td>\n",
" <td>9</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>...</td>\n",
" <td>48</td>\n",
" <td>70</td>\n",
" <td>126</td>\n",
" <td>88</td>\n",
" <td>35</td>\n",
" <td>54</td>\n",
" <td>16</td>\n",
" <td>112</td>\n",
" <td>31</td>\n",
" <td>91</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 1867 columns</p>\n",
"</div>"
],
"text/plain": [
" Mutation type Trinucleotide ALL::PD4020a ALL::SJBALL011_D \\\n",
"0 C>A ACA 35 9 \n",
"1 C>A ACC 16 2 \n",
"\n",
" ALL::SJBALL012_D ALL::SJBALL020013_D1 ALL::SJBALL020422_D1 \\\n",
"0 2 7 5 \n",
"1 4 10 5 \n",
"\n",
" ALL::SJBALL020579_D1 ALL::SJBALL020589_D1 ALL::SJBALL020625_D1 ... \\\n",
"0 7 3 5 ... \n",
"1 9 1 2 ... \n",
"\n",
" Stomach-AdenoCa::pfg316T Stomach-AdenoCa::pfg317T \\\n",
"0 133 185 \n",
"1 48 70 \n",
"\n",
" Stomach-AdenoCa::pfg344T Stomach-AdenoCa::pfg373T \\\n",
"0 202 185 \n",
"1 126 88 \n",
"\n",
" Stomach-AdenoCa::pfg375T Stomach-AdenoCa::pfg378T \\\n",
"0 96 134 \n",
"1 35 54 \n",
"\n",
" Stomach-AdenoCa::pfg398T Stomach-AdenoCa::pfg413T \\\n",
"0 12 279 \n",
"1 16 112 \n",
"\n",
" Stomach-AdenoCa::pfg416T Stomach-AdenoCa::pfg424T \n",
"0 75 135 \n",
"1 31 91 \n",
"\n",
"[2 rows x 1867 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nonPCAWG_wgs_mut = pd.read_csv (\"./project_data/catalogs/WGS/WGS_Other.96.csv\")\n",
"nonPCAWG_wgs_mut.head(2)"
]
},
{
"cell_type": "code",
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Cancer Types</th>\n",
" <th>Sample Names</th>\n",
" <th>Accuracy</th>\n",
" <th>SBS1</th>\n",
" <th>SBS2</th>\n",
" <th>SBS3</th>\n",
" <th>SBS4</th>\n",
" <th>SBS5</th>\n",
" <th>SBS6</th>\n",
" <th>SBS7a</th>\n",
" <th>...</th>\n",
" <th>SBS51</th>\n",
" <th>SBS52</th>\n",
" <th>SBS53</th>\n",
" <th>SBS54</th>\n",
" <th>SBS55</th>\n",
" <th>SBS56</th>\n",
" <th>SBS57</th>\n",
" <th>SBS58</th>\n",
" <th>SBS59</th>\n",
" <th>SBS60</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>ALL</td>\n",
" <td>PD4020a</td>\n",
" <td>0.995</td>\n",
" <td>208</td>\n",
" <td>3006</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>365</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>ALL</td>\n",
" <td>SJBALL011_D</td>\n",
" <td>0.905</td>\n",
" <td>66</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>144</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 68 columns</p>\n",
"</div>"
],
"text/plain": [
" Cancer Types Sample Names Accuracy SBS1 SBS2 SBS3 SBS4 SBS5 SBS6 \\\n",
"0 ALL PD4020a 0.995 208 3006 0 0 365 0 \n",
"1 ALL SJBALL011_D 0.905 66 0 0 0 144 0 \n",
"\n",
" SBS7a ... SBS51 SBS52 SBS53 SBS54 SBS55 SBS56 SBS57 SBS58 SBS59 \\\n",
"0 0 ... 0 0 0 0 0 0 0 0 0 \n",
"1 0 ... 0 0 0 0 0 0 0 0 0 \n",
"\n",
" SBS60 \n",
"0 0 \n",
"1 0 \n",
"\n",
"[2 rows x 68 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nonPCAWG_wgs_act = pd.read_csv (\"./project_data/activities/WGS/WGS_Other.activities.csv\")\n",
"nonPCAWG_wgs_act.head(2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mutational catalogs - WES data"
]
},
{
"cell_type": "code",
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Mutation type</th>\n",
" <th>Trinucleotide</th>\n",
" <th>AML::TCGA-AB-2802-03B-01W-0728-08</th>\n",
" <th>AML::TCGA-AB-2803-03B-01W-0728-08</th>\n",
" <th>AML::TCGA-AB-2804-03B-01W-0728-08</th>\n",
" <th>AML::TCGA-AB-2805-03B-01W-0728-08</th>\n",
" <th>AML::TCGA-AB-2806-03B-01W-0728-08</th>\n",
" <th>AML::TCGA-AB-2807-03B-01W-0728-08</th>\n",
" <th>AML::TCGA-AB-2808-03B-01W-0728-08</th>\n",
" <th>AML::TCGA-AB-2809-03D-01W-0755-09</th>\n",
" <th>...</th>\n",
" <th>Eye-Melanoma::TCGA-WC-A885-01A-11D-A39W-08</th>\n",
" <th>Eye-Melanoma::TCGA-WC-A888-01A-11D-A39W-08</th>\n",
" <th>Eye-Melanoma::TCGA-WC-A88A-01A-11D-A39W-08</th>\n",
" <th>Eye-Melanoma::TCGA-WC-AA9A-01A-11D-A39W-08</th>\n",
" <th>Eye-Melanoma::TCGA-WC-AA9E-01A-11D-A39W-08</th>\n",
" <th>Eye-Melanoma::TCGA-YZ-A980-01A-11D-A39W-08</th>\n",
" <th>Eye-Melanoma::TCGA-YZ-A982-01A-11D-A39W-08</th>\n",
" <th>Eye-Melanoma::TCGA-YZ-A983-01A-11D-A39W-08</th>\n",
" <th>Eye-Melanoma::TCGA-YZ-A984-01A-11D-A39W-08</th>\n",
" <th>Eye-Melanoma::TCGA-YZ-A985-01A-11D-A39W-08</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>C>A</td>\n",
" <td>ACA</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>4</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>C>A</td>\n",
" <td>ACC</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 9495 columns</p>\n",
"</div>"
],
"text/plain": [
" Mutation type Trinucleotide AML::TCGA-AB-2802-03B-01W-0728-08 \\\n",
"0 C>A ACA 0 \n",
"1 C>A ACC 0 \n",
"\n",
" AML::TCGA-AB-2803-03B-01W-0728-08 AML::TCGA-AB-2804-03B-01W-0728-08 \\\n",
"0 0 0 \n",
"1 2 0 \n",
"\n",
" AML::TCGA-AB-2805-03B-01W-0728-08 AML::TCGA-AB-2806-03B-01W-0728-08 \\\n",
"0 0 4 \n",
"1 0 0 \n",
"\n",
" AML::TCGA-AB-2807-03B-01W-0728-08 AML::TCGA-AB-2808-03B-01W-0728-08 \\\n",
"0 0 2 \n",
"1 1 3 \n",
"\n",
" AML::TCGA-AB-2809-03D-01W-0755-09 ... \\\n",
"0 0 ... \n",
"1 0 ... \n",
"\n",
" Eye-Melanoma::TCGA-WC-A885-01A-11D-A39W-08 \\\n",
"0 1 \n",
"1 0 \n",
"\n",
" Eye-Melanoma::TCGA-WC-A888-01A-11D-A39W-08 \\\n",
"0 0 \n",
"1 0 \n",
"\n",
" Eye-Melanoma::TCGA-WC-A88A-01A-11D-A39W-08 \\\n",
"0 0 \n",
"1 0 \n",
"\n",
" Eye-Melanoma::TCGA-WC-AA9A-01A-11D-A39W-08 \\\n",
"0 0 \n",
"1 0 \n",
"\n",
" Eye-Melanoma::TCGA-WC-AA9E-01A-11D-A39W-08 \\\n",
"0 0 \n",
"1 0 \n",
"\n",
" Eye-Melanoma::TCGA-YZ-A980-01A-11D-A39W-08 \\\n",
"0 0 \n",
"1 0 \n",
"\n",
" Eye-Melanoma::TCGA-YZ-A982-01A-11D-A39W-08 \\\n",
"0 0 \n",
"1 0 \n",
"\n",
" Eye-Melanoma::TCGA-YZ-A983-01A-11D-A39W-08 \\\n",
"0 0 \n",
"1 1 \n",
"\n",
" Eye-Melanoma::TCGA-YZ-A984-01A-11D-A39W-08 \\\n",
"0 0 \n",
"1 0 \n",
"\n",
" Eye-Melanoma::TCGA-YZ-A985-01A-11D-A39W-08 \n",
"0 0 \n",
"1 0 \n",
"\n",
"[2 rows x 9495 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## Performed by TCGA pipeline\n",
"TCGA_wes_mut = pd.read_csv (\"./project_data/catalogs/WES/WES_TCGA.96.csv\")\n",
"TCGA_wes_mut.head(2)"
]
},
{
"cell_type": "code",
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Cancer Types</th>\n",
" <th>Sample Names</th>\n",
" <th>Accuracy</th>\n",
" <th>SBS1</th>\n",
" <th>SBS2</th>\n",
" <th>SBS3</th>\n",
" <th>SBS4</th>\n",
" <th>SBS5</th>\n",
" <th>SBS6</th>\n",
" <th>SBS7a</th>\n",
" <th>...</th>\n",
" <th>SBS51</th>\n",
" <th>SBS52</th>\n",
" <th>SBS53</th>\n",
" <th>SBS54</th>\n",
" <th>SBS55</th>\n",
" <th>SBS56</th>\n",
" <th>SBS57</th>\n",
" <th>SBS58</th>\n",
" <th>SBS59</th>\n",
" <th>SBS60</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>AML</td>\n",
" <td>TCGA-AB-2802-03B-01W-0728-08</td>\n",
" <td>0.811</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>AML</td>\n",
" <td>TCGA-AB-2803-03B-01W-0728-08</td>\n",
" <td>0.608</td>\n",
" <td>4</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>7</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 68 columns</p>\n",
"</div>"
],
"text/plain": [
" Cancer Types Sample Names Accuracy SBS1 SBS2 SBS3 \\\n",
"0 AML TCGA-AB-2802-03B-01W-0728-08 0.811 3 0 0 \n",
"1 AML TCGA-AB-2803-03B-01W-0728-08 0.608 4 0 0 \n",
"\n",
" SBS4 SBS5 SBS6 SBS7a ... SBS51 SBS52 SBS53 SBS54 SBS55 SBS56 \\\n",
"0 0 0 0 0 ... 0 0 0 0 0 0 \n",
"1 0 7 0 0 ... 0 0 0 0 0 0 \n",
"\n",
" SBS57 SBS58 SBS59 SBS60 \n",
"0 0 0 0 0 \n",
"1 0 0 0 0 \n",
"\n",
"[2 rows x 68 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"##Activities\n",
"TCGA_wes_act = pd.read_csv(\"./project_data/activities/WES/WES_TCGA.activities.csv\")\n",
"TCGA_wes_act.head(2)"
]
},
{
"cell_type": "code",
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Mutation type</th>\n",
" <th>Trinucleotide</th>\n",
" <th>ALL::TARGET-10-PAIXPH-03A-01D</th>\n",
" <th>ALL::TARGET-10-PAKHZT-03A-01R</th>\n",
" <th>ALL::TARGET-10-PAKMVD-09A-01D</th>\n",
" <th>ALL::TARGET-10-PAKSWW-03A-01D</th>\n",
" <th>ALL::TARGET-10-PALETF-03A-01D</th>\n",
" <th>ALL::TARGET-10-PALLSD-09A-01D</th>\n",
" <th>ALL::TARGET-10-PAMDKS-03A-01D</th>\n",
" <th>ALL::TARGET-10-PAPJIB-04A-01D</th>\n",
" <th>...</th>\n",
" <th>Head-SCC::V-109</th>\n",
" <th>Head-SCC::V-112</th>\n",
" <th>Head-SCC::V-116</th>\n",
" <th>Head-SCC::V-119</th>\n",
" <th>Head-SCC::V-123</th>\n",
" <th>Head-SCC::V-124</th>\n",
" <th>Head-SCC::V-125</th>\n",
" <th>Head-SCC::V-14</th>\n",
" <th>Head-SCC::V-29</th>\n",
" <th>Head-SCC::V-98</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>C>A</td>\n",
" <td>ACA</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>C>A</td>\n",
" <td>ACC</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 9693 columns</p>\n",
"</div>"
],
"text/plain": [
" Mutation type Trinucleotide ALL::TARGET-10-PAIXPH-03A-01D \\\n",
"0 C>A ACA 0 \n",
"1 C>A ACC 0 \n",
"\n",
" ALL::TARGET-10-PAKHZT-03A-01R ALL::TARGET-10-PAKMVD-09A-01D \\\n",
"0 0 0 \n",
"1 0 0 \n",
"\n",
" ALL::TARGET-10-PAKSWW-03A-01D ALL::TARGET-10-PALETF-03A-01D \\\n",
"0 1 0 \n",
"1 1 0 \n",
"\n",
" ALL::TARGET-10-PALLSD-09A-01D ALL::TARGET-10-PAMDKS-03A-01D \\\n",
"0 0 0 \n",
"1 0 0 \n",
"\n",
" ALL::TARGET-10-PAPJIB-04A-01D ... Head-SCC::V-109 Head-SCC::V-112 \\\n",
"0 2 ... 0 0 \n",
"1 0 ... 1 0 \n",
"\n",
" Head-SCC::V-116 Head-SCC::V-119 Head-SCC::V-123 Head-SCC::V-124 \\\n",
"0 0 0 0 0 \n",
"1 0 0 0 0 \n",
"\n",
" Head-SCC::V-125 Head-SCC::V-14 Head-SCC::V-29 Head-SCC::V-98 \n",
"0 0 0 0 1 \n",
"1 0 1 0 0 \n",
"\n",
"[2 rows x 9693 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"other_wes_mut = pd.read_csv(\"./project_data/catalogs/WES/WES_Other.96.csv\")\n",
"other_wes_mut.head(2)"
]
},
{
"cell_type": "code",
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Cancer Types</th>\n",
" <th>Sample Names</th>\n",
" <th>Accuracy</th>\n",
" <th>SBS1</th>\n",
" <th>SBS2</th>\n",
" <th>SBS3</th>\n",
" <th>SBS4</th>\n",
" <th>SBS5</th>\n",
" <th>SBS6</th>\n",
" <th>SBS7a</th>\n",
" <th>...</th>\n",
" <th>SBS51</th>\n",
" <th>SBS52</th>\n",
" <th>SBS53</th>\n",
" <th>SBS54</th>\n",
" <th>SBS55</th>\n",
" <th>SBS56</th>\n",
" <th>SBS57</th>\n",
" <th>SBS58</th>\n",
" <th>SBS59</th>\n",
" <th>SBS60</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>ALL</td>\n",
" <td>TARGET-10-PAIXPH-03A-01D</td>\n",
" <td>0.529</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>ALL</td>\n",
" <td>TARGET-10-PAKHZT-03A-01R</td>\n",
" <td>0.696</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 68 columns</p>\n",
"</div>"
],
"text/plain": [
" Cancer Types Sample Names Accuracy SBS1 SBS2 SBS3 SBS4 \\\n",
"0 ALL TARGET-10-PAIXPH-03A-01D 0.529 0 0 0 0 \n",
"1 ALL TARGET-10-PAKHZT-03A-01R 0.696 0 0 0 0 \n",
"\n",
" SBS5 SBS6 SBS7a ... SBS51 SBS52 SBS53 SBS54 SBS55 SBS56 SBS57 \\\n",
"0 0 0 0 ... 0 0 0 1 0 0 0 \n",
"1 0 0 0 ... 0 0 0 1 0 0 0 \n",
"\n",
" SBS58 SBS59 SBS60 \n",
"0 0 0 0 \n",
"1 0 0 0 \n",
"\n",
"[2 rows x 68 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"other_wes_act = pd.read_csv(\"./project_data/activities/WES/WES_Other.activities.csv\")\n",
"other_wes_act.head(2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Imports and helpers"
]
},
{
"cell_type": "code",
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"import numpy as np\n",
"import pandas as pd\n",
"import sklearn\n",
"from sklearn.decomposition import PCA\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"#import torch \n",
"\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"\n",
"from sklearn.metrics import accuracy_score\n",
"from sklearn.metrics import roc_auc_score\n",
"from sklearn.metrics import roc_curve\n",
"from sklearn.metrics import classification_report\n",
"\n",
"from sklearn.model_selection import cross_val_score, train_test_split, KFold\n",
"from sklearn.model_selection import StratifiedShuffleSplit\n",
"from sklearn.model_selection import StratifiedKFold, GridSearchCV\n",
"from sklearn.model_selection import learning_curve\n",
"\n",
"from sklearn.preprocessing import LabelEncoder\n",
"\n",
"# These ones are work in progress\n",
"def plot_roc_auc(X_tst, y_test, model, is_multi_class=False):\n",
" probs = model.predict_proba(X_tst)\n",
" probs = probs[:, 1]\n",
" if is_multi_class:\n",
" auc = roc_auc_score(y_test, probs, multi_class='ovo')\n",
" else:\n",
" auc = roc_auc_score(y_test, probs, multi_class='ovo')\n",
" \n",
" fp_rate, tp_rate, thresholds = roc_curve(y_test, probs)\n",
" \n",
" plt.figure(figsize=(7,6))\n",
" plt.axis('scaled')\n",
" plt.xlim([0,1])\n",
" plt.ylim([0,1])\n",
" plt.title(\"AUC & ROC\")\n",
" plt.plot(fp_rate, tp_rate, 'g')\n",
" plt.fill_between(fp_rate, tp_rate, facecolor = \"green\", alpha = 0.7)\n",
" plt.text(0.95, 0.05, f'AUC = {auc}', ha='right', fontsize=12, weight='bold', color='blue')\n",
" plt.xlabel(\"False Positive Rate\")\n",
" plt.ylabel(\"True Positive Rate\")\n",
"\n",
"def plot_confusion_mat(y_test, y_pred, labs=None, size=None):\n",
" cm = sklearn.metrics.confusion_matrix(y_test, y_pred)\n",
" if size is None:\n",
" plt.figure(figsize=(12,10))\n",
" else:\n",
" plt.figure(figsize=size)\n",
" if labs is None:\n",
" sns.heatmap(cm, square=False, annot=True, fmt='d', cmap='viridis', cbar=True)\n",
" else:\n",
" sns.heatmap(cm, square=False, annot=True, fmt='d', cmap='viridis', xticklabels=labs, yticklabels=labs, cbar=True)\n",
" plt.xlabel('Predicted label')\n",
" plt.ylabel('True label')\n",
" #plt.ylim(0, 2)\n",
"\n",
"def plot_learning_curve(model, X, y):\n",
" N, train_lc, val_lc = learning_curve(model, X, y, cv=7, train_sizes=np.linspace(0.3, 1, 25))\n",
" plt.figure(figsize=(7,6))\n",
" plt.title(\"Learning curve\")\n",
" plt.plot(N, np.mean(train_lc, 1), color='blue', label='training score')\n",
" plt.plot(N, np.mean(val_lc, 1), color='red', label='validation score')\n",
" #plt.hlines(N, np.mean([train_lc[-1], val_lc[-1]]), N[0], N[-1], color='gray', label='mean', linestyle='dashed')\n",
"\n",
"def plot_trn_tst_dist(y_all, y_train, y_test, y_pred, in_cols=False):\n",
" #fig = None\n",
" #ax = None\n",
" if in_cols:\n",
" fig, ax = plt.subplots(2,2)\n",
" else:\n",
" fig, ax = plt.subplots(4,1)\n",
"\n",
" fig.set_size_inches(15,8)\n",
"\n",
" plt_sets = [y_all, y_train, y_test, y_pred]\n",
" plt_labels = [\"All\", \"Train\", \"Test\", \"Pred\"]\n",
" plt_set_df = pd.DataFrame()\n",
" for i in range(len(plt_sets)):\n",
" s = pd.Series(plt_sets[i]).value_counts().sort_index()\n",
" plt_set_df[plt_labels[i]] = s\n",
" \n",
" pd.DataFrame({plt_labels[i]: s}).plot(ax=ax.flat[i], kind=\"bar\")\n",
" #sns.countplot(x=s, \n",
" # palette=sns.hls_palette(2),\n",
" # ax=ax[i])\n",
" ax.flat[i].tick_params(axis=\"x\", rotation=90)\n",
"\n",
" fig.tight_layout()\n",
" with pd.option_context('display.max_rows', None,\n",
" 'display.max_columns', None,\n",
" 'display.precision', 2,\n",
" ):\n",
" print(plt_set_df)\n",
"\n",
"\n",
" \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Dataset preprocess, combine profile data to a single data frame\n",
"\n",
"From all profile sets, a combined data frame is made, which has samples in the rows and features in the columns."
