Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
!-------------------------------------------
! NEW OCTREEBIT LIBRARY (WRITTEN 26-27/02/2004) BY JEAN BRAUN
! This version addresses problems that arose in the computation
! of the icon array for very large octrees. This new version is much
! more efficient and uses the same amount of memory (sometimes less).
! Many of the querry routines have been greatly improved by storing
! additional information in the octree structure. Data storage and
! navigation within the octree are based on the methods described by
! Frisken and Perry from Mitsubishi Electric Research Lab.
! The computation of the icon array is based on a three stage method:
! (1) Compute icon and a nodal position array disregarding the nodal connectivity
! (2) Sort the nodal arrays by ordering along x, y and z coordinates
! (3) Remove the spurious nodes and modify the icon array accordingly
! Because a fast sorting method is used (O(n log log n)), this approach
! is rather efficient.
!=======================!
!=====[OCTREE_INIT]=====!
!=======================!
subroutine octree_init (octree,noctree)
! This routine must be called before any other routine when an octree is created
! the basic structure of the octree is
! octree(1)=maximum level (unit cube is level 0)
! octree(2)=number of leaves
! octree(3)=total length of octree
! for each cube in the octree (at location loc)
! octree(loc)=level
! octree(loc+1)=address of parent
! octree(loc+2 to loc+9)=address of children (if negative the child is a leaf and the
! value is the leaf number in the sequence of leaves)
implicit none
integer noctree,octree(noctree)
integer levelmax,nleaves,length,loc,k
levelmax=1
nleaves=8
length=13
octree(1)=levelmax
octree(2)=nleaves
octree(3)=length
loc=4
octree(loc)=1
octree(loc+1)=0
do k=1,8
octree(loc+1+k)=-k
enddo
return
end
!====================================!
!=====[FIND_INTEGER_COORDINATES]=====!
!====================================!
subroutine find_integer_coordinates (x,y,z,ix,iy,iz,levelmax)
! returns the integer coordinates of point (x,y,z) in (ix,iy,iz)
! the integer coordinates are determined by the maximum level in the octree
! levelmax
! the integer coordinate is comprise between 1 and 2**levelmax
! and corresponds to the location of the leaf containing the
! point of given coordinates
implicit none
double precision x,y,z
integer ix,iy,iz,levelmax
double precision powermax
powermax=2.d0**levelmax
ix=int(x*powermax)
iy=int(y*powermax)
iz=int(z*powermax)
return
end
!=================================!
!=====[FIND_REAL_COORDINATES]=====!
!=================================!
subroutine find_real_coordinates (ix,iy,iz,x,y,z,levelmax)
! returns the real coordinates of a point of integer coordinates (ix,iy,iz)
! the real coordinates are determined by the maximum level in the octree
implicit none
double precision x,y,z
integer ix,iy,iz,levelmax
double precision powermax
powermax=2**levelmax
x=dfloat(ix)/powermax
y=dfloat(iy)/powermax
z=dfloat(iz)/powermax
return
end
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
!========================================!
!=====[OCTREE_CREATE_FROM_PARTICLE]=====!
!========================================!
subroutine octree_create_from_particle (octree,noctree,x,y,z,np,level)
! updates the octree by creating a leaf at point (x,y,z)
! of level level
! if the leaf (or a cube of smaller level) exists, the routine has no effect on the octree
! note that x,y,z must belong to [0,1[
implicit none
integer noctree,octree(noctree),np
double precision x,y,z
integer level
double precision xp,yp,zp
integer levelin,ix,iy,iz,levelmax,loc,ip
levelmax=octree(1)
xp=x
yp=y
zp=z
levelin=0
loc=4
if (xp.eq.1.d0) xp=1.d0-1.d-20
if (yp.eq.1.d0) yp=1.d0-1.d-20
if (zp.eq.1.d0) zp=1.d0-1.d-20
if (xp.eq.0.d0) xp=1.d-20
if (yp.eq.0.d0) yp=1.d-20
if (zp.eq.0.d0) zp=1.d-20
if (xp*(xp-1.d0).lt.0.d0 .and. yp*(yp-1.d0).lt.0.d0 .and. zp*(zp-1.d0).lt.0.d0) &
call update (octree,noctree,xp,yp,zp,level,levelin,loc)
return
end
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!========================================!
!=====[OCTREE_CREATE_FROM_PARTICLES]=====!