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Profile data:\n",
"\n",
"---Data set diagnostics print---\n",
"\n",
"Missing entries in mutations: 0\n",
"The shape of the mutations data frame (20343, 97)\n",
"Checking normalization: sum of some rows:\n",
" cancer::TK74_LCIS2 1.0\n",
"RCC::TCGA 1.0\n",
"AdenoCA::TCGA 1.0\n",
"AdenoCA::TCGA 1.0\n",
"Melanoma::TCGA 1.0\n",
"dtype: float64\n",
"\n",
"\n",
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
"Tumor counts:\n",
" AdenoCA 7712\n",
"SCC 2188\n",
"cancer 1639\n",
"HCC 1318\n",
"Melanoma 1231\n",
"BNHL 822\n",
"RCC 775\n",
"GBM 605\n",
"Medullo 557\n",
"CA 462\n",
"cell 389\n",
"CMDI 357\n",
"LGG 326\n",
"CLL 302\n",
"Papillary 297\n",
"neoplasm 247\n",
"ALL 240\n",
"Ewings 231\n",
"AML 230\n",
"30 212\n",
"bone 203\n",
"Name: tumor_types, dtype: int64\n",
"\n",
"\n",
"Tumor types with smallish counts: 7\n",
"Papillary 297\n",
"neoplasm 247\n",
"ALL 240\n",
"Ewings 231\n",
"AML 230\n",
"30 212\n",
"bone 203\n",
"Name: tumor_types, dtype: int64\n",
"\n",
"\n",
"Unique tumor types: 21\n",
"['30', 'ALL', 'AML', 'AdenoCA', 'BNHL', 'CA', 'CLL', 'CMDI', 'Ewings', 'GBM', 'HCC', 'LGG', 'Medullo', 'Melanoma', 'Papillary', 'RCC', 'SCC', 'bone', 'cancer', 'cell', 'neoplasm']\n"
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
]
}
],
"source": [
"\n",
"def prepare_mut_df(raw_mutation_dfs, is_profile, small_sample_limit=None):\n",
"\n",
" mutations_all = pd.DataFrame()\n",
"\n",
" for df in raw_mutation_dfs:\n",
" # Make a copy of the original data frame and start processing from there\n",
" mutations = df.copy()\n",
" \n",
" if is_profile:\n",
" mutations['mut_tri'] = mutations.apply(lambda a: '{}_{}'.format(a['Mutation type'], a['Trinucleotide']), axis=1)\n",
" mutations = mutations.set_index('mut_tri').drop(['Mutation type', 'Trinucleotide'], axis=1)\n",
" mutations = mutations.T\n",
" else:\n",
" mutations['mut_tri'] = mutations.apply(lambda a: '{}::{}'.format(a['Cancer Types'], a['Sample Names']), axis=1)\n",
" mutations = mutations.set_index('mut_tri').drop(['Cancer Types', 'Sample Names', 'Accuracy'], axis=1)\n",
" \n",
" # Rename some index names\n",
" renamed_items = list(mutations.index)\n",
" index_items = list(mutations.index)\n",
"\n",
" # Combine rows for low count labels\n",
" for i in range(len(index_items)):\n",
" result = index_items[i]\n",
" parts = result.split('-')\n",
" if len(parts) > 1:\n",
" result = parts[1]\n",
" else:\n",
" result = parts[0]\n",
" \n",
" #result = result.split('-')[0]\n",
" #for to_sub in ['Adeno', 'Bone', 'Breast', 'Cervix', 'CNS', 'Eye', 'Liver', 'Lymph', 'Lung', 'Kidney', 'Myeloid', 'Panc' ]:\n",
" # result = re.sub( to_sub + r'(-\\w*)', to_sub, result)\n",
" \n",
" renamed_items[i] = result.replace('Ca', 'CA')\n",
" \n",
" mutations.rename(index=dict(zip(index_items, renamed_items)), inplace = True)\n",
" \n",
" # Normalize \n",
" row_sums = mutations.sum(axis=1)\n",
" mutations = mutations.divide(row_sums, axis = 0)\n",
"\n",
" mutations_all = pd.concat([mutations_all, mutations])\n",
"\n",
" mutations_all.sort_index(inplace=True)\n",
"\n",
" # Do we need to renormalize after obtaining the full dataframe?\n",
" \n",
" # Figure out tumor types based on the first part of the index\n",
" tumor_types = [a.split(':')[0] for a in mutations_all.index]\n",
" \n",
" #print(\"ttt\", tumor_types)\n",
" mutations_all[\"tumor_types\"] = tumor_types\n",
"\n",
" # Get rid of types with very few samples if the limit is specified\n",
" if small_sample_limit is not None:\n",
" mutations_all = cull_small_sample_counts(mutations_all, small_sample_limit)\n",
"\n",
" tumor_types = mutations_all[\"tumor_types\"] \n",
" # Prepare a list with all the types appearing only once\n",
" unique_tumor_types = sorted(list(set(tumor_types)))\n",
" # Attach this back to the frame\n",
" \n",
" return (mutations_all, unique_tumor_types)\n",
"\n",
"def cull_small_sample_counts(mutations, small_sample_limit):\n",
" \n",
" counts = mutations[\"tumor_types\"].value_counts()\n",
" big_counts = counts[list(counts > small_sample_limit)]\n",
" big_index = mutations[\"tumor_types\"].isin(list(big_counts.index))\n",
" mutations = mutations[big_index]\n",
"\n",
" return mutations\n",
"\n",
"def print_dset_diag(mut_df, unique_tumor_types, small_sample_limit):\n",
" # Check if the data frame is ok\n",
" print(\"\\n---Data set diagnostics print---\\n\")\n",
" print(\"Missing entries in mutations:\", mut_df.isnull().sum().sum())\n",
" print(\"The shape of the mutations data frame\", mut_df.shape)\n",
"\n",
" # Check to see if the rows are normalized to one, take a sample from the data frame\n",
" norm_df = mut_df.sample(n=5, random_state=5)\n",
" print(\"Checking normalization: sum of some rows:\\n\", norm_df.iloc[:,0:-1].sum(axis=1))\n",
" print(\"\\n\")\n",
"\n",
" # Check some counts of tumor types\n",
" tumor_counts = mut_df[\"tumor_types\"].value_counts() #.sort_values(ascending=True)\n",
" print(\"Tumor counts:\\n\", tumor_counts)\n",
" print(\"\\n\")\n",
"\n",
" small_counts = tumor_counts < 1.5*small_sample_limit\n",
" print(\"Tumor types with smallish counts:\", sum(small_counts))\n",
"\n",
" print(tumor_counts[small_counts])\n",
" print(\"\\n\")\n",
"\n",
" # Tumor types\n",
" print(\"Unique tumor types: \", len(unique_tumor_types))\n",
" print(unique_tumor_types)\n",
"\n",
"\n",
"\n",
"profile_raw_data_sets = [PCAWG_wgs_mut, TCGA_wes_mut, nonPCAWG_wgs_mut, other_wes_mut]\n",
"profile_mut_all, prf_unique_tumor_types = prepare_mut_df(profile_raw_data_sets, True, small_sample_limit)\n",
"\n",
"# Print some diagnostics from the prepared data set\n",
"print(\"Profile data:\")\n",
"print_dset_diag(profile_mut_all, prf_unique_tumor_types, small_sample_limit)\n",
"\n",
"# Data matrix X for fitting, omit the tumor labeling from there, use that information in constructing true y\n",
"# Note: this contains profile data only\n",
"#X_prf = profile_mut_all.drop(\"tumor_types\", axis=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Dataset preprocess for activites data"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Activities data:\n",
"\n",
"---Data set diagnostics print---\n",
"\n",
"Missing entries in mutations: 0\n",
"The shape of the mutations data frame (20343, 66)\n",
"Checking normalization: sum of some rows:\n",
" mut_tri\n",
"cancer::TK74_LCIS2 1.0\n",
"RCC::TCGA 1.0\n",
"AdenoCA::TCGA 1.0\n",
"AdenoCA::TCGA 1.0\n",
"Melanoma::TCGA 1.0\n",
"dtype: float64\n",
"\n",
"\n",
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
"Tumor counts:\n",
" AdenoCA 7712\n",
"SCC 2188\n",
"cancer 1639\n",
"HCC 1318\n",
"Melanoma 1231\n",
"BNHL 822\n",
"RCC 775\n",
"GBM 605\n",
"Medullo 557\n",
"CA 462\n",
"cell 389\n",
"CMDI 357\n",
"LGG 326\n",
"CLL 302\n",
"Papillary 297\n",
"neoplasm 247\n",
"ALL 240\n",
"Ewings 231\n",
"AML 230\n",
"30 212\n",
"bone 203\n",
"Name: tumor_types, dtype: int64\n",
"\n",
"\n",
"Tumor types with smallish counts: 7\n",
"Papillary 297\n",
"neoplasm 247\n",
"ALL 240\n",
"Ewings 231\n",
"AML 230\n",
"30 212\n",
"bone 203\n",
"Name: tumor_types, dtype: int64\n",
"\n",
"\n",
"Unique tumor types: 21\n",
"['30', 'ALL', 'AML', 'AdenoCA', 'BNHL', 'CA', 'CLL', 'CMDI', 'Ewings', 'GBM', 'HCC', 'LGG', 'Medullo', 'Melanoma', 'Papillary', 'RCC', 'SCC', 'bone', 'cancer', 'cell', 'neoplasm']\n"
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
]
}
],
"source": [
"act_raw_data_sets = [PCAWG_wgs_act, TCGA_wes_act, nonPCAWG_wgs_act, other_wes_act]\n",
"act_mut_all, act_unique_tumor_types = prepare_mut_df(act_raw_data_sets, is_profile=False, small_sample_limit=small_sample_limit)\n",
"\n",
"# Print some diagnostics from the prepared data set\n",
"print(\"Activities data:\")\n",
"print_dset_diag(act_mut_all, act_unique_tumor_types, small_sample_limit)\n",
"\n",
"# Data matrix X for fitting, omit the tumor labeling from there, use that information in constructing true y\n",
"# Note: this contains profile data only\n",
"X_act = act_mut_all.drop(\"tumor_types\", axis=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Check profile data content"
]
},
{
"cell_type": "code",
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Some content from the full profile set:\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>mut_tri</th>\n",
" <th>C>A_ACA</th>\n",
" <th>C>A_ACC</th>\n",
" <th>C>A_ACG</th>\n",
" <th>C>A_ACT</th>\n",
" <th>C>A_CCA</th>\n",
" <th>C>A_CCC</th>\n",
" <th>C>A_CCG</th>\n",
" <th>C>A_CCT</th>\n",
" <th>C>A_GCA</th>\n",
" <th>C>A_GCC</th>\n",
" <th>...</th>\n",
" <th>T>G_CTT</th>\n",
" <th>T>G_GTA</th>\n",
" <th>T>G_GTC</th>\n",
" <th>T>G_GTG</th>\n",
" <th>T>G_GTT</th>\n",
" <th>T>G_TTA</th>\n",
" <th>T>G_TTC</th>\n",
" <th>T>G_TTG</th>\n",
" <th>T>G_TTT</th>\n",
" <th>tumor_types</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.100000</td>\n",
" <td>0.100000</td>\n",
" <td>0.000000</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.040000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.02</td>\n",
" <td>0.08</td>\n",
" <td>0.020000</td>\n",
" <td>0.020000</td>\n",
" <td>0.040000</td>\n",
" <td>0.140000</td>\n",
" <td>0.000000</td>\n",
" <td>...</td>\n",
" <td>0.04</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.02</td>\n",
" <td>0.0</td>\n",
" <td>30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.153846</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.076923</td>\n",
" <td>0.000000</td>\n",
" <td>0.076923</td>\n",
" <td>0.076923</td>\n",
" <td>0.000000</td>\n",
" <td>...</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.000000</td>\n",
" <td>0.032258</td>\n",
" <td>0.032258</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.000000</td>\n",
" <td>0.032258</td>\n",
" <td>0.032258</td>\n",
" <td>0.032258</td>\n",
" <td>0.032258</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.100000</td>\n",
" <td>0.100000</td>\n",
" <td>0.000000</td>\n",
" <td>0.00</td>\n",
" <td>0.00</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>...</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>30</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 97 columns</p>\n",
"</div>"
],
"text/plain": [
"mut_tri C>A_ACA C>A_ACC C>A_ACG C>A_ACT C>A_CCA C>A_CCC C>A_CCG \\\n",
"30 0.000000 0.000000 0.000000 0.00 0.00 0.000000 0.000000 \n",
"30 0.040000 0.000000 0.000000 0.02 0.08 0.020000 0.020000 \n",
"30 0.153846 0.000000 0.000000 0.00 0.00 0.076923 0.000000 \n",
"30 0.000000 0.032258 0.032258 0.00 0.00 0.000000 0.032258 \n",
"30 0.100000 0.100000 0.000000 0.00 0.00 0.000000 0.000000 \n",
"\n",
"mut_tri C>A_CCT C>A_GCA C>A_GCC ... T>G_CTT T>G_GTA T>G_GTC \\\n",
"30 0.100000 0.100000 0.000000 ... 0.00 0.0 0.0 \n",
"30 0.040000 0.140000 0.000000 ... 0.04 0.0 0.0 \n",
"30 0.076923 0.076923 0.000000 ... 0.00 0.0 0.0 \n",
"30 0.032258 0.032258 0.032258 ... 0.00 0.0 0.0 \n",
"30 0.000000 0.000000 0.000000 ... 0.00 0.0 0.0 \n",
"\n",
"mut_tri T>G_GTG T>G_GTT T>G_TTA T>G_TTC T>G_TTG T>G_TTT tumor_types \n",
"30 0.1 0.0 0.0 0.0 0.00 0.0 30 \n",
"30 0.0 0.0 0.0 0.0 0.02 0.0 30 \n",
"30 0.0 0.0 0.0 0.0 0.00 0.0 30 \n",
"30 0.0 0.0 0.0 0.0 0.00 0.0 30 \n",
"30 0.0 0.0 0.0 0.0 0.00 0.0 30 \n",
"\n",
"[5 rows x 97 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(\"Some content from the full profile set:\")\n",
"profile_mut_all.head(5)"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABaYAAAFhCAYAAACLRX2NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABNnElEQVR4nO3de1iUdf7/8dcA4ikOgaiUlmWmWF/TctMs3VYry1BJt6VAW9vS/ZWla1qipZBmhYdKS7OTtpZbGyGo1K61spntmnZYyxZJRUzdEBU0UZHDML8/5mJG8kSA92ec+/m4rr2+MDfEe15fHGZec9+fj8PlcrkEAAAAAAAAAIBFAkwPAAAAAAAAAACwF4ppAAAAAAAAAIClKKYBAAAAAAAAAJaimAYAAAAAAAAAWIpiGgAAAAAAAABgKYppAAAAAAAAAIClalVM//Of/1RcXJwGDx6sgQMH6qOPPpIk5efnKz4+Xv3791d8fLx27Njh+Z66HgMAAAAAAAAA+DeHy+Vyne4LXC6Xrr32Wi1dulSXX365cnNzdffdd+urr77SiBEjNHToUA0ePFjLly9Xenq6lixZIkm655576nSstg4cOKKqqtOOflZFRp6noqLDxn6+ryAHL7JwIwcvsnAjBzdy8CILN3LwIgs3cvAiCzdycCMHL7JwIwcvsnAjBy+ycCMHN1/IISDAofPPb37SY0G1+w8EqKSkRJJUUlKili1b6sCBA8rJydHixYslSbGxsZo+fbqKi4vlcrnqdCwiIqLWd6qqymW0mK6eAeRwPLJwIwcvsnAjBzdy8CILN3LwIgs3cvAiCzdycCMHL7JwIwcvsnAjBy+ycCMHN1/O4YzFtMPh0AsvvKAHH3xQzZo105EjR/TKK6+ooKBArVq1UmBgoCQpMDBQLVu2VEFBgVwuV52O/ZJiOjLyvLrc3wYVFRViegSfQA5eZOFGDl5k4UYObuTgRRZu5OBFFm7k4EUWbuTgRg5eZOFGDl5k4UYOXmThRg5uvpzDGYvpyspKvfLKK1qwYIGuueYaffXVVxo3bpxmzpxpxXynVFR02GjjHxUVon37Soz9fF9BDl5k4UYOXmThRg5u5OBFFm7k4EUWbuTgRRZu5OBGDl5k4UYOXmThRg5eZOFGDm6+kENAgOOUJxifsZjevHmz9u7dq2uuuUaSdM0116hp06Zq3LixCgsL5XQ6FRgYKKfTqb179yo6Oloul6tOxwAAAAAAAAAA/i/gTF/QunVr7dmzR9u3b5ck5eXlaf/+/br44osVExOjrKwsSVJWVpZiYmIUERGhyMjIOh0DAAAAAAAAAPi/M54xHRUVpZSUFI0dO1YOh0OS9Mwzzyg8PFwpKSlKSkrSggULFBoaqtTUVM/31fUYAAAAAAAAAMC/nbGYlqRBgwZp0KBBJ9zevn17paWlnfR76noMAAAAAAAAAODfzriUBwAAAAAAAAAADYliGgAAAAAAAABgKYppAAAAAAAAAIClKKYBAAAAAAAAAJaq1eaHAOwjJLSpmjSu30NDVFRIvb7/WFmlSg6V1uu/AQAAAAAAAN9FMQ2ghiaNgzRw/HKjM6ycM1glRicAAAAAAADA2cRSHgAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALBU0Jm+YPfu3Ro9erTn85KSEh0+fFgbNmxQfn6+kpKSdPDgQYWHhys1NVXt2rWTpDofAwAAAAAAAAD4tzOeMd2mTRstX77c879+/fopNjZWkpScnKyEhAStWrVKCQkJmjp1quf76noMAAAAAAAAAODfftFSHuXl5Vq5cqWGDh2qoqIi5eTkeErq2NhY5eTkqLi4uM7HAAAAAAAAAAD+74xLeRwvOztbrVq10hVXXKHvvvtOrVq1UmBgoCQpMDBQLVu2VEFBgVwuV52ORURE1HqWyMjzfsnoZ0VUVIjpEXwCOXiRRcPxlyz95X7UFzm4kYMXWbiRgxdZuJGDF1m4kYMbOXiRhRs5eJGFGzl4kYUbObj5cg6/qJhOT0/X0KFDz9Ysv0hR0WFVVbmM/fyoqBDt21di7Of7CnLw8pcsfOUBy1+y9If7UV/k4EYOXmThRg5eZOFGDl5k4UYObuTgRRZu5OBFFm7k4EUWbuTg5gs5BAQ4TnmCca2X8igsLNQXX3yhgQMHSpKio6NVWFgop9MpSXI6ndq7d6+io6PrfAwAAAAAAAAA4P9qXUxnZGTo17/+tc4//3xJUmRkpGJiYpSVlSVJysrKUkxMjCIiIup8DAAAAAAAAADg/2q9lEdGRoYef/zxGrelpKQoKSlJCxYsUGhoqFJTU+t9DAAAAAAAAADg32pdTK9ateqE29q3b6+0tLSTfn1djwEAAAAAAAAA/Futl/IAAAAAAAAAAKAhUEwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUrUqpsvKypScnKxbbrlFAwcO1JQpUyRJ+fn5io+PV//+/RUfH68dO3Z4vqeuxwAAAAAAAAAA/q1WxfSsWbPUuHFjrVq1SitXrtTYsWMlScnJyUpISNCqVauUkJCgqVOner6nrscAAAAAAAAAAP7tjMX0kSNHlJmZqbFjx8rhcEiSWrRooaKiIuXk5Cg2NlaSFBsbq5ycHBUXF9f5GAAAAAAAAADA/wWd6Qt27dql8PBwvfTSS1q/fr2aN2+usWPHqkmTJmrVqpUCAwMlSYGBgWrZsqUKCgrkcrnqdCwiIqLWg0dGnleX+9ugoqJCTI/gE8jBiywajr9k6S/3o77IwY0cvMjCjRy8yMKNHLzIwo0c3MjBiyzcyMGLLNzIwYss3MjBzZdzOGMxXVlZqV27dqlz586aOHGivvnmG/2///f/NHfuXCvmO6WiosOqqnIZ+/lRUSHat6/E2M/3FeTg5S9Z+MoDlr9k6Q/3o77IwY0cvMjCjRy8yMKNHLzIwo0c3MjBiyzcyMGLLNzIwYss3MjBzRdyCAhwnPIE4zMW0xdccIGCgoI8S29cddVVOv/889WkSRMVFhbK6XQqMDBQTqdTe/fuVXR0tFwuV52OAQAAAAAAAAD83xnXmI6IiFCPHj30r3/9S5KUn5+voqIitWvXTjExMcrKypIkZWVlKSYmRhEREYqMjKzTMQAAAAAAAACA/zvjGdOS9OSTT2ry5MlKTU1VUFCQZs6cqdDQUKWkpCgpKUkLFixQaGioUlNTPd9T12MAAAAAAAAAAP9Wq2K6bdu2euutt064vX379kpLSzvp99T1GAAAAAAAAADAv51xKQ8AAAAAAAAAABoSxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALBUUG2+qG/fvgoODlbjxo0lSRMmTFDv3r2Vn5+vpKQkHTx4UOHh4UpNTVW7du0kqc7HAAAAAAAAAAD+rdZnTM+bN0/Lly/X8uXL1bt3b0lScnKyEhIStGrVKiUkJGjq1Kmer6/rMQAAAAAAAACAf6vzUh5FRUXKyclRbGysJCk2NlY5OTkqLi6u8zEAAAAAAAAAgP+r1VIeknv5DpfLpWuuuUaPPPKICgoK1KpVKwUGBkqSAgMD1bJlSxUUFMjlctXpWERERK0Hj4w875fcz7MiKirE9Ag+gRy8yKLh+EuW/nI/6osc3MjBiyzcyMGLLNzIwYss3MjBjRy8yMKNHLzIwo0cvMjCjRzcfDmHWhXTS5cuVXR0tMrLyzVjxgxNmzZNI0aMOMujnV5R0WFVVbmM/fyoqBDt21di7Of7CnLw8pcsfOUBy1+y9If7UV/k4EYOXmThRg5eZOFGDl5k4UYObuTgRRZu5OBFFm7k4EUWbuTg5gs5BAQ4TnmCca2W8oiOjpYkBQcHKyEhQV9//bWio6NVWFgop9MpSXI6ndq7d6+io6PrfAwAAAAAAAAA4P/OWEwfPXpUJSXuZt3lcunDDz9UTEyMIiMjFRMTo6ysLElSVlaWYmJiFBERUedjAAAAAAAAAAD/d8alPIqKivTwww/L6XSqqqpK7du3V3JysiQpJSVFSUlJWrBggUJDQ5Wamur5vroeAwAAAAAAAAD4tzMW023btlVmZuZJj7Vv315paWkNegwAAAAAAAAA4N9qtcY0AAAAAAAAAAANhWIaAAAAAAAAAGApimkAAAAAAAAAgKUopgEAAAAAAAAAlqKYBgAAAAAAAABYimIaAAAAAAAAAGApimkAAAAAAAAAgKUopgEAAAAAAAAAlqKYBgAAAAAAAABYimIaAAAAAAAAAGApimkAAAAAAAAAgKUopgEAAAAAAAAAlqKYBgAAAAAAAABYimIaAAAAAAAAAGApimkAAAAAAAAAgKUopgEAAAAAAAAAlqKYBgAAAAAAAABYimIaAAAAAAAAAGApimkAAAAAAAAAgKUopgEAAAAAAAAAlqKYBgAAAAAAAABYimIaAAAAAAAAAGApimkAAAAAAAAAgKUopgEAAAAAAAAAlvpFxfRLL72kjh07asuWLZKk/Px8xcfHq3///oqPj9eOHTs8X1vXYwAAAAAAAAAA/1brYvq///2vNm7cqAsuuMBzW3JyshISErRq1SolJCRo6tSp9T4GAAAAAAAAAPBvtSqmy8vLNW3aNCUnJ8vhcEiSioqKlJOTo9jYWElSbGyscnJyVFxcXOdjAAAAAAAAAAD/F1SbL5o7d64GDRqktm3bem4rKChQq1atFBgYKEkKDAxUy5YtVVBQIJfLVadjERERDX3/AAAAAAAAAAA+5ozF9H/+8x9t2rRJEyZMsGKeWouMPM/0CIqKCjE9gk8gBy+yaDj+kqW/3I/6Igc3cvAiCzdy8CILN3LwIgs3cnAjBy+ycCMHL7JwIwcvsnAjBzdfzuGMxfQXX3yh7du3q1+/fpKkPXv26L777tOkSZNUWFgop9OpwMBAOZ1O7d27V9HR0XK5XHU69ksUFR1WVZWrbve6AURFhWjfvhJjP99XkIOXv2ThKw9Y/pKlP9yP+iIHN3LwIgs3cvAiCzdy8CILN3JwIwcvsnAjBy+ycCMHL7JwIwc3X8ghIMBxyhOMz7jG9KhRo/TZZ58pOztb2dnZat26td544w0NGDBAMTExysrKkiRlZWUpJiZGERERioyMrNMxAAAAAAAAAID/q9Ua06eSkpKipKQkLViwQKGhoUpNTa33MQAAAAAAAACAf/vFxXR2drbn4/bt2ystLe2kX1fXYwAAAAAAAAAA/3bGpTwAAAAAAAAAAGhIFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSQbX5ogcffFC7d+9WQECAmjVrpilTpigmJkb5+flKSkrSwYMHFR4ertTUVLVr106S6nwMAAAAAAAAAODfanXGdGpqqlasWKHMzEz94Q9/0OTJkyVJycnJSkhI0KpVq5SQkKCpU6d6vqeuxwAAAAAAAAAA/q1WxXRISIjn48OHD8vhcKioqEg5OTmKjY2VJMXGxionJ0fFxcV1PgYAAAAAAAAA8H+1WspDkh5//HH961//ksvl0uuvv66CggK1atVKgYGBkqTAwEC1bNlSBQUFcrlcdToWERFR68EjI8/7JffzrIiKCjnzF9kAOXiRRcPxlyz95X7UFzm4kYMXWbiRgxdZuJGDF1m4kYMbOXiRhRs5eJGFGzl4kYUbObj5cg61LqZnzJghScrMzNTMmTM1duzYszZUbRQVHVZVlcvYz4+KCtG+fSXGfr6vIAcvf8nCVx6w/CVLf7gf9UUObuTgRRZu5OBFFm7k4EUWbuTgRg5eZOFGDl5k4UYOXmThRg5uvpBDQIDjlCcY12opj+PFxcVp/fr1at26tQoLC+V0OiVJTqdTe/fuVXR0tKKjo+t0DAAAAAAAAADg/85YTB85ckQFBQWez7OzsxUWFqbIyEjFxMQoKytLkpSVlaWYmBhFRETU+RgAAAAAAAAAwP+dcSmP0tJSjR07VqWlpQoICFBYWJgWLlwoh8OhlJQUJSUlacGCBQoNDVVqaqrn++p6DAAAAAAAAADg385YTLdo0ULvvffeSY+1b99eaWlpDXoMAAAAAAAAAODffvEa0wAAAAAAAAAA1AfFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsFSQ6QEAAAAAAADsJiS0qZo0rn8tExUVUufvPVZWqZJDpfWeAQDqgmIaAAAAAADAYk0aB2ng+OVGZ1g5Z7BKjE4AwM5YygMAAAAAAAAAYCmKaQAAAAAAAACApc5YTB84cEAjR45U//79NXDgQD300EMqLi6WJOXn5ys+Pl79+/dXfHy8duzY4fm+uh4DAAAAAAAAAPi3MxbTDodD999/v1atWqWVK1eqbdu2mj17tiQpOTlZCQkJWrVqlRISEjR16lTP99X1GAAAAAAAAADAv52xmA4PD1ePHj08n3ft2lU//vijioqKlJOTo9jYWElSbGyscnJyVFxcXOdjAAAAAAAAAAD/F/RLvriqqkrvvPOO+vbtq4KCArVq1UqBgYGSpMDAQLVs2VIFBQVyuVx1OhYREVHrWSIjz/slo58VUVEhpkfwCeTgRRYNx1+y9Jf7UV/k4EYOXmThRg5eZOFGDl5k4UYObuTgRRZu5NBw/CVLf7kfDYEs3MjBzZdz+EXF9PTp09WsWTMNGzZMOTk5Z2umWikqOqyqKpexnx8VFaJ9+0qM/XxfQQ5e/pKFrzxg+UuW/nA/6osc3MjBiyzcyMGLLNzIwYss3MjBjRy8yMLNX3LgtVfD8ZffiYZAFm7k4OYLOQQEOE55gnGti+nU1FT98MMPWrhwoQICAhQdHa3CwkI5nU4FBgbK6XRq7969io6OlsvlqtMxAAAAAAAAAID/O+Ma05L0/PPP67vvvtP8+fMVHBwsSYqMjFRMTIyysrIkSVlZWYqJiVFERESdjwEAAAAAAAAA/N8Zz5jeunWrFi5cqHbt2umuu+6SJLVp00bz589XSkqKkpKStGDBAoWGhio1NdXzfXU9BgAAAAAAAADwb2cspjt06KDvv//+pMfat2+vtLS0Bj0GAAAAAAAAAPBvtVrKAwAAAAAAAACAhkIxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwVJDpAQAAAAAAAAC7CwltqiaN61/VRUWF1Pl7j5VVquRQab1nAGqDYhoAAAAAAAAwrEnjIA0cv9zoDCvnDFaJ0QlgJyzlAQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwVJDpAQAAAAB/EBLaVE0a1+/pdVRUSL2+/1hZpUoOldbrvwEAAABYgWIaAAAAaABNGgdp4PjlRmdYOWewSoxOAAAAANQOxTQAAAAA4KzhagIAAHAyFNMAAAAAgLOGqwkAAMDJsPkhAAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALHXGYjo1NVV9+/ZVx44dtWXLFs/t+fn5io+PV//+/RUfH68dO3bU+xgAAAAAAAAAwP+dsZju16+fli5dqgsvvLDG7cnJyUpISNCqVauUkJCgqVOn1vsYAAAAAAAAAMD/nbGY7t69u6Kjo2vcVlRUpJycHMXGxkqSYmNjlZOTo+Li4jofAwAAAAAAAADYQ1BdvqmgoECtWrVSYGCgJCkwMFAtW7ZUQUGBXC5XnY5FRET8ohkiI8+ry+gNKioqxPQIPoEcvMii4fhLlv5yP+qLHNzIwYss3MjBiywajr9k6S/3o77IoeH4S5b+cj/qixwajr9k6S/3wxf4S5b+cj/qy5dzqFMx7QuKig6rqspl7OdHRYVo374SYz/fV5CDl79k4SsPWP6SpT/cj/oiBzdy8CILN3Lw8pcs+BvacPzld6K+/CUH/m00HH/5nagvf8mBfxsNh9+JhuUvWfrD/agvX8ghIMBxyhOM61RMR0dHq7CwUE6nU4GBgXI6ndq7d6+io6PlcrnqdAwAAAAAAAAAYA9nXGP6ZCIjIxUTE6OsrCxJUlZWlmJiYhQREVHnYwAAAAAAAAAAezjjGdNPPfWUPvroI+3fv1/33nuvwsPD9cEHHyglJUVJSUlasGCBQkNDlZqa6vmeuh4DAAAAAAAAAPi/MxbTTzzxhJ544okTbm/fvr3S0tJO+j11PQYAAAAAAAAA8H/n7OaHAHA2hYQ2VZPG9X+IrM/mFcfKKlVyqLTeMwAAAAAAAPgaimkAOIkmjYM0cPxyozOsnDNY7CEMAAAAAAD8EcU0AAAAAACwTENcnVifKxMlrk4EAF9AMQ0AAAAAACzD1YkAAEkKMD0AAAAAAAAAAMBeKKYBAAAAAAAAAJaimAYAAAAAAAAAWIo1pgEAAFBnDbGBlVS/TazYwAoAAAA491BMAwAAoM7YwAoAAABAXVBMAwAAAEAD84WrCSSuKAAAAL6LYhoAAAAAGpgvXE0gcUUBAADwXWx+CAAAAAAAAACwFGdMAwBOicuQAQAAAADA2UAxDQA4JS5DBgAAAAAAZwNLeQAAAAAAAAAALMUZ0wAAAAAAAAB8AktK2gfFNAAAqDWeJAIAAAA4m1hS0j4opgEAQK3xJBHAmfjCG1i8eQUAAOD7KKYBAKiFhihaOEsYgB34whtYvHkFX+QLb9pIPJ8AAPgOimkAAGqBogUAANSHLzyXkHg+AQDwHRTTNscZgG6+cPaCL+QAAKg9/oYCAAAAOJv8/TWHLYtpXyghJd94MekL79r7wjv25AAA+KX42wEAANAw/L18A+rK319z2LKY9oX/p0q8mAQAAAAAAPCFnoaOBrBegOkBAAAAAAAAAAD2QjENAAAAAAAAALCUsWI6Pz9f8fHx6t+/v+Lj47Vjxw5TowAAAAAAAAAALGSsmE5OTlZCQoJWrVqlhIQETZ061dQoAAAAAAAAAAALGdn8sKioSDk5OVq8eLEkKTY2VtOnT1dxcbEiIiJq9d8ICHDUa4aW5zet1/c3lPrej4bgC1mQg5sv5CCRRTVycPOFHCSyqEYOXmThRg5uvpCDRBbVyMHNF3KQyKIaOXiRhRs5uPlCDhJZVCMHN1/IQSKLavXJ4XTf63C5XK46/5fr6LvvvtPEiRP1wQcfeG4bMGCAZs2apSuuuMLqcQAAAAAAAAAAFmLzQwAAAAAAAACApYwU09HR0SosLJTT6ZQkOZ1O7d27V9HR0SbGAQAAAAAAAABYyEgxHRkZqZiYGGVlZUmSsrKyFBMTU+v1pQEAAAAAAAAA5y4ja0xLUl5enpKSknTo0CGFhoYqNTVVl156qYlRAAAAAAAAAAAWMlZMAwAAAAAAAADsic0PAQAAAAAAAACWopgGAAAAAAAAAFiKYhoAAAAAAAAAYCmKaQAAAAAAAACApSimAQAAAAAAAACWopgGGlBJSYnpEQAAAAAAAACfRzH9Cxw4cECbN2/W5s2bdeDAAdPj+IxJkyaZHsFnDBw40PQIRpWXl2vFihUaMWKE6VF8ypYtW0yPYFRhYaFefvll3XLLLaZH8Ql/+MMfTI8AAACAc9Dq1au1fPnyE25PS0tTdna2gYlgmtPp1F//+lfTYxi3bdu20/7PrsrLy1VaWur5ny8KMj3AuWDnzp2aMmWKcnJy1LJlS0nS3r171blzZz355JNq166d2QENW7dunekRfIbL5TI9ghGbNm3S+++/r7///e/6v//7P8XFxZkeyaeMGjVKn3zyiekxLFVRUaHVq1fr/fff14YNG3THHXfo6aefNj2WT9i+fbvpESw1dOhQORyOUx5///33LZzGtxQVFWnXrl3q2rWr6VEss3Tp0tMeT0xMtGgS85xOp8rLy9W0adMat5eWlio4OFiBgYGGJrOey+VSeXm5GjduLEnauHGjKioqJEmdO3dW8+bNTY5nxNq1a/Xvf/9bDodDvXr10g033GB6JBg0depUDRs2TJdffrnpUWDYa6+9ppdeeumE23/9619rzJgx6tu3r4GpzNmxY4cmTZqkwsJCZWdn67///a+ys7P18MMPmx7NMoGBgVq+fLni4+NNj2LUqFGjTnnM4XBo9erVFk5j3qpVq/T0009r7969ktzPtRwOhzZv3mx4shNRTNfCY489poSEBC1evFgBAe6TzKuqqrRy5UpNnDjR9u9O2bWMPZnTlS/+5sCBA1q+fLnS09NVUVGhuLg4NW3aVK+//rrp0XyOnf6N5ObmKj09XVlZWercubPi4uKUl5enJ5980vRoMGTixImmR/ApCQkJeuWVV+RyuRQXF6fQ0FD16dPHNjlNnz5dV155pTp06GB6FONmz56tSy+9VHfeeWeN29PS0rRnzx499thjhiaz3gsvvKDS0lJNnjxZkvSnP/1JkZGRKi8v1y233GKrgkFyF0/Lly/X7bffLklKTU3V999/r/vuu8/wZGZ89tln2rx5s8rKyjy3PfTQQwYnst4ll1yihx9+WC1atFBiYqJuueUWBQXZ56V8WlqaXC6Xfve739W4fcmSJWrevLmGDh1qaDLrHTlyRC1atDjh9pYtW+ro0aMGJjIrJSVFDzzwgObMmSNJiomJ0WOPPWa7vxu9evXS3//+d916662mRzGGKwZqmjlzpl588UVdeeWVnh7TV9nnr1k9HDx4UIMGDapxW0BAgAYPHqyXX37Z0FS+w05lrKTTXgZSWVlp4SRm9e7dW927d9eTTz6pq6++WpL7SSNOZKd/I3Fxcbruuuu0bNkyRUdHS3IXDrCva6+91vQIPuXo0aMKCQnR8uXLNXDgQE2YMEGDBw+2TTE9Y8YMZWZmatu2bYqLi1NsbKzCwsJMj2XEp59+qgkTJpxwe2JiogYPHmyrYnrNmjU1zqYPDw9Xenq6nE6nhg0bZruCYcWKFXr33Xd13nnnSZKGDx+uu+++25bF9OzZs7Vp0yZt27ZN/fr10+rVq3XdddeZHsty9957r+699159+umn+stf/qJnn31Wv/3tbxUfH69WrVqZHu+se+edd7RkyZITbo+Li9OIESNsVUwfO3bslMd89TL9s6mkpER9+vTRc889J8nd0zRq1MjwVNZ7++23dfDgQTVp0kRNmzb1nB1rp6vbz/T7//Mr1PxdVFSUunTpYnqMWqGYroXw8HBlZWXp9ttv9xRMLpdLK1euVGhoqOHprHGqS7FdLpeKiooMTGTO6S4Rqb4E1Q7uuecerVy5Us8995yGDh2q/v37mx7JqDVr1pzy2PFn+Pi7KVOmaNmyZUpMTNSQIUM0ePBg0yMZ0bNnz1M+Ztpxk9SPP/5Yr776queNvQ4dOmjUqFG66aabDE9mvfLycknS+vXrNWDAAAUEBNhqyYahQ4dq6NCh2r17tzIyMnT33Xfr8ssv1wMPPKCOHTuaHs9Sp/r/fWBgoK3e0JTcWRy/XMeAAQMkubOoXtLDbqpL6Z9/bDdr1qxRRkaGhgwZomnTpmn06NG2vgqra9euysvLU25urjZu3Kj3339ff/jDH/x+f5eKioqT/jsIDQ211YlBktSxY0etXLnyhL2NPvjgA1tejVT9d6L672ZhYaHPnx16NqSnp5sewbhu3brJ4XCc9GplX13C4mwaPny4XnjhBd188801eqrLLrvM4FQnRzFdC88++6ySk5M1bdo0tWrVSi6XS4WFhYqJidGzzz5rejxL2OVMrtrgEhG3xx57TOPHj9eaNWuUnp6up59+Wk6nU59//rl69uxpejzLnW4JE1988D9bEhMTlZiYqO+//17p6emKj4/XkSNHlJ6erv79+9vmxTVPDr3WrFmjJ598Ug899JCuuuoquVwuffvtt0pJSVGjRo3061//2vSIlrr22mvVv39/uVwupaSk6NChQ7Z8AdWmTRuNGDFCLVq00Lx583T99dfbrpiu3ozm52fwHDlyxPMGhl0cOnSoxufHnwRgxw3Hr7zySk2aNEl33nmnHA6H0tLSdOWVV5oey4jg4GAFBQXJ4XCooqJCrVq10p49e0yPZbnvvvtOS5cu1b/+9S/Fxsbq7bffVps2bXT48GHFxsb6fTF9ujMhjxw5YuEk5o0fP17Dhw/XJ598oquuukqS9M0332j9+vV66623DE9nvYSEBD300EM6cOCAXnzxRWVmZmrcuHGmx7LchRdeqMOHD+uHH37QFVdcYXocI3Jzc02P4FMKCwv15ptvKjMz0/Naw1fX2na47LT4aT0VFxeroKBAkhQdHa2IiAjDE/mGefPmacyYMabHgGHFxcXKyMhQRkaGDh06pE8//dT0SDDg55t5VW+C+M477+jbb7/Vf/7zH8MTmjdp0iQ988wzpsewzH333ac//vGPJyzp8eWXX2rBggVatGiRocnMcLlcys3NVdu2bXXeeeepuLhYe/bsUefOnU2PZgmXy6W1a9dq2bJl2rJli2677TbFxcWpbdu2pkez3Ny5c5WXl6enn37a86ZdSUmJpk6dqosuushWL6yrN+z6+ebJK1as0Mcff6wXX3zRzGCGHD16VPPnz/dcgt2rVy89+OCDatasmeHJrHfPPffolVdeUWpqqkpKShQVFaWvvvrKdsvHDRw4UMOGDdPgwYPVpEmTGsfeffdd3XXXXYYms8bEiRN12WWXaeTIkTVuX7RokTZv3qxZs2YZmsyMffv2aenSpcrJyZHL5dIVV1yhhIQEtWzZ0vRoRnz55Zf65z//KZfLpb59+6p79+6mR7LcmjVrNHXqVAUGBio7O1ubNm3S/PnztXDhQtOjGZGfn6+8vDzddNNNOnLkiCoqKhQeHm56LEv95je/0V//+tdz4nGBYroWcnNzNXnyZAUEBCg1NVWpqalav369wsPDtXDhQsXExJge0agbb7xRn3zyiekxLHP8unbVazcd/7Gd1nE6lW+//facWc8IDSs1NfWkm3ktWbJE33//vWbMmGFoMt9ht8fM/v37a9WqVb/4mL862T4FISEhtlgjVHLvTxAVFaUhQ4aoR48eJyxZYacrTCorK5WUlKTVq1erXbt2kqQdO3aob9++Sk1NtdXGZjt27NCwYcPUo0cPzxmA3377rT7//HO9/fbbnnxgP/v371doaKicTqcWL16skpISDR8+XBdccIHp0SzjdDr10ksvaezYsaZHMWb//v0aNmyYwsPDazxGFBcX6+2331ZUVJThCa3z85NAqpWWlio4ONhWy4PBa+jQoVq4cKFGjhypzMxMSe5lsT788EOzgxmwbNkyvfrqq54TpLZv365p06bpzTffND2apRITE2vs3+HL7POMtx6eeuopjR49WiUlJbr//vs1btw4vfrqq8rOzlZqaqrtfsF/zm7vbTRr1kzh4eEaMmSI+vTpY8tLsCXp1VdfVfPmzZWYmFjj9tdee02SbFdMd+rU6ZRrCttpTatTbeY1bNiwEzaRtSs7PmbW5Zi/GjVqlAoKChQSEiLJfYZsZGSkgoOD9dxzz6lr165mBzzLGjVqpIMHD2rRokVavHhxjX8Pvnp54dkSFBSk2bNn64cffqhx1tvFF19sejTLtWvXTsuWLdNf/vIXffbZZ5KkmJgYLVu27Jw406ehnOkF5M+fc9lBixYtPB8/+OCDBicxJzAwUF999ZXpMYxq0aKFMjMztXLlSs/j5ZAhQxQbG2u7Dc1mz5590pNA0tLStGfPHlttnCtJ27dv18svv6xdu3bVWG/8/fffNziVGT9/gyY4ONjQJGYtWbJE6enpnr+Zl156qfbv3294Kut16dJFjzzyiG699dYaa0z74jKKFNO1cOTIEfXr10+S+7LL6nKlb9++mjdvnsnRfILdNuhZvXq11q9fr4yMDC1ZskT9+vXTkCFDbHWWlyStXLnypOvo3nPPPbrzzjtPuNTO33399deS3KXj3XffrXfffdfwRGacajOvgIAA2z1WnIrdcigpKTnl5qCHDx+2eBrz+vXrpx49eng2fvzHP/6hb7/9Vtdff71mzJjh95ens0+D19atW7Vv3z716tWrRhm9du1aRUdH2+55RcuWLfWnP/3J9BhGfffdd6ZH8Dnbt2/XwoULtXPnTluXTr/+9a/1xhtvKC4ursabunYpZQ8fPqyDBw+eUMbu2rVL559/vm32MJFOfRJIYmKiBg8ebLtiurp4GzJkiK3PFm/evLn279/veZ2xfv16z0kQdtOoUaMaGypLsuXvRvVziuPXnnc4HBTT56rjz+a5/vrraxyrqqqyehwjxowZc8qzQX/66ScDE5nVo0cP9ejRQ0ePHtUHH3yg4cOH6+GHH1ZCQoLp0Sx1sndhj383zk6Of5EQGBhoyzNBJTbzqjZ06NBTPmYWFRUZmMic6OjoU24O2rp1a4unMW/Dhg16/PHHPZ/fdNNNeu211/TII4/o2LFjBiczo6ysTFu3blWbNm1st/bfnDlzTlrEhoWFafbs2bZaF3Ljxo3asmWLfve730lyP+88ePCgJOmhhx46YY16f2Wn/Qdqa+zYsRo8eLDuuOMOWxYL1arXUJ41a5YcDoftrsibOXOm+vTpozZt2tS4fePGjfriiy80bdo0Q5NZ71QngQQGBtru5AfJ3cf8v//3/0yPYdyECRM0cuRI7d69W8OHD9eOHTv08ssvmx7LiPDwcOXn53v+PSxfvtyWrznOpc1QKaZroXqH0/POO09PPfWU5/Y9e/bY5l3q3/zmN6c81qlTJwsn8R15eXnKyMjQxx9/rD59+qhHjx6mR7JUWVmZKisrT1gDs6Ki4rQ7Z9uB3ZZqON6AAQM0ceLEk27mdeuttxqezjrjx49XeXn5CW9QHD161HaX1Z1LT4qsUFVVpa+//lpXX321JOk///mP5zHTDktDff7555o2bZrCwsL06KOPaty4caqsrNTRo0f17LPPqn///qZHtMzu3btP+hyqS5cu+t///mdgInPmz5+v++67z/P5tm3b9Nhjj+no0aNatGiRbYrpU11dUs0Xz3I624KCgnT//febHsO43Nxc0yMY9eWXX560fB44cKCt3sSTOAnk57p27arc3FzbdhLVunTpoiVLlniu4u3WrZtCQ0MNT2XG5MmTNX78eOXn56tv375q0qSJ7R4nJOmLL75Q586d1bx5c6WlpWnTpk0aOXKkT244TjFdC/Pnzz/p7aGhoVqwYIHF05hxxx131Ph87969yszMVHp6ulwul63WfPvLX/6i5cuXKzg4WHfccYcyMzNt8wbF8fr06aNnn31WkyZN8rxrX1VVpVmzZql3796GpzPLjmcrVBs9erSSkpLUu3fvEzbzevjhh80OZ6G1a9eechPIPXv2qFevXoYms96Z3qiy2+NncnKyxo0bpyZNmsjhcKi0tFRz5szRkSNHNGLECNPjnXUzZ87UxIkTVVJSoj/+8Y+aP3++rr32Wn3//fd67LHHbFVMV1RU1OmYPyoqKlLPnj09nwcHB+vGG2+UdOZ1l/3Jqa4ukXz38tuzrXfv3vr000/Vp08f06PAoNO9cWu3592cBFLTt99+q2XLlumSSy6pceWu3Zb72bJli9q0aeP5O3H06FFt3bpVHTp0MDyZ9QoKCvT666/rwIEDcrlcioiI0Pfff6+LLrrI9GiWmjZtmlasWKGtW7dq8eLFGjRokB5//HEtWbLE9GgnoJiuh2bNmtnqcv3KykplZ2crPT1dGzduVGVlpd544w2/36jp56ZNm6bOnTurVatWWrNmzQlnt8ydO9fQZNYaN26c/vjHP+rmm29W586dJUk5OTlq3bq1ZwNEO+nZs6fnifGhQ4d03XXXSfJufrhu3TqT41mGzbzcWP/Pq1u3bp5/Gz+/msBOlyFX6969uz7++GPl5+fL5XLp0ksv9ZxF//M3gf1RVVWV50XTvHnzPGfCduzY0eRYRkRERCgnJ8fzN7RaTk6O7ZY1+fkyNsdfaXHgwAGrxzGGK0xOdN111+nBBx9UQECAgoODbfe8qlpubq6Sk5OVm5tb46xYO/0NLS4uVkRExAm32e1KRU4CqWny5MmmR/AJSUlJ+utf/+r5PCgoSBMnTtSyZcsMTmXGzJkzlZGR4Xm8qKqq8txmJ0FBQXI4HPr000919913a/jw4fr73/9ueqyTophGrTzzzDP64IMPdPnll+uOO+7Q3LlzNWDAANuV0tLp1/8rKCiwcBKzmjdvrrffflv//ve/PQVkYmKip5C1m5NtBGlnF198se3K6OOx/p/Xr371Kx07dkxxcXGKjY1VWFiY6ZGMczqdCg4OltPp1M6dOyXJNhvdHf/7//ONaeywlMnxHnzwQT3wwAN66KGH9H//93+SpE2bNmnBggV68sknDU9nrcDAQO3bt09RUVGS5Nmwae/evbb7vZBOvaSHHc+Ynjp1qp555hldccUVtvxdqJaSkqI//elPeuaZZ/T6669r6dKlJzyG+rM777xTY8aM0YwZMzzPL3/44QdNmTLlhKvT/N3JTgL53//+p969e5+wxKIdVL/BffToUUmy1YmDx3M6nWrUqJHn8+rnmXZU/QZmtYCAAFtmUVlZqa+++kqrVq3SjBkzJMlnc7DfIxfq5J133lG3bt00atQoz6WWditXqrGsSU29evXStdde69lg4GTrTtvBhRdeaHoE+BDW//N66623tHv3bmVkZOiuu+7S5ZdfriFDhqh37962LBmWLl2q2bNnKzw83PN31OFwaPXq1YYns8bu3bs1duzYEz6ufmFtJ71799aMGTO0YMECzZgxQw6HQ507d9a0adNstyTW7373O40bN65G6bRz5049/vjjtiudpJpLepSXl2vz5s3q3LmzLYvpsLAwWy5P8HPl5eW67rrr5HK51LJlS40bN07Dhw/XqFGjTI9mid///vcqLi7WoEGDPMs1lJWVacSIEYqNjTU8nbUmTJig+++/X506dVJYWJgGDRqkkJAQLV68WOPGjbPdY+auXbs0fvx4bd682fN3dNasWT65ju7ZFBQUpF27dnnu986dO227YWzz5s31zTff6KqrrpIkffPNN7Z8w2Ls2LGaNm2aevbsqQ4dOig/P99nTxxzuOx27Qvq5NChQ1q5cqXS09P1008/KS4uTunp6frkk09Mj2YEy5p4bdq0SWPGjPFcXllZWakXX3xRV1xxhenRLDVmzJhTvlnjcDj0wgsvWDsQjJo7d67y8vJOuv7fRRddpHHjxhme0Jx//OMfmjJliu6///4am53ZRb9+/bRkyRLbvpl1psso7bCcSbUvvvjC83H10/Hj/4786le/snwmk55//nktXrxYTZo0keQtne6//37PGdR2tW3bNi1evNhzxpOdLFy4UGFhYbrttttqrB9rt/0J7rzzTqWlpWnYsGF64okn1KpVKw0dOlTZ2dmmR7PMvn379MMPP3iWv2rRooX+/Oc/a9myZTUeT/3dgAED9OGHH0qS/vznP2vNmjVatGiR9uzZoz/+8Y9avny54Qmtde+99+r222/X0KFDJUnLli1TVlaWFi9ebHgya/3zn//UlClTPG9grlmzRk899ZRnvwY7+c9//qOHH37YczXitm3b9NJLL9myqzlXUEzjF8vNzdX777+vrKwstW/fXgMHDtRdd91leizL/HxZk5tvvlkDBgyw1RPD4911110aO3asZwmPzz//XC+88ILeffddw5NZ62Rly6FDh7RkyRIdOHDAs0My7KGyslJJSUlavXr1Cev/paam2u6qApfLpbVr1yojI0O5ubm67bbbFB8fr1atWpkezXJ33XWX7R4fj5eXl6ft27fr5ptvliQ9/fTTKikpkSTdc889iomJMTmepapfREvS9u3b1b59+xoFtd02bpLcl2Jv27ZNknt5m2bNmunGG2+07YkQx/vtb39ry9+JTp06nXCbHfcnWLx4seLi4rRp0yaNHTtWVVVVGjNmjG3e4E1LS9OTTz6p8PBwnX/++Ro/frwmTJigG264QY888oitNjW74447PK87xowZo549eyohIUGSFBcXp8zMTIPTWW/w4MEnlPEnu80O8vPz9e9//1uSdMMNN/js2bFW+Omnn7Rx40a5XC5169bNtksJfvbZZ9q8ebPKyso8tz300EMGJzo5e70yRoPo1KmTnnjiCU2cOFEff/yx5/Jsu2BZk5pKS0trrCvds2dPlZaWGpzIjOPP8isvL9eSJUv05ptvqn///rZb3gVsAnm8WbNm6R//+Ie6deumu+66Sz169DA9klG9evXSzJkzdfvtt9c4+88ua0zPmzdPAwYM8Hy+Zs0a3XPPPTp69KheffVVPf/88wans9bxexPExcXZsnT8uWbNmqlLly41brPjOTTHrzFdVVWlTZs2qaqqyuBE5uTm5poewSfce++9kqQ+ffpow4YNKisr81yRZQdvvvmmMjIy1KFDB3311Vf6/e9/r9mzZ9t2mZfCwkKFhYVpw4YNGjNmjOf248snuwgICND27dt16aWXSnKXs3ZdwuKSSy7RJZdcYnoMnxAWFmbL5a+ON3v2bG3atEnbtm1Tv379tHr1ap/dD4xiGnXWqFEjDRgwoMYLTDv47LPPtHLlSs2cOdOzrImvLiJvhaZNm+rzzz/3lPQbNmyw3eWV1aqqqpSWlqaXX35Z1157rd599121adPG9FgwyO6bQErSG2+8oUsuuURbt27VrFmzTjhutzKu+kym43fFttMa0zt37lT//v09nzdt2lSJiYmS5Pm/dmTnN7jPxI7ZHL/GdFBQkNq2bau5c+canMisAwcO6JtvvpHD4dBVV12l8PBw0yNZpvoKglOxy5uaQUFB6tChgyTpmmuuUZs2bWxbSo8aNUpxcXFq1KiRrrnmGs/vwMaNG3XBBRcYns5648aNU2JioueKq9zcXM2cOdPwVNb7+uuvNWvWLO3atUtOp9OzAeC6detMjwZD1qxZo4yMDA0ZMkTTpk3T6NGjfXZzbYpp4BcKDQ1VYmKiEhMTPcuaHDt2TImJibZb1kSSJk+erLFjx3rWe6uoqNC8efMMT2W9v/3tb5o7d64uueQSvfbaa54nz4DdLVq0SOXl5SdsOnL06FHP44ad2HXZp2qVlZU1Pp8zZ47n40OHDlk9DnzE6cq3n//O2MFbb71legSfsXbtWj366KOe0un777/XrFmzdP311xuezBqn29zQTm9qVlRUKC8vz3MFRUBAQI3P7VLQS9Jtt92m7t27a//+/TWWuomOjtb06dMNTmZGnz599MEHH+ibb76Ry+VS165dFRERYXosyz3++ON68MEH1bVrV1tuLo4TBQcHKygoSA6HQxUVFWrVqpX27NljeqyTopgG6sHuy5pIUpcuXfTRRx8pPz9fLpdLl156qRo1amR6LMuNGzdOF1xwgRo1aqSXXnrphON2PtMJ9rZ27VpdeumlJ+wSv2TJEu3Zs0e9evUyNJm1ysvLFRwcfMqljuxypUlFRYUOHz7suQS9ffv2kqTDhw+rvLzc5GiWO76MLSsrq1GySPYqWk5Xvh2/5I2/W7p06WmP2/Gqgueff15Lly71PFbk5eXp0UcftU0xbfc3M6sdO3ZMI0eOrHFb9ed2KuirRUVFKSoqqsZtdty34+fsXMg2adJEAwcOND0GfEjz5s1VWlqqbt26KSkpSVFRUT67zA2bHwKot9LSUu3Zs6fGkiZ2ekEtuXeAPt3lxsevQQ3Yye23364VK1ac8ETI6XRq8ODBysrKMjSZtao3K+rUqZMcDkeNAtJOG3m9+OKL2rp1q55++mlPOX348GE98cQTuuSSSzR27FjDE1qnb9++pzxmx6IF0qRJkyS5l67YsGGDZy3IdevW6YYbbrDlFWmDBg3SihUrznibvzrTvi12eVMTOJWPPvpIU6ZM0ZVXXqmqqirl5uZq+vTpuummm0yPZqnnn39eV199te3XVYbX/v37FRoaKqfTqcWLF6ukpETDhw/3ySV/KKYB1MvSpUs1e/ZshYeHe4pZO76gdjqd+uijjxQWFqZevXrpz3/+s9atW6d27dpp9OjRCgkJMT0iYMTAgQO1cuXKX3wM/qmyslJJSUlavXq12rVrJ0nasWOH+vXrp2effVZBQVzMB4wePVpJSUlq27atJGnXrl167rnnbLU5aLURI0Zo0KBBGjJkiCQpIyNDy5cv15tvvml2MIuc7M3ManZ6UxM4ldtuu00LFizwbPq3Y8cOPfDAA/rb3/5meDJr9ezZUwcPHlTz5s0VHBzMGtM4p/DsH0C9LFq0SFlZWbrwwgtNj2LUk08+qS1btqi8vFxt2rRRWVmZbrzxRn3xxReaOnWqLV9MApJ7CYvS0tITzuo6cuSI7ZZukKS0tDRdd911tt0YNSgoSLNnz9YPP/ygnJwcSVLnzp1tv0kocLz//e9/nlJaktq2bav8/HyDE5kzbdo0TZgwQcnJyXI4HIqJiTnpRrr+Kjc31/QIgE8LCwvzlNKS1K5dO1ttkFotPT3d9AjwEWPGjDntldy+uMQoxTSAeomKirJ9KS1JX375pT744AOVlpbqhhtu0Oeff67g4GDFx8dr0KBBpscDjBkwYIAmTpxYY+mGkpISTZ06Vbfeeqvh6ayXk5OjN954QxUVFerZs6euu+469ezZUy1atDA9mqUuvvhiymjgFMLDwzV//nzP2vzp6em2LFok6aKLLtJ7772nI0eOyOVyef6OALC36mVubrjhBr388sv67W9/K5fLpWXLlunmm282PJ31eD2Oar/5zW9Mj/CLsZQHgHqZN2+ejh07pttvv73GBkV2W2M6Li5OmZmZJ3wsedeWBezoVEs39O3bV6mpqbZdumHPnj365JNP9Oqrr6qgoIDLsQF4FBYWasaMGVq/fr0k9yXakydPtu3mZjt37tTOnTtr7GVil3VUf//73+vPf/6zevbsWeMMOC7Th92xzE1NBQUFmjVrlnJzc1VWVua53W7La+LcZM9XgwAaTHUB+/e//91zmx3XmC4vL1deXp5cLleNjyXVeHIA2M3Pl25wuVy64oorbHu27Hfffad169Zp3bp12rdvn2644QbPBmcAIEmtWrWy5UaHJzNnzhylpaWpffv2CggIkOR+nmmXYrp62RIu0wdqYpmbmiZPnqwBAwZo8+bNmj17tt555x1ddNFFpseCQXv37tVTTz2l9evXy+FwqEePHnr88cfVsmVL06OdgDOmAaAB9O3b95TH7FjUAzi5Tp06qVu3bho/fry6d+9uehwAPqi0tFSvvPKKdu3apTlz5igvL0/5+fm66aabTI9muZtvvlkZGRks4SGpoqJC+fn5cjgcuuSSS2x7xRGAE1VfsVu9sXhVVZVGjBihJUuWmB4NhowYMULdu3evsSzYhg0bfHLzYP6aAai3devWKS8vT8OGDVNRUZEOHTpUYxMKO8jOzjY9AoBzwHvvvafPP/9c8+fPV1FRka6++mr16tVLt9xyi+nRAPiIlJQURUVFec4IbN26tcaPH2/LYjoqKopSWu69TMaPH68mTZp4rs577rnndPXVV5seDYAPaNSokSSpWbNm+vHHH9WiRQv9+OOPhqeCSQcOHNBDDz3k+fzBBx/UqlWrDE50ahTTAOrl1Vdf1Zo1a7Rv3z4NGzZMFRUVmjx5st555x3TowGAz+nSpYu6dOmiwYMH65NPPtErr7yiv/71r7ZbCxHAqW3ZskWpqan67LPPJEnNmzdXVVWV4anM6Nq1qx555BHdeuutNfYysctSHtWmTZum2bNn61e/+pUkd1GdkpKiFStWGJ4MgC/o3r27Dh48qLvvvltDhgxRcHCwLTcZh9fFF1+sH374wbN84s6dO9WhQwfDU50cxTSAesnKylJ6errnEpHWrVvr8OHDhqcCAN80bdo0rVu3TmVlZerZs6f+9Kc/qWfPnqbHAuBDqs98q1ZWVnbSDb7sYNOmTZKkt956y3ObndaYrta4cWNPKS25S6gmTZoYnAiAL+ndu7cCAwMVFxena6+9Vj/++KMqKipMjwWDDh8+rMGDB+uaa66RJH399df61a9+pbFjx0qS5s6da3K8GiimAdRLkyZNTngBdfyu4QAA6ccff9QFF1ygjh076t5771Xbtm09x/773//65EYkAMzo3r27Fi5cqPLycq1fv16LFy8+7V4W/uz4QtrOunfvrhUrVmjQoEGSpJUrV6pPnz6GpwLgK2bOnKmMjAxJ0gUXXKDWrVtr6NChnttgPwMHDtTAgQM9n8fGxhqc5vQopgHUS+vWrfXll1/K4XCoqqpKCxcu9NlLRADAlNGjRysjI0Px8fH67W9/q/fff99z7IknnuCFAwCPcePG6fXXX1fz5s01e/Zs9e3bV6NGjTI9ljElJSXKz89XWVmZ57bjzx62g4yMDC1evFhPPPGEJKm8vFzh4eF6++235XA4tG7dOsMTAjDJ5XLVODksICBATqfT4EQw7Y477jA9Qq1RTAOolylTpmjixInaunWrrrrqKnXv3l2zZ882PRYA+JTjL8OvrKw85TEA9rV06VLPx6GhoYqLi/N8/u677yoxMdHAVGZ9+OGHSk1N1aFDh9SyZUvt3LlTnTp1st2beenp6aZHAODDmjdvrm+++UZXXXWVJOmbb75Rs2bNDE8Fk4qLizV9+nStW7dODodDvXr10uOPP66IiAjTo52AYhpAvURFRWnRokUqLS1VVVWVmjdvbnokAPA5x5/F8vPljlj+CIAkTZ8+XVdeeSVXnh1n4cKFWrZsme677z5lZmbqX//6lz766CPTY1nuwgsvND0CAB/26KOPavTo0brsssskSdu2bdNLL71keCqYlJycrMsuu0xJSUlyuVx67733NHXqVJ/8vaCYBlAna9asOe1xu21KAwCnU1ZWpry8PLlcrhofVx8DgBkzZigzM1Pbtm1TXFycYmNjFRYWZnoso4KCghQZGem5JP3666/Xiy++aHgq6xUUFGjWrFnKzc2t8Tdj9erVBqcC4Cu6deumDz74QBs3bpTL5VK3bt1s//fD7nbu3Fnj7+WYMWM0ePBggxOdGsU0gDp5/fXXJbnXuNu0aZMuv/xySdKWLVvUtWtXimkAOM6xY8c0cuRIz+fHf8wZ0wAkaejQoRo6dKh2796tjIwM3X333br88sv1wAMPqGPHjqbHMyI4OFgul0sXX3yx3nrrLV144YU6cOCA6bEsN3nyZA0YMECbN2/W7Nmz9c477+iiiy4yPRYAHxIWFsZrcHhUVVWpqKhIkZGRkqSioiJVVVUZnurkKKYB1En1LumPPvqoJk+e7FnP6ttvv62xqRcAQMrOzjY9AoBzRJs2bTRixAi1aNFC8+bN0/XXX2/bYnrs2LE6fPiwJkyYoJSUFJWUlCg5Odn0WJY7cOCA7rzzTi1ZskTdunXTVVddpREjRpgeCwDgo+677z7FxcXpxhtvlMPh0Jo1a/TII4+YHuukKKYB1EteXp6nlJakLl26KCUlxdxAAAAA5yCXy6W1a9dq2bJl2rJli2677Ta99957atu2renRjLnuuuskSSEhIXrzzTfNDmNQo0aNJEnNmjXTjz/+qBYtWujHH380PBUAwFfFxcWpc+fO2rBhg1wul+655x7PGuS+hmIaQL0EBQVp+fLlnvWKVqxYoaAgHloAAAB+iT59+igqKkpDhgzR6NGj5XA4VFZWpm3btkmSz76gPBuWLl162uOJiYkWTWLewYMHdd555+mnn35SQkKChgwZouDgYN16662mRwMA+LALLrhA3bp10xVXXGF6lNNyuKp33gGAOti2bZsee+wxbd26VQEBAerQoYOSkpLUvXt306MBAACcM/r27ev52OFw6PiXaQ6Hw1Yb3U2aNOm0x5955hmLJjHrww8/1KRJk9S8eXOVl5frxRdf1MUXX6zDhw979ncBAODn1qxZo6lTpyowMFDZ2dnatGmT5s+fr4ULF5oe7QQU0wAaxI8//qiMjAytWLFCLpdLH330kemRAAAAgHPWwIEDNXPmTMXExOjzzz/X/PnzPfu8AABwKkOHDtXChQs1cuRIZWZmSpIGDBigDz/80OxgJ8H19gDqrLKyUtnZ2UpPT9fGjRtVWVmpRYsW1VhzGgAAAKiL0tJSvfLKK9q1a5fmzJmjvLw85efn66abbjI9miUCAgIUExMjSerZs6eeffZZwxMBAM4VUVFRNT4PDg42NMnpBZgeAMC56ZlnntGNN96od999V7GxsVqzZo3CwsIopQEAANAgUlJSVFlZqdzcXElS69at9dJLLxmeyjoVFRXKy8vTtm3btG3bNpWXl9f4HACAk2nevLn2798vh8MhSVq/fr1CQkIMT3VynDENoE7eeecddevWTaNGjVLPnj0lyfOgBwAAANTXli1blJqaqs8++0yS+4V2VVWV4amsc+zYMY0cObLGbdWf223dcQBA7U2YMEEjR47U7t27NXz4cO3YsUMvv/yy6bFOimIaQJ189tlnWrlypWbOnKmffvpJcXFxcjqdpscCAACAn2jUqFGNz8vKymSnLZKys7NNjwAAOAd16dJFS5Ys0ddffy1J6tatm0JDQw1PdXJsfgig3nJzc/X+++8rKytL7du318CBA3XXXXeZHgsAAADnsJkzZyo0NFQrVqxQcnKyFi9erI4dO2rcuHGmRwMAwOeVl5fXOIGwadOmBqc5OYppAA2moqJCH3/8sTIyMvTaa6+ZHgcAAADnsIqKCr3++uueM4f79u2rUaNGKTAw0PBkAAD4ro8++khPPfWU9u3bJ0lyuVxyOBzavHmz4clORDENAAAAAPAZS5cuPe3xxMREiyYBAODcc/PNNys1NVVdu3ZVQECA6XFOizWmAQAAAAA+Y/r06bryyivVoUMH06MAAHDOCQsL09VXX216jFrhjGkAAAAAgM9IT09XZmamjh07pri4OMXGxiosLMz0WAAAnBNeeeUVhYSEaMCAAWrcuLHndtaYBgAAAACgFnbv3q2MjAz97W9/0+WXX64HHnhAHTt2ND0WAAA+rVOnTp6PHQ6HT68xzVIeAAAAAACf06ZNG40YMUItWrTQvHnzdP3111NMAwBwBrm5uaZHqDXOmAYAAAAA+AyXy6W1a9dq2bJl2rJli2677TbFxcWpbdu2pkcDAAANiGIaAAAAAOAzevfuraioKA0ZMkQ9evSQw+Gocfyyyy4zNBkAAGhIFNMAAAAAAJ/Rt29fz8fVa2Me//nq1atNjAUAABoYxTQAAAAAAAAAwFIBpgcAAAAAAAAAANgLxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAs9f8BHyqn5Q0U+4gAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1800x360 with 1 Axes>"
]
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(25, 5))\n",
"sns.set_theme()\n",
"profile_mut_all[\"tumor_types\"].value_counts().sort_index().plot(kind=\"bar\")\n",
"#sns.countplot(x=profile_mut_all[\"tumor_types\"], palette=sns.hls_palette(2))\n",
"plt.xticks(rotation=90);\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Check activites data content"
]
},
{
"cell_type": "code",
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Some content from the full act set:\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>SBS1</th>\n",
" <th>SBS2</th>\n",
" <th>SBS3</th>\n",
" <th>SBS4</th>\n",
" <th>SBS5</th>\n",
" <th>SBS6</th>\n",
" <th>SBS7a</th>\n",
" <th>SBS7b</th>\n",
" <th>SBS7c</th>\n",
" <th>SBS7d</th>\n",
" <th>...</th>\n",
" <th>SBS52</th>\n",
" <th>SBS53</th>\n",
" <th>SBS54</th>\n",
" <th>SBS55</th>\n",
" <th>SBS56</th>\n",
" <th>SBS57</th>\n",
" <th>SBS58</th>\n",
" <th>SBS59</th>\n",
" <th>SBS60</th>\n",
" <th>tumor_types</th>\n",
" </tr>\n",
" <tr>\n",
" <th>mut_tri</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>30</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>...</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>30</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 66 columns</p>\n",
"</div>"
],
"text/plain": [
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
" SBS1 SBS2 SBS3 SBS4 SBS5 SBS6 SBS7a SBS7b SBS7c SBS7d ... \\\n",
"mut_tri ... \n",
"30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n",
"30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n",
"30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n",
"30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n",
"30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... \n",
"\n",
" SBS52 SBS53 SBS54 SBS55 SBS56 SBS57 SBS58 SBS59 SBS60 \\\n",
"mut_tri \n",
"30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"30 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
"\n",
" tumor_types \n",
"mut_tri \n",
"30 30 \n",
"30 30 \n",
"30 30 \n",
"30 30 \n",
"30 30 \n",
"\n",
"[5 rows x 66 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(\"Some content from the full act set:\")\n",
"act_mut_all.head(5)"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABaYAAAFhCAYAAACLRX2NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABNnElEQVR4nO3de1iUdf7/8dcA4ikOgaiUlmWmWF/TctMs3VYry1BJt6VAW9vS/ZWla1qipZBmhYdKS7OTtpZbGyGo1K61spntmnZYyxZJRUzdEBU0UZHDML8/5mJG8kSA92ec+/m4rr2+MDfEe15fHGZec9+fj8PlcrkEAAAAAAAAAIBFAkwPAAAAAAAAAACwF4ppAAAAAAAAAIClKKYBAAAAAAAAAJaimAYAAAAAAAAAWIpiGgAAAAAAAABgKYppAAAAAAAAAIClalVM//Of/1RcXJwGDx6sgQMH6qOPPpIk5efnKz4+Xv3791d8fLx27Njh+Z66HgMAAAAAAAAA+DeHy+Vyne4LXC6Xrr32Wi1dulSXX365cnNzdffdd+urr77SiBEjNHToUA0ePFjLly9Xenq6lixZIkm655576nSstg4cOKKqqtOOflZFRp6noqLDxn6+ryAHL7JwIwcvsnAjBzdy8CILN3LwIgs3cvAiCzdycCMHL7JwIwcvsnAjBy+ycCMHN1/IISDAofPPb37SY0G1+w8EqKSkRJJUUlKili1b6sCBA8rJydHixYslSbGxsZo+fbqKi4vlcrnqdCwiIqLWd6qqymW0mK6eAeRwPLJwIwcvsnAjBzdy8CILN3LwIgs3cvAiCzdycCMHL7JwIwcvsnAjBy+ycCMHN1/O4YzFtMPh0AsvvKAHH3xQzZo105EjR/TKK6+ooKBArVq1UmBgoCQpMDBQLVu2VEFBgVwuV52O/ZJiOjLyvLrc3wYVFRViegSfQA5eZOFGDl5k4UYObuTgRRZu5OBFFm7k4EUWbuTgRg5eZOFGDl5k4UYOXmThRg5uvpzDGYvpyspKvfLKK1qwYIGuueYaffXVVxo3bpxmzpxpxXynVFR02GjjHxUVon37Soz9fF9BDl5k4UYOXmThRg5u5OBFFm7k4EUWbuTgRRZu5OBGDl5k4UYOXmThRg5eZOFGDm6+kENAgOOUJxifsZjevHmz9u7dq2uuuUaSdM0116hp06Zq3LixCgsL5XQ6FRgYKKfTqb179yo6Oloul6tOxwAAAAAAAAAA/i/gTF/QunVr7dmzR9u3b5ck5eXlaf/+/br44osVExOjrKwsSVJWVpZiYmIUERGhyMjIOh0DAAAAAAAAAPi/M54xHRUVpZSUFI0dO1YOh0OS9Mwzzyg8PFwpKSlKSkrSggULFBoaqtTUVM/31fUYAAAAAAAAAMC/nbGYlqRBgwZp0KBBJ9zevn17paWlnfR76noMAAAAAAAAAODfzriUBwAAAAAAAAAADYliGgAAAAAAAABgKYppAAAAAAAAAIClKKYBAAAAAAAAAJaq1eaHAOwjJLSpmjSu30NDVFRIvb7/WFmlSg6V1uu/AQAAAAAAAN9FMQ2ghiaNgzRw/HKjM6ycM1glRicAAAAAAADA2cRSHgAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALBU0Jm+YPfu3Ro9erTn85KSEh0+fFgbNmxQfn6+kpKSdPDgQYWHhys1NVXt2rWTpDofAwAAAAAAAAD4tzOeMd2mTRstX77c879+/fopNjZWkpScnKyEhAStWrVKCQkJmjp1quf76noMAAAAAAAAAODfftFSHuXl5Vq5cqWGDh2qoqIi5eTkeErq2NhY5eTkqLi4uM7HAAAAAAAAAAD+74xLeRwvOztbrVq10hVXXKHvvvtOrVq1UmBgoCQpMDBQLVu2VEFBgVwuV52ORURE1HqWyMjzfsnoZ0VUVIjpEXwCOXiRRcPxlyz95X7UFzm4kYMXWbiRgxdZuJGDF1m4kYMbOXiRhRs5eJGFGzl4kYUbObj5cg6/qJhOT0/X0KFDz9Ysv0hR0WFVVbmM/fyoqBDt21di7Of7CnLw8pcsfOUBy1+y9If7UV/k4EYOXmThRg5eZOFGDl5k4UYObuTgRRZu5OBFFm7k4EUWbuTg5gs5BAQ4TnmCca2X8igsLNQXX3yhgQMHSpKio6NVWFgop9MpSXI6ndq7d6+io6PrfAwAAAAAAAAA4P9qXUxnZGTo17/+tc4//3xJUmRkpGJiYpSVlSVJysrKUkxMjCIiIup8DAAAAAAAAADg/2q9lEdGRoYef/zxGrelpKQoKSlJCxYsUGhoqFJTU+t9DAAAAAAAAADg32pdTK9ateqE29q3b6+0tLSTfn1djwEAAAAAAAAA/Futl/IAAAAAAAAAAKAhUEwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUrUqpsvKypScnKxbbrlFAwcO1JQpUyRJ+fn5io+PV//+/RUfH68dO3Z4vqeuxwAAAAAAAAAA/q1WxfSsWbPUuHFjrVq1SitXrtTYsWMlScnJyUpISNCqVauUkJCgqVOner6nrscAAAAAAAAAAP7tjMX0kSNHlJmZqbFjx8rhcEiSWrRooaKiIuXk5Cg2NlaSFBsbq5ycHBUXF9f5GAAAAAAAAADA/wWd6Qt27dql8PBwvfTSS1q/fr2aN2+usWPHqkmTJmrVqpUCAwMlSYGBgWrZsqUKCgrkcrnqdCwiIqLWg0dGnleX+9ugoqJCTI/gE8jBiywajr9k6S/3o77IwY0cvMjCjRy8yMKNHLzIwo0c3MjBiyzcyMGLLNzIwYss3MjBzZdzOGMxXVlZqV27dqlz586aOHGivvnmG/2///f/NHfuXCvmO6WiosOqqnIZ+/lRUSHat6/E2M/3FeTg5S9Z+MoDlr9k6Q/3o77IwY0cvMjCjRy8yMKNHLzIwo0c3MjBiyzcyMGLLNzIwYss3MjBzRdyCAhwnPIE4zMW0xdccIGCgoI8S29cddVVOv/889WkSRMVFhbK6XQqMDBQTqdTe/fuVXR0tFwuV52OAQAAAAAAAAD83xnXmI6IiFCPHj30r3/9S5KUn5+voqIitWvXTjExMcrKypIkZWVlKSYmRhEREYqMjKzTMQAAAAAAAACA/zvjGdOS9OSTT2ry5MlKTU1VUFCQZs6cqdDQUKWkpCgpKUkLFixQaGioUlNTPd9T12MAAAAAAAAAAP9Wq2K6bdu2euutt064vX379kpLSzvp99T1GAAAAAAAAADAv51xKQ8AAAAAAAAAABoSxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALAUxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAsRTENAAAAAAAAALBUUG2+qG/fvgoODlbjxo0lSRMmTFDv3r2Vn5+vpKQkHTx4UOHh4UpNTVW7du0kqc7HAAAAAAAAAAD+rdZnTM+bN0/Lly/X8uXL1bt3b0lScnKyEhIStGrVKiUkJGjq1Kmer6/rMQAAAAAAAACAf6vzUh5FRUXKyclRbGysJCk2NlY5OTkqLi6u8zEAAAAAAAAAgP+r1VIeknv5DpfLpWuuuUaPPPKICgoK1KpVKwUGBkqSAgMD1bJlSxUUFMjlctXpWERERK0Hj4w875fcz7MiKirE9Ag+gRy8yKLh+EuW/nI/6osc3MjBiyzcyMGLLNzIwYss3MjBjRy8yMKNHLzIwo0cvMjCjRzcfDmHWhXTS5cuVXR0tMrLyzVjxgxNmzZNI0aMOMujnV5R0WFVVbmM/fyoqBDt21di7Of7CnLw8pcsfOUBy1+y9If7UV/k4EYOXmThRg5eZOFGDl5k4UYObuTgRRZu5OBFFm7k4EUWbuTg5gs5BAQ4TnmCca2W8oiOjpYkBQcHKyEhQV9//bWio6NVWFgop9MpSXI6ndq7d6+io6PrfAwAAAAAAAAA4P/OWEwfPXpUJSXuZt3lcunDDz9UTEyMIiMjFRMTo6ysLElSVlaWYmJiFBERUedjAAAAAAAAAAD/d8alPIqKivTwww/L6XSqqqpK7du3V3JysiQpJSVFSUlJWrBggUJDQ5Wamur5vroeAwAAAAAAAAD4tzMW023btlVmZuZJj7Vv315paWkNegwAAAAAAAAA4N9qtcY0AAAAAAAAAAANhWIaAAAAAAAAAGApimkAAAAAAAAAgKUopgEAAAAAAAAAlqKYBgAAAAAAAABYimIaAAAAAAAAAGApimkAAAAAAAAAgKUopgEAAAAAAAAAlqKYBgAAAAAAAABYimIaAAAAAAAAAGApimkAAAAAAAAAgKUopgEAAAAAAAAAlqKYBgAAAAAAAABYimIaAAAAAAAAAGApimkAAAAAAAAAgKUopgEAAAAAAAAAlqKYBgAAAAAAAABYimIaAAAAAAAAAGApimkAAAAAAAAAgKUopgEAAAAAAAAAlqKYBgAAAAAAAABYimIaAAAAAAAAAGApimkAAAAAAAAAgKUopgEAAAAAAAAAlvpFxfRLL72kjh07asuWLZKk/Px8xcfHq3///oqPj9eOHTs8X1vXYwAAAAAAAAAA/1brYvq///2vNm7cqAsuuMBzW3JyshISErRq1SolJCRo6tSp9T4GAAAAAAAAAPBvtSqmy8vLNW3aNCUnJ8vhcEiSioqKlJOTo9jYWElSbGyscnJyVFxcXOdjAAAAAAAAAAD/F1SbL5o7d64GDRqktm3bem4rKChQq1atFBgYKEkKDAxUy5YtVVBQIJfLVadjERERDX3/AAAAAAAAAAA+5ozF9H/+8x9t2rRJEyZMsGKeWouMPM/0CIqKCjE9gk8gBy+yaDj+kqW/3I/6Igc3cvAiCzdy8CILN3LwIgs3cnAjBy+ycCMHL7JwIwcvsnAjBzdfzuGMxfQXX3yh7du3q1+/fpKkPXv26L777tOkSZNUWFgop9OpwMBAOZ1O7d27V9HR0XK5XHU69ksUFR1WVZWrbve6AURFhWjfvhJjP99XkIOXv2ThKw9Y/pKlP9yP+iIHN3LwIgs3cvAiCzdy8CILN3JwIwcvsnAjBy+ycCMHL7JwIwc3X8ghIMBxyhOMz7jG9KhRo/TZZ58pOztb2dnZat26td544w0NGDBAMTExysrKkiRlZWUpJiZGERERioyMrNMxAAAAAAAAAID/q9Ua06eSkpKipKQkLViwQKGhoUpNTa33MQAAAAAAAACAf/vFxXR2drbn4/bt2ystLe2kX1fXYwAAAAAAAAAA/3bGpTwAAAAAAAAAAGhIFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSQbX5ogcffFC7d+9WQECAmjVrpilTpigmJkb5+flKSkrSwYMHFR4ertTUVLVr106S6nwMAAAAAAAAAODfanXGdGpqqlasWKHMzEz94Q9/0OTJkyVJycnJSkhI0KpVq5SQkKCpU6d6vqeuxwAAAAAAAAAA/q1WxXRISIjn48OHD8vhcKioqEg5OTmKjY2VJMXGxionJ0fFxcV1PgYAAAAAAAAA8H+1WspDkh5//HH961//ksvl0uuvv66CggK1atVKgYGBkqTAwEC1bNlSBQUFcrlcdToWERFR68EjI8/7JffzrIiKCjnzF9kAOXiRRcPxlyz95X7UFzm4kYMXWbiRgxdZuJGDF1m4kYMbOXiRhRs5eJGFGzl4kYUbObj5cg61LqZnzJghScrMzNTMmTM1duzYszZUbRQVHVZVlcvYz4+KCtG+fSXGfr6vIAcvf8nCVx6w/CVLf7gf9UUObuTgRRZu5OBFFm7k4EUWbuTgRg5eZOFGDl5k4UYOXmThRg5uvpBDQIDjlCcY12opj+PFxcVp/fr1at26tQoLC+V0OiVJTqdTe/fuVXR0tKKjo+t0DAAAAAAAAADg/85YTB85ckQFBQWez7OzsxUWFqbIyEjFxMQoKytLkpSVlaWYmBhFRETU+RgAAAAAAAAAwP+dcSmP0tJSjR07VqWlpQoICFBYWJgWLlwoh8OhlJQUJSUlacGCBQoNDVVqaqrn++p6DAAAAAAAAADg385YTLdo0ULvvffeSY+1b99eaWlpDXoMAAAAAAAAAODffvEa0wAAAAAAAAAA1AfFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsBTFNAAAAAAAAADAUhTTAAAAAAAAAABLUUwDAAAAAAAAACxFMQ0AAAAAAAAAsFSQ6QEAAAAAAADsJiS0qZo0rn8tExUVUufvPVZWqZJDpfWeAQDqgmIaAAAAAADAYk0aB2ng+OVGZ1g5Z7BKjE4AwM5YygMAAAAAAAAAYCmKaQAAAAAAAACApc5YTB84cEAjR45U//79NXDgQD300EMqLi6WJOXn5ys+Pl79+/dXfHy8duzY4fm+uh4DAAAAAAAAAPi3MxbTDodD999/v1atWqWVK1eqbdu2mj17tiQpOTlZCQkJWrVqlRISEjR16lTP99X1GAAAAAAAAADAv52xmA4PD1ePHj08n3ft2lU//vijioqKlJOTo9jYWElSbGyscnJyVFxcXOdjAAAAAAAAAAD/F/RLvriqqkrvvPOO+vbtq4KCArVq1UqBgYGSpMDAQLVs2VIFBQVyuVx1OhYREVHrWSIjz/slo58VUVEhpkfwCeTgRRYNx1+y9Jf7UV/k4EYOXmThRg5eZOFGDl5k4UYObuTgRRZu5NBw/CVLf7kfDYEs3MjBzZdz+EXF9PTp09WsWTMNGzZMOTk5Z2umWikqOqyqKpexnx8VFaJ9+0qM/XxfQQ5e/pKFrzxg+UuW/nA/6osc3MjBiyzcyMGLLNzIwYss3MjBjRy8yMLNX3LgtVfD8ZffiYZAFm7k4OYLOQQEOE55gnGti+nU1FT98MMPWrhwoQICAhQdHa3CwkI5nU4FBgbK6XRq7969io6OlsvlqtMxAAAAAAAAAID/O+Ma05L0/PPP67vvvtP8+fMVHBwsSYqMjFRMTIyysrIkSVlZWYqJiVFERESdjwEAAAAAAAAA/N8Zz5jeunWrFi5cqHbt2umuu+6SJLVp00bz589XSkqKkpKStGDBAoWGhio1NdXzfXU9BgAAAAAAAADwb2cspjt06KDvv//+pMfat2+vtLS0Bj0GAAAAAAAAAPBvtVrKAwAAAAAAAACAhkIxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwVJDpAQAAAAAAAAC7CwltqiaN61/VRUWF1Pl7j5VVquRQab1nAGqDYhoAAAAAAAAwrEnjIA0cv9zoDCvnDFaJ0QlgJyzlAQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwFMU0AAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALEUxDQAAAAAAAACwVJDpAQAAAAB/EBLaVE0a1+/pdVRUSL2+/1hZpUoOldbrvwEAAABYgWIaAAAAaABNGgdp4PjlRmdYOWewSoxOAAAAANQOxTQAAAAA4KzhagIAAHAyFNMAAAAAgLOGqwkAAMDJsPkhAAAAAAAAAMBSFNMAAAAAAAAAAEtRTAMAAAAAAAAALHXGYjo1NVV9+/ZVx44dtWXLFs/t+fn5io+PV//+/RUfH68dO3bU+xgAAAAAAAAAwP+dsZju16+fli5dqgsvvLDG7cnJyUpISNCqVauUkJCgqVOn1vsYAAAAAAAAAMD/nbGY7t69u6Kjo2vcVlRUpJycHMXGxkqSYmNjlZOTo+Li4jofAwAAAAAAAADYQ1BdvqmgoECtWrVSYGCgJCkwMFAtW7ZUQUGBXC5XnY5FRET8ohkiI8+ry+gNKioqxPQIPoEcvMii4fhLlv5yP+qLHNzIwYss3MjBiywajr9k6S/3o77IoeH4S5b+cj/qixwajr9k6S/3wxf4S5b+cj/qy5dzqFMx7QuKig6rqspl7OdHRYVo374SYz/fV5CDl79k4SsPWP6SpT/cj/oiBzdy8CILN3Lw8pcs+BvacPzld6K+/CUH/m00HH/5nagvf8mBfxsNh9+JhuUvWfrD/agvX8ghIMBxyhOM61RMR0dHq7CwUE6nU4GBgXI6ndq7d6+io6PlcrnqdAwAAAAAAAAAYA9nXGP6ZCIjIxUTE6OsrCxJUlZWlmJiYhQREVHnYwAAAAAAAAAAezjjGdNPPfWUPvroI+3fv1/33nuvwsPD9cEHHyglJUVJSUlasGCBQkNDlZqa6vmeuh4DAAAAAAAAAPi/MxbTTzzxhJ544okTbm/fvr3S0tJO+j11PQYAAAAAAAAA8H/n7OaHAHA2hYQ2VZPG9X+IrM/mFcfKKlVyqLTeMwAAAAAAAPgaimkAOIkmjYM0cPxyozOsnDNY7CEMAAAAAAD8EcU0AAAAAACwTENcnVifKxMlrk4EAF9AMQ0AAAAAACzD1YkAAEkKMD0AAAAAAAAAAMBeKKYBAAAAAAAAAJaimAYAAAAAAAAAWIo1pgEAAFBnDbGBlVS/TazYwAoAAAA491BMAwAAoM7YwAoAAABAXVBMAwAAAEAD84WrCSSuKAAAAL6LYhoAAAAAGpgvXE0gcUUBAADwXWx+CAAAAAAAAACwFGdMAwBOicuQAQAAAADA2UAxDQA4JS5DBgAAAAAAZwNLeQAAAAAAAAAALMUZ0wAAAAAAAAB8AktK2gfFNAAAqDWeJAIAAAA4m1hS0j4opgEAQK3xJBHAmfjCG1i8eQUAAOD7KKYBAKiFhihaOEsYgB34whtYvHkFX+QLb9pIPJ8AAPgOimkAAGqBogUAANSHLzyXkHg+AQDwHRTTNscZgG6+cPaCL+QAAKg9/oYCAAAAOJv8/TWHLYtpXyghJd94MekL79r7wjv25AAA+KX42wEAANAw/L18A+rK319z2LKY9oX/p0q8mAQAAAAAAPCFnoaOBrBegOkBAAAAAAAAAAD2QjENAAAAAAAAALCUsWI6Pz9f8fHx6t+/v+Lj47Vjxw5TowAAAAAAAAAALGSsmE5OTlZCQoJWrVqlhIQETZ061dQoAAAAAAAAAAALGdn8sKioSDk5OVq8eLEkKTY2VtOnT1dxcbEiIiJq9d8ICHDUa4aW5zet1/c3lPrej4bgC1mQg5sv5CCRRTVycPOFHCSyqEYOXmThRg5uvpCDRBbVyMHNF3KQyKIaOXiRhRs5uPlCDhJZVCMHN1/IQSKLavXJ4XTf63C5XK46/5fr6LvvvtPEiRP1wQcfeG4bMGCAZs2apSuuuMLqcQAAAAAAAAAAFmLzQwAAAAAAAACApYwU09HR0SosLJTT6ZQkOZ1O7d27V9HR0SbGAQAAAAAAAABYyEgxHRkZqZiYGGVlZUmSsrKyFBMTU+v1pQEAAAAAAAAA5y4ja0xLUl5enpKSknTo0CGFhoYqNTVVl156qYlRAAAAAAAAAAAWMlZMAwAAAAAAAADsic0PAQAAAAAAAACWopgGAAAAAAAAAFiKYhoAAAAAAAAAYCmKaQAAAAAAAACApSimAQAAAAAAAACWopgGGlBJSYnpEQAAAAAAAACfRzH9Cxw4cECbN2/W5s2bdeDAAdPj+IxJkyaZHsFnDBw40PQIRpWXl2vFihUaMWKE6VF8ypYtW0yPYFRhYaFefvll3XLLLaZH8Ql/+MMfTI8AAACAc9Dq1au1fPnyE25PS0tTdna2gYlgmtPp1F//+lfTYxi3bdu20/7PrsrLy1VaWur5ny8KMj3AuWDnzp2aMmWKcnJy1LJlS0nS3r171blzZz355JNq166d2QENW7dunekRfIbL5TI9ghGbNm3S+++/r7///e/6v//7P8XFxZkeyaeMGjVKn3zyiekxLFVRUaHVq1fr/fff14YNG3THHXfo6aefNj2WT9i+fbvpESw1dOhQORyOUx5///33LZzGtxQVFWnXrl3q2rWr6VEss3Tp0tMeT0xMtGgS85xOp8rLy9W0adMat5eWlio4OFiBgYGGJrOey+VSeXm5GjduLEnauHGjKioqJEmdO3dW8+bNTY5nxNq1a/Xvf/9bDodDvXr10g033GB6JBg0depUDRs2TJdffrnpUWDYa6+9ppdeeumE23/9619rzJgx6tu3r4GpzNmxY4cmTZqkwsJCZWdn67///a+ys7P18MMPmx7NMoGBgVq+fLni4+NNj2LUqFGjTnnM4XBo9erVFk5j3qpVq/T0009r7969ktzPtRwOhzZv3mx4shNRTNfCY489poSEBC1evFgBAe6TzKuqqrRy5UpNnDjR9u9O2bWMPZnTlS/+5sCBA1q+fLnS09NVUVGhuLg4NW3aVK+//rrp0XyOnf6N5ObmKj09XVlZWercubPi4uKUl5enJ5980vRoMGTixImmR/ApCQkJeuWVV+RyuRQXF6fQ0FD16dPHNjlNnz5dV155pTp06GB6FONmz56tSy+9VHfeeWeN29PS0rRnzx499thjhiaz3gsvvKDS0lJNnjxZkvSnP/1JkZGRKi8v1y233GKrgkFyF0/Lly/X7bffLklKTU3V999/r/vuu8/wZGZ89tln2rx5s8rKyjy3PfTQQwYnst4ll1yihx9+WC1atFBiYqJuueUWBQXZ56V8WlqaXC6Xfve739W4fcmSJWrevLmGDh1qaDLrHTlyRC1atDjh9pYtW+ro0aMGJjIrJSVFDzzwgObMmSNJiomJ0WOPPWa7vxu9evXS3//+d916662mRzGGKwZqmjlzpl588UVdeeWVnh7TV9nnr1k9HDx4UIMGDapxW0BAgAYPHqyXX37Z0FS+w05lrKTTXgZSWVlp4SRm9e7dW927d9eTTz6pq6++WpL7SSNOZKd/I3Fxcbruuuu0bNkyRUdHS3IXDrCva6+91vQIPuXo0aMKCQnR8uXLNXDgQE2YMEGDBw+2TTE9Y8YMZWZmatu2bYqLi1NsbKzCwsJMj2XEp59+qgkTJpxwe2JiogYPHmyrYnrNmjU1zqYPDw9Xenq6nE6nhg0bZruCYcWKFXr33Xd13nnnSZKGDx+uu+++25bF9OzZs7Vp0yZt27ZN/fr10+rVq3XdddeZHsty9957r+699159+umn+stf/qJnn31Wv/3tbxUfH69WrVqZHu+se+edd7RkyZITbo+Li9OIESNsVUwfO3bslMd89TL9s6mkpER9+vTRc889J8nd0zRq1MjwVNZ7++23dfDgQTVp0kRNmzb1nB1rp6vbz/T7//Mr1PxdVFSUunTpYnqMWqGYroXw8HBlZWXp9ttv9xRMLpdLK1euVGhoqOHprHGqS7FdLpeKiooMTGTO6S4Rqb4E1Q7uuecerVy5Us8995yGDh2q/v37mx7JqDVr1pzy2PFn+Pi7KVOmaNmyZUpMTNSQIUM0ePBg0yMZ0bNnz1M+Ztpxk9SPP/5Yr776queNvQ4dOmjUqFG66aabDE9mvfLycknS+vXrNWDAAAUEBNhqyYahQ4dq6NCh2r17tzIyMnT33Xfr8ssv1wMPPKCOHTuaHs9Sp/r/fWBgoK3e0JTcWRy/XMeAAQMkubOoXtLDbqpL6Z9/bDdr1qxRRkaGhgwZomnTpmn06NG2vgqra9euysvLU25urjZu3Kj3339ff/jDH/x+f5eKioqT/jsIDQ211YlBktSxY0etXLnyhL2NPvjgA1tejVT9d6L672ZhYaHPnx16NqSnp5sewbhu3brJ4XCc9GplX13C4mwaPny4XnjhBd188801eqrLLrvM4FQnRzFdC88++6ySk5M1bdo0tWrVSi6XS4WFhYqJidGzzz5rejxL2OVMrtrgEhG3xx57TOPHj9eaNWuUnp6up59+Wk6nU59//rl69uxpejzLnW4JE1988D9bEhMTlZiYqO+//17p6emKj4/XkSNHlJ6erv79+9vmxTVPDr3WrFmjJ598Ug899JCuuuoquVwuffvtt0pJSVGjRo3061//2vSIlrr22mvVv39/uVwupaSk6NChQ7Z8AdWmTRuNGDFCLVq00Lx583T99dfbrpiu3ozm52fwHDlyxPMGhl0cOnSoxufHnwRgxw3Hr7zySk2aNEl33nmnHA6H0tLSdOWVV5oey4jg4GAFBQXJ4XCooqJCrVq10p49e0yPZbnvvvtOS5cu1b/+9S/Fxsbq7bffVps2bXT48GHFxsb6fTF9ujMhjxw5YuEk5o0fP17Dhw/XJ598oquuukqS9M0332j9+vV66623DE9nvYSEBD300EM6cOCAXnzxRWVmZmrcuHGmx7LchRdeqMOHD+uHH37QFVdcYXocI3Jzc02P4FMKCwv15ptvKjMz0/Naw1fX2na47LT4aT0VFxeroKBAkhQdHa2IiAjDE/mGefPmacyYMabHgGHFxcXKyMhQRkaGDh06pE8//dT0SDDg55t5VW+C+M477+jbb7/Vf/7zH8MTmjdp0iQ988wzpsewzH333ac//vGPJyzp8eWXX2rBggVatGiRocnMcLlcys3NVdu2bXXeeeepuLhYe/bsUefOnU2PZgmXy6W1a9dq2bJl2rJli2677TbFxcWpbdu2pkez3Ny5c5WXl6enn37a86ZdSUmJpk6dqosuushWL6yrN+z6+ebJK1as0Mcff6wXX3zRzGCGHD16VPPnz/dcgt2rVy89+OCDatasmeHJrHfPPffolVdeUWpqqkpKShQVFaWvvvrKdsvHDRw4UMOGDdPgwYPVpEmTGsfeffdd3XXXXYYms8bEiRN12WWXaeTIkTVuX7RokTZv3qxZs2YZmsyMffv2aenSpcrJyZHL5dIVV1yhhIQEtWzZ0vRoRnz55Zf65z//KZfLpb59+6p79+6mR7LcmjVrNHXqVAUGBio7O1ubNm3S/PnztXDhQtOjGZGfn6+8vDzddNNNOnLkiCoqKhQeHm56LEv95je/0V//+tdz4nGBYroWcnNzNXnyZAUEBCg1NVWpqalav369wsPDtXDhQsXExJge0agbb7xRn3zyiekxLHP8unbVazcd/7Gd1nE6lW+//facWc8IDSs1NfWkm3ktWbJE33//vWbMmGFoMt9ht8fM/v37a9WqVb/4mL862T4FISEhtlgjVHLvTxAVFaUhQ4aoR48eJyxZYacrTCorK5WUlKTVq1erXbt2kqQdO3aob9++Sk1NtdXGZjt27NCwYcPUo0cPzxmA3377rT7//HO9/fbbnnxgP/v371doaKicTqcWL16skpISDR8+XBdccIHp0SzjdDr10ksvaezYsaZHMWb//v0aNmyYwsPDazxGFBcX6+2331ZUVJThCa3z85NAqpWWlio4ONhWy4PBa+jQoVq4cKFGjhypzMxMSe5lsT788EOzgxmwbNkyvfrqq54TpLZv365p06bpzTffND2apRITE2vs3+HL7POMtx6eeuopjR49WiUlJbr//vs1btw4vfrqq8rOzlZqaqrtfsF/zm7vbTRr1kzh4eEaMmSI+vTpY8tLsCXp1VdfVfPmzZWYmFjj9tdee02SbFdMd+rU6ZRrCttpTatTbeY1bNiwEzaRtSs7PmbW5Zi/GjVqlAoKChQSEiLJfYZsZGSkgoOD9dxzz6lr165mBzzLGjVqpIMHD2rRokVavHhxjX8Pvnp54dkSFBSk2bNn64cffqhx1tvFF19sejTLtWvXTsuWLdNf/vIXffbZZ5KkmJgYLVu27Jw406ehnOkF5M+fc9lBixYtPB8/+OCDBicxJzAwUF999ZXpMYxq0aKFMjMztXLlSs/j5ZAhQxQbG2u7Dc1mz5590pNA0tLStGfPHlttnCtJ27dv18svv6xdu3bVWG/8/fffNziVGT9/gyY4ONjQJGYtWbJE6enpnr+Zl156qfbv3294Kut16dJFjzzyiG699dYaa0z74jKKFNO1cOTIEfXr10+S+7LL6nKlb9++mjdvnsnRfILdNuhZvXq11q9fr4yMDC1ZskT9+vXTkCFDbHWWlyStXLnypOvo3nPPPbrzzjtPuNTO33399deS3KXj3XffrXfffdfwRGacajOvgIAA2z1WnIrdcigpKTnl5qCHDx+2eBrz+vXrpx49eng2fvzHP/6hb7/9Vtdff71mzJjh95ens0+D19atW7Vv3z716tWrRhm9du1aRUdH2+55RcuWLfWnP/3J9BhGfffdd6ZH8Dnbt2/XwoULtXPnTluXTr/+9a/1xhtvKC4ursabunYpZQ8fPqyDBw+eUMbu2rVL559/vm32MJFOfRJIYmKiBg8ebLtiurp4GzJkiK3PFm/evLn279/veZ2xfv16z0kQdtOoUaMaGypLsuXvRvVziuPXnnc4HBTT56rjz+a5/vrraxyrqqqyehwjxowZc8qzQX/66ScDE5nVo0cP9ejRQ0ePHtUHH3yg4cOH6+GHH1ZCQoLp0Sx1sndhj383zk6Of5EQGBhoyzNBJTbzqjZ06NBTPmYWFRUZmMic6OjoU24O2rp1a4unMW/Dhg16/PHHPZ/fdNNNeu211/TII4/o2LFjBiczo6ysTFu3blWbNm1st/bfnDlzTlrEhoWFafbs2bZaF3Ljxo3asmWLfve730lyP+88ePCgJOmhhx46YY16f2Wn/Qdqa+zYsRo8eLDuuOMOWxYL1arXUJ41a5YcDoftrsibOXOm+vTpozZt2tS4fePGjfriiy80bdo0Q5NZ71QngQQGBtru5AfJ3cf8v//3/0yPYdyECRM0cuRI7d69W8OHD9eOHTv08ssvmx7LiPDwcOXn53v+PSxfvtyWrznOpc1QKaZroXqH0/POO09PPfWU5/Y9e/bY5l3q3/zmN6c81qlTJwsn8R15eXnKyMjQxx9/rD59+qhHjx6mR7JUWVmZKisrT1gDs6Ki4rQ7Z9uB3ZZqON6AAQM0ceLEk27mdeuttxqezjrjx49XeXn5CW9QHD161HaX1Z1LT4qsUFVVpa+//lpXX321JOk///mP5zHTDktDff7555o2bZrCwsL06KOPaty4caqsrNTRo0f17LPPqn///qZHtMzu3btP+hyqS5cu+t///mdgInPmz5+v++67z/P5tm3b9Nhjj+no0aNatGiRbYrpU11dUs0Xz3I624KCgnT//febHsO43Nxc0yMY9eWXX560fB44cKCt3sSTOAnk57p27arc3FzbdhLVunTpoiVLlniu4u3WrZtCQ0MNT2XG5MmTNX78eOXn56tv375q0qSJ7R4nJOmLL75Q586d1bx5c6WlpWnTpk0aOXKkT244TjFdC/Pnzz/p7aGhoVqwYIHF05hxxx131Ph87969yszMVHp6ulwul63WfPvLX/6i5cuXKzg4WHfccYcyMzNt8wbF8fr06aNnn31WkyZN8rxrX1VVpVmzZql3796GpzPLjmcrVBs9erSSkpLUu3fvEzbzevjhh80OZ6G1a9eechPIPXv2qFevXoYms96Z3qiy2+NncnKyxo0bpyZNmsjhcKi0tFRz5szRkSNHNGLECNPjnXUzZ87UxIkTVVJSoj/+8Y+aP3++rr32Wn3//fd67LHHbFVMV1RU1OmYPyoqKlLPnj09nwcHB+vGG2+UdOZ1l/3Jqa4ukXz38tuzrXfv3vr000/Vp08f06PAoNO9cWu3592cBFLTt99+q2XLlumSSy6pceWu3Zb72bJli9q0aeP5O3H06FFt3bpVHTp0MDyZ9QoKCvT666/rwIEDcrlcioiI0Pfff6+LLrrI9GiWmjZtmlasWKGtW7dq8eLFGjRokB5//HEtWbLE9GgnoJiuh2bNmtnqcv3KykplZ2crPT1dGzduVGVlpd544w2/36jp56ZNm6bOnTurVatWWrNmzQlnt8ydO9fQZNYaN26c/vjHP+rmm29W586dJUk5OTlq3bq1ZwNEO+nZs6fnifGhQ4d03XXXSfJufrhu3TqT41mGzbzcWP/Pq1u3bp5/Gz+/msBOlyFX6969uz7++GPl5+fL5XLp0ksv9ZxF//M3gf1RVVWV50XTvHnzPGfCduzY0eRYRkRERCgnJ8fzN7RaTk6O7ZY1+fkyNsdfaXHgwAGrxzGGK0xOdN111+nBBx9UQECAgoODbfe8qlpubq6Sk5OVm5tb46xYO/0NLS4uVkRExAm32e1KRU4CqWny5MmmR/AJSUlJ+utf/+r5PCgoSBMnTtSyZcsMTmXGzJkzlZGR4Xm8qKqq8txmJ0FBQXI4HPr000919913a/jw4fr73/9ueqyTophGrTzzzDP64IMPdPnll+uOO+7Q3LlzNWDAANuV0tLp1/8rKCiwcBKzmjdvrrffflv//ve/PQVkYmKip5C1m5NtBGlnF198se3K6OOx/p/Xr371Kx07dkxxcXGKjY1VWFiY6ZGMczqdCg4OltPp1M6dOyXJNhvdHf/7//ONaeywlMnxHnzwQT3wwAN66KGH9H//93+SpE2bNmnBggV68sknDU9nrcDAQO3bt09RUVGS5Nmwae/evbb7vZBOvaSHHc+Ynjp1qp555hldccUVtvxdqJaSkqI//elPeuaZZ/T6669r6dKlJzyG+rM777xTY8aM0YwZMzzPL3/44QdNmTLlhKvT/N3JTgL53//+p969e5+wxKIdVL/BffToUUmy1YmDx3M6nWrUqJHn8+rnmXZU/QZmtYCAAFtmUVlZqa+++kqrVq3SjBkzJMlnc7DfIxfq5J133lG3bt00atQoz6WWditXqrGsSU29evXStdde69lg4GTrTtvBhRdeaHoE+BDW//N66623tHv3bmVkZOiuu+7S5ZdfriFDhqh37962LBmWLl2q2bNnKzw83PN31OFwaPXq1YYns8bu3bs1duzYEz6ufmFtJ71799aMGTO0YMECzZgxQw6HQ507d9a0adNstyTW7373O40bN65G6bRz5049/vjjtiudpJpLepSXl2vz5s3q3LmzLYvpsLAwWy5P8HPl5eW67rrr5HK51LJlS40bN07Dhw/XqFGjTI9mid///vcqLi7WoEGDPMs1lJWVacSIEYqNjTU8nbUmTJig+++/X506dVJYWJgGDRqkkJAQLV68WOPGjbPdY+auXbs0fvx4bd682fN3dNasWT65ju7ZFBQUpF27dnnu986dO227YWzz5s31zTff6KqrrpIkffPNN7Z8w2Ls2LGaNm2aevbsqQ4dOig/P99nTxxzuOx27Qvq5NChQ1q5cqXS09P1008/KS4uTunp6frkk09Mj2YEy5p4bdq0SWPGjPFcXllZWakXX3xRV1xxhenRLDVmzJhTvlnjcDj0wgsvWDsQjJo7d67y8vJOuv7fRRddpHHjxhme0Jx//OMfmjJliu6///4am53ZRb9+/bRkyRLbvpl1psso7bCcSbUvvvjC83H10/Hj/4786le/snwmk55//nktXrxYTZo0keQtne6//37PGdR2tW3bNi1evNhzxpOdLFy4UGFhYbrttttqrB9rt/0J7rzzTqWlpWnYsGF64okn1KpVKw0dOlTZ2dmmR7PMvn379MMPP3iWv2rRooX+/Oc/a9myZTUeT/3dgAED9OGHH0qS/vznP2vNmjVatGiR9uzZoz/+8Y9avny54Qmtde+99+r222/X0KFDJUnLli1TVlaWFi9ebHgya/3zn//UlClTPG9grlmzRk899ZRnvwY7+c9//qOHH37YczXitm3b9NJLL9myqzlXUEzjF8vNzdX777+vrKwstW/fXgMHDtRdd91leizL/HxZk5tvvlkDBgyw1RPD4911110aO3asZwmPzz//XC+88ILeffddw5NZ62Rly6FDh7RkyRIdOHDAs0My7KGyslJJSUlavXr1Cev/paam2u6qApfLpbVr1yojI0O5ubm67bbbFB8fr1atWpkezXJ33XWX7R4fj5eXl6ft27fr5ptvliQ9/fTTKikpkSTdc889iomJMTmepapfREvS9u3b1b59+xoFtd02bpLcl2Jv27ZNknt5m2bNmunGG2+07YkQx/vtb39ry9+JTp06nXCbHfcnWLx4seLi4rRp0yaNHTtWVVVVGjNmjG3e4E1LS9OTTz6p8PBwnX/++Ro/frwmTJigG264QY888oitNjW74447PK87xowZo549eyohIUGSFBcXp8zMTIPTWW/w4MEnlPEnu80O8vPz9e9//1uSdMMNN/js2bFW+Omnn7Rx40a5XC5169bNtksJfvbZZ9q8ebPKyso8tz300EMGJzo5e70yRoPo1KmTnnjiCU2cOFEff/yx5/Jsu2BZk5pKS0trrCvds2dPlZaWGpzIjOPP8isvL9eSJUv05ptvqn///rZb3gVsAnm8WbNm6R//+Ie6deumu+66Sz169DA9klG9evXSzJkzdfvtt9c4+88ua0zPmzdPAwYM8Hy+Zs0a3XPPPTp69KheffVVPf/88wans9bxexPExcXZsnT8uWbNmqlLly41brPjOTTHrzFdVVWlTZs2qaqqyuBE5uTm5poewSfce++9kqQ+ffpow4YNKisr81yRZQdvvvmmMjIy1KFDB3311Vf6/e9/r9mzZ9t2mZfCwkKFhYVpw4YNGjNmjOf248snuwgICND27dt16aWXSnKXs3ZdwuKSSy7RJZdcYnoMnxAWFmbL5a+ON3v2bG3atEnbtm1Tv379tHr1ap/dD4xiGnXWqFEjDRgwoMYLTDv47LPPtHLlSs2cOdOzrImvLiJvhaZNm+rzzz/3lPQbNmyw3eWV1aqqqpSWlqaXX35Z1157rd599121adPG9FgwyO6bQErSG2+8oUsuuURbt27VrFmzTjhutzKu+kym43fFttMa0zt37lT//v09nzdt2lSJiYmS5Pm/dmTnN7jPxI7ZHL/GdFBQkNq2bau5c+canMisAwcO6JtvvpHD4dBVV12l8PBw0yNZpvoKglOxy5uaQUFB6tChgyTpmmuuUZs2bWxbSo8aNUpxcXFq1KiRrrnmGs/vwMaNG3XBBRcYns5648aNU2JioueKq9zcXM2cOdPwVNb7+uuvNWvWLO3atUtOp9OzAeC6detMjwZD1qxZo4yMDA0ZMkTTpk3T6NGjfXZzbYpp4BcKDQ1VYmKiEhMTPcuaHDt2TImJibZb1kSSJk+erLFjx3rWe6uoqNC8efMMT2W9v/3tb5o7d64uueQSvfbaa54nz4DdLVq0SOXl5SdsOnL06FHP44ad2HXZp2qVlZU1Pp8zZ47n40OHDlk9DnzE6cq3n//O2MFbb71legSfsXbtWj366KOe0un777/XrFmzdP311xuezBqn29zQTm9qVlRUKC8vz3MFRUBAQI3P7VLQS9Jtt92m7t27a//+/TWWuomOjtb06dMNTmZGnz599MEHH+ibb76Ry+VS165dFRERYXosyz3++ON68MEH1bVrV1tuLo4TBQcHKygoSA6HQxUVFWrVqpX27NljeqyTopgG6sHuy5pIUpcuXfTRRx8pPz9fLpdLl156qRo1amR6LMuNGzdOF1xwgRo1aqSXXnrphON2PtMJ9rZ27VpdeumlJ+wSv2TJEu3Zs0e9evUyNJm1ysvLFRwcfMqljuxypUlFRYUOHz7suQS9ffv2kqTDhw+rvLzc5GiWO76MLSsrq1GySPYqWk5Xvh2/5I2/W7p06WmP2/Gqgueff15Lly71PFbk5eXp0UcftU0xbfc3M6sdO3ZMI0eOrHFb9ed2KuirRUVFKSoqqsZtdty34+fsXMg2adJEAwcOND0GfEjz5s1VWlqqbt26KSkpSVFRUT67zA2bHwKot9LSUu3Zs6fGkiZ2ekEtuXeAPt3lxsevQQ3Yye23364VK1ac8ETI6XRq8ODBysrKMjSZtao3K+rUqZMcDkeNAtJOG3m9+OKL2rp1q55++mlPOX348GE98cQTuuSSSzR27FjDE1qnb9++pzxmx6IF0qRJkyS5l67YsGGDZy3IdevW6YYbbrDlFWmDBg3SihUrznibvzrTvi12eVMTOJWPPvpIU6ZM0ZVXXqmqqirl5uZq+vTpuummm0yPZqnnn39eV199te3XVYbX/v37FRoaKqfTqcWLF6ukpETDhw/3ySV/KKYB1MvSpUs1e/ZshYeHe4pZO76gdjqd+uijjxQWFqZevXrpz3/+s9atW6d27dpp9OjRCgkJMT0iYMTAgQO1cuXKX3wM/qmyslJJSUlavXq12rVrJ0nasWOH+vXrp2effVZBQVzMB4wePVpJSUlq27atJGnXrl167rnnbLU5aLURI0Zo0KBBGjJkiCQpIyNDy5cv15tvvml2MIuc7M3ManZ6UxM4ldtuu00LFizwbPq3Y8cOPfDAA/rb3/5meDJr9ezZUwcPHlTz5s0VHBzMGtM4p/DsH0C9LFq0SFlZWbrwwgtNj2LUk08+qS1btqi8vFxt2rRRWVmZbrzxRn3xxReaOnWqLV9MApJ7CYvS0tITzuo6cuSI7ZZukKS0tDRdd911tt0YNSgoSLNnz9YPP/ygnJwcSVLnzp1tv0kocLz//e9/nlJaktq2bav8/HyDE5kzbdo0TZgwQcnJyXI4HIqJiTnpRrr+Kjc31/QIgE8LCwvzlNKS1K5dO1ttkFotPT3d9AjwEWPGjDntldy+uMQoxTSAeomKirJ9KS1JX375pT744AOVlpbqhhtu0Oeff67g4GDFx8dr0KBBpscDjBkwYIAmTpxYY+mGkpISTZ06Vbfeeqvh6ayXk5OjN954QxUVFerZs6euu+469ezZUy1atDA9mqUuvvhiymjgFMLDwzV//nzP2vzp6em2LFok6aKLLtJ7772nI0eOyOVyef6OALC36mVubrjhBr388sv67W9/K5fLpWXLlunmm282PJ31eD2Oar/5zW9Mj/CLsZQHgHqZN2+ejh07pttvv73GBkV2W2M6Li5OmZmZJ3wsedeWBezoVEs39O3bV6mpqbZdumHPnj365JNP9Oqrr6qgoIDLsQF4FBYWasaMGVq/fr0k9yXakydPtu3mZjt37tTOnTtr7GVil3VUf//73+vPf/6zevbsWeMMOC7Th92xzE1NBQUFmjVrlnJzc1VWVua53W7La+LcZM9XgwAaTHUB+/e//91zmx3XmC4vL1deXp5cLleNjyXVeHIA2M3Pl25wuVy64oorbHu27Hfffad169Zp3bp12rdvn2644QbPBmcAIEmtWrWy5UaHJzNnzhylpaWpffv2CggIkOR+nmmXYrp62RIu0wdqYpmbmiZPnqwBAwZo8+bNmj17tt555x1ddNFFpseCQXv37tVTTz2l9evXy+FwqEePHnr88cfVsmVL06OdgDOmAaAB9O3b95TH7FjUAzi5Tp06qVu3bho/fry6d+9uehwAPqi0tFSvvPKKdu3apTlz5igvL0/5+fm66aabTI9muZtvvlkZGRks4SGpoqJC+fn5cjgcuuSSS2x7xRGAE1VfsVu9sXhVVZVGjBihJUuWmB4NhowYMULdu3evsSzYhg0bfHLzYP6aAai3devWKS8vT8OGDVNRUZEOHTpUYxMKO8jOzjY9AoBzwHvvvafPP/9c8+fPV1FRka6++mr16tVLt9xyi+nRAPiIlJQURUVFec4IbN26tcaPH2/LYjoqKopSWu69TMaPH68mTZp4rs577rnndPXVV5seDYAPaNSokSSpWbNm+vHHH9WiRQv9+OOPhqeCSQcOHNBDDz3k+fzBBx/UqlWrDE50ahTTAOrl1Vdf1Zo1a7Rv3z4NGzZMFRUVmjx5st555x3TowGAz+nSpYu6dOmiwYMH65NPPtErr7yiv/71r7ZbCxHAqW3ZskWpqan67LPPJEnNmzdXVVWV4anM6Nq1qx555BHdeuutNfYysctSHtWmTZum2bNn61e/+pUkd1GdkpKiFStWGJ4MgC/o3r27Dh48qLvvvltDhgxRcHCwLTcZh9fFF1+sH374wbN84s6dO9WhQwfDU50cxTSAesnKylJ6errnEpHWrVvr8OHDhqcCAN80bdo0rVu3TmVlZerZs6f+9Kc/qWfPnqbHAuBDqs98q1ZWVnbSDb7sYNOmTZKkt956y3ObndaYrta4cWNPKS25S6gmTZoYnAiAL+ndu7cCAwMVFxena6+9Vj/++KMqKipMjwWDDh8+rMGDB+uaa66RJH399df61a9+pbFjx0qS5s6da3K8GiimAdRLkyZNTngBdfyu4QAA6ccff9QFF1ygjh076t5771Xbtm09x/773//65EYkAMzo3r27Fi5cqPLycq1fv16LFy8+7V4W/uz4QtrOunfvrhUrVmjQoEGSpJUrV6pPnz6GpwLgK2bOnKmMjAxJ0gUXXKDWrVtr6NChnttgPwMHDtTAgQM9n8fGxhqc5vQopgHUS+vWrfXll1/K4XCoqqpKCxcu9NlLRADAlNGjRysjI0Px8fH67W9/q/fff99z7IknnuCFAwCPcePG6fXXX1fz5s01e/Zs9e3bV6NGjTI9ljElJSXKz89XWVmZ57bjzx62g4yMDC1evFhPPPGEJKm8vFzh4eF6++235XA4tG7dOsMTAjDJ5XLVODksICBATqfT4EQw7Y477jA9Qq1RTAOolylTpmjixInaunWrrrrqKnXv3l2zZ882PRYA+JTjL8OvrKw85TEA9rV06VLPx6GhoYqLi/N8/u677yoxMdHAVGZ9+OGHSk1N1aFDh9SyZUvt3LlTnTp1st2beenp6aZHAODDmjdvrm+++UZXXXWVJOmbb75Rs2bNDE8Fk4qLizV9+nStW7dODodDvXr10uOPP66IiAjTo52AYhpAvURFRWnRokUqLS1VVVWVmjdvbnokAPA5x5/F8vPljlj+CIAkTZ8+XVdeeSVXnh1n4cKFWrZsme677z5lZmbqX//6lz766CPTY1nuwgsvND0CAB/26KOPavTo0brsssskSdu2bdNLL71keCqYlJycrMsuu0xJSUlyuVx67733NHXqVJ/8vaCYBlAna9asOe1xu21KAwCnU1ZWpry8PLlcrhofVx8DgBkzZigzM1Pbtm1TXFycYmNjFRYWZnoso4KCghQZGem5JP3666/Xiy++aHgq6xUUFGjWrFnKzc2t8Tdj9erVBqcC4Cu6deumDz74QBs3bpTL5VK3bt1s//fD7nbu3Fnj7+WYMWM0ePBggxOdGsU0gDp5/fXXJbnXuNu0aZMuv/xySdKWLVvUtWtXimkAOM6xY8c0cuRIz+fHf8wZ0wAkaejQoRo6dKh2796tjIwM3X333br88sv1wAMPqGPHjqbHMyI4OFgul0sXX3yx3nrrLV144YU6cOCA6bEsN3nyZA0YMECbN2/W7Nmz9c477+iiiy4yPRYAHxIWFsZrcHhUVVWpqKhIkZGRkqSioiJVVVUZnurkKKYB1En1LumPPvqoJk+e7FnP6ttvv62xqRcAQMrOzjY9AoBzRJs2bTRixAi1aNFC8+bN0/XXX2/bYnrs2LE6fPiwJkyYoJSUFJWUlCg5Odn0WJY7cOCA7rzzTi1ZskTdunXTVVddpREjRpgeCwDgo+677z7FxcXpxhtvlMPh0Jo1a/TII4+YHuukKKYB1EteXp6nlJakLl26KCUlxdxAAAAA5yCXy6W1a9dq2bJl2rJli2677Ta99957atu2renRjLnuuuskSSEhIXrzzTfNDmNQo0aNJEnNmjXTjz/+qBYtWujHH380PBUAwFfFxcWpc+fO2rBhg1wul+655x7PGuS+hmIaQL0EBQVp+fLlnvWKVqxYoaAgHloAAAB+iT59+igqKkpDhgzR6NGj5XA4VFZWpm3btkmSz76gPBuWLl162uOJiYkWTWLewYMHdd555+mnn35SQkKChgwZouDgYN16662mRwMA+LALLrhA3bp10xVXXGF6lNNyuKp33gGAOti2bZsee+wxbd26VQEBAerQoYOSkpLUvXt306MBAACcM/r27ev52OFw6PiXaQ6Hw1Yb3U2aNOm0x5955hmLJjHrww8/1KRJk9S8eXOVl5frxRdf1MUXX6zDhw979ncBAODn1qxZo6lTpyowMFDZ2dnatGmT5s+fr4ULF5oe7QQU0wAaxI8//qiMjAytWLFCLpdLH330kemRAAAAgHPWwIEDNXPmTMXExOjzzz/X/PnzPfu8AABwKkOHDtXChQs1cuRIZWZmSpIGDBigDz/80OxgJ8H19gDqrLKyUtnZ2UpPT9fGjRtVWVmpRYsW1VhzGgAAAKiL0tJSvfLKK9q1a5fmzJmjvLw85efn66abbjI9miUCAgIUExMjSerZs6eeffZZwxMBAM4VUVFRNT4PDg42NMnpBZgeAMC56ZlnntGNN96od999V7GxsVqzZo3CwsIopQEAANAgUlJSVFlZqdzcXElS69at9dJLLxmeyjoVFRXKy8vTtm3btG3bNpWXl9f4HACAk2nevLn2798vh8MhSVq/fr1CQkIMT3VynDENoE7eeecddevWTaNGjVLPnj0lyfOgBwAAANTXli1blJqaqs8++0yS+4V2VVWV4amsc+zYMY0cObLGbdWf223dcQBA7U2YMEEjR47U7t27NXz4cO3YsUMvv/yy6bFOimIaQJ189tlnWrlypWbOnKmffvpJcXFxcjqdpscCAACAn2jUqFGNz8vKymSnLZKys7NNjwAAOAd16dJFS5Ys0ddffy1J6tatm0JDQw1PdXJsfgig3nJzc/X+++8rKytL7du318CBA3XXXXeZHgsAAADnsJkzZyo0NFQrVqxQcnKyFi9erI4dO2rcuHGmRwMAwOeVl5fXOIGwadOmBqc5OYppAA2moqJCH3/8sTIyMvTaa6+ZHgcAAADnsIqKCr3++uueM4f79u2rUaNGKTAw0PBkAAD4ro8++khPPfWU9u3bJ0lyuVxyOBzavHmz4clORDENAAAAAPAZS5cuPe3xxMREiyYBAODcc/PNNys1NVVdu3ZVQECA6XFOizWmAQAAAAA+Y/r06bryyivVoUMH06MAAHDOCQsL09VXX216jFrhjGkAAAAAgM9IT09XZmamjh07pri4OMXGxiosLMz0WAAAnBNeeeUVhYSEaMCAAWrcuLHndtaYBgAAAACgFnbv3q2MjAz97W9/0+WXX64HHnhAHTt2ND0WAAA+rVOnTp6PHQ6HT68xzVIeAAAAAACf06ZNG40YMUItWrTQvHnzdP3111NMAwBwBrm5uaZHqDXOmAYAAAAA+AyXy6W1a9dq2bJl2rJli2677TbFxcWpbdu2pkcDAAANiGIaAAAAAOAzevfuraioKA0ZMkQ9evSQw+Gocfyyyy4zNBkAAGhIFNMAAAAAAJ/Rt29fz8fVa2Me//nq1atNjAUAABoYxTQAAAAAAAAAwFIBpgcAAAAAAAAAANgLxTQAAAAAAAAAwFIU0wAAAAAAAAAAS1FMAwAAAAAAAAAs9f8BHyqn5Q0U+4gAAAAASUVORK5CYII=",
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
"text/plain": [
"<Figure size 1800x360 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(25, 5))\n",
"sns.set_theme()\n",
"act_mut_all[\"tumor_types\"].value_counts().sort_index().plot(kind=\"bar\")\n",
"#sns.countplot(x=profile_mut_all[\"tumor_types\"], palette=sns.hls_palette(2))\n",
"plt.xticks(rotation=90);\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Multinomial Naive Bayes classifier"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
{
"name": "stdout",
"output_type": "stream",
"text": [
"AdenoCA 7712\n",
"SCC 2188\n",
"cancer 1639\n",
"HCC 1318\n",
"Melanoma 1231\n",
"BNHL 822\n",
"RCC 775\n",
"GBM 605\n",
"Medullo 557\n",
"CA 462\n",
"cell 389\n",
"CMDI 357\n",
"LGG 326\n",
"CLL 302\n",
"Papillary 297\n",
"neoplasm 247\n",
"ALL 240\n",
"Ewings 231\n",
"AML 230\n",
"30 212\n",
"bone 203\n",
"Name: tumor_types, dtype: int64\n",
" precision recall f1-score support\n",
"\n",
" 0 0.00 0.00 0.00 48\n",
" 1 0.00 0.00 0.00 41\n",
" 2 0.00 0.00 0.00 59\n",
" 3 0.38 1.00 0.55 1532\n",
" 4 0.00 0.00 0.00 149\n",
" 5 0.00 0.00 0.00 91\n",
" 6 0.00 0.00 0.00 69\n",
" 7 0.00 0.00 0.00 75\n",
" 8 0.00 0.00 0.00 45\n",
" 9 0.00 0.00 0.00 114\n",
" 10 0.00 0.00 0.00 272\n",
" 11 0.00 0.00 0.00 68\n",
" 12 0.00 0.00 0.00 111\n",
" 13 0.83 0.02 0.04 242\n",
" 14 0.00 0.00 0.00 61\n",
" 15 0.00 0.00 0.00 149\n",
" 16 0.00 0.00 0.00 460\n",
" 17 0.00 0.00 0.00 39\n",
" 18 0.00 0.00 0.00 315\n",
" 19 0.00 0.00 0.00 76\n",
Loading
Loading full blame...