!========================================!
subroutine octree_create_from_particles (octree,noctree,x,y,z,np,level)
! updates the octree by creating a leaf at points (x(1:np),y(1:np),z(1:np))
! of level level(1:np)
! if the leaf (or a cube of smaller level) exists, the routine has no effect on the octree
! note that x,y,z must belong to [0,1[
implicit none
integer noctree,octree(noctree),np
double precision x(np),y(np),z(np)
integer level(np)
double precision xp,yp,zp
integer levelin,ix,iy,iz,levelmax,loc,ip
levelmax=octree(1)
do ip=1,np
xp=x(ip)
yp=y(ip)
zp=z(ip)
levelin=0
loc=4
if (xp.eq.1.d0) xp=1.d0-1.d-20
if (yp.eq.1.d0) yp=1.d0-1.d-20
if (zp.eq.1.d0) zp=1.d0-1.d-20
if (xp.eq.0.d0) xp=1.d-20
if (yp.eq.0.d0) yp=1.d-20
if (zp.eq.0.d0) zp=1.d-20
if (xp*(xp-1.d0).lt.0.d0 .and. yp*(yp-1.d0).lt.0.d0 .and. zp*(zp-1.d0).lt.0.d0) &
call update (octree,noctree,xp,yp,zp,level(ip),levelin,loc)
enddo
return
end
!==================!
!=====[UPDATE]=====!
!==================!
recursive subroutine update (octree,noctree,x,y,z,level,levelin,loc)
! DO NOT USE
! internal routine called by OctreeUpdate
! this routine divides a cube of the octree in 8
! if the requested level is greater than0
! and if the requested level is stricly greater than levelin
! loc is the location in the octree of the current cube (to be divided)
implicit none
integer noctree,octree(noctree),ix,iy,iz,levelin,level,loc
double precision x,y,z
integer ibits_jean
external ibits_jean
integer levelmax,ibitx,ibity,ibitz,ichild,iaddress,newaddress
if (level.eq.0) return
if (levelin+1.eq.level) return
levelmax=octree(1)
call find_integer_coordinates (x,y,z,ix,iy,iz,levelmax)
ibitx=ibits_jean(ix,levelmax-levelin-1)
ibity=ibits_jean(iy,levelmax-levelin-1)
ibitz=ibits_jean(iz,levelmax-levelin-1)
ichild=loc+2+ibitz*4+ibity*2+ibitx
if (ichild.gt.octree(3)) then
print*,ichild,' requested ',octree(3),' available'
stop 'octree needs to grow...'
endif
iaddress=octree(ichild)
if (iaddress.lt.0) then
!adds a level
newaddress=octree(3)+1
! updates current level
octree(ichild)=newaddress
! updates octree length
octree(3)=octree(3)+10
! updates number of leaves
octree(2)=octree(2)+7
! updates maximum level
if (levelin+2.gt.octree(1)) octree(1)=levelin+2
! creates new division
octree(newaddress)=levelin+2
octree(newaddress+1)=ichild
octree(newaddress+2)=iaddress
octree(newaddress+3)=-(octree(2)-6)
octree(newaddress+4)=-(octree(2)-5)
octree(newaddress+5)=-(octree(2)-4)
octree(newaddress+6)=-(octree(2)-3)
octree(newaddress+7)=-(octree(2)-2)
octree(newaddress+8)=-(octree(2)-1)
octree(newaddress+9)=-(octree(2))
call update (octree,noctree,x,y,z,level,levelin+1,newaddress)
else
call update (octree,noctree,x,y,z,level,levelin+1,iaddress)
endif
return
end
!=================!
!=====[IBITS]=====!
!=================!
integer function ibits_jean(i,ipos)
!internal function, do not modify
integer j
j=i/2**ipos
ibits_jean=j-(j/2)*2
return
end
!============================!
!=====[OCTREE_FIND_LEAF]=====!
!============================!
subroutine octree_find_leaf (octree,noctree,x,y,z,leaf,level,loc,x0,y0,z0,dxyz)
! given an octree of size noctree
! this routine returns the leaf number in which a point (x,y,z) resides
! the level of the leaf (0 is unit cube)
! the location in the octree of the part describing the parent of the leaf (loc)
! the centroid of the leaf (x0,y0,z0) and its size (dxyz)
implicit none
integer noctree,octree(noctree)
double precision x,y,z,x0,y0,z0,dxyz
integer leaf,level,loc
integer ix,iy,iz,levelin,locin,levelmax
levelmax=octree(1)
call find_integer_coordinates (x,y,z,ix,iy,iz,levelmax)
levelin=0
locin=4
leaf=0
call find_leaf (octree,noctree,ix,iy,iz,levelin,locin,leaf,level,loc)
call find_integer_coordinates (x,y,z,ix,iy,iz,level)
call find_real_coordinates (ix,iy,iz,x0,y0,z0,level)
dxyz=1.d0/2.d0**level
return
end
!=====================!
!=====[FIND_LEAF]=====!
!=====================!
recursive subroutine find_leaf (octree,noctree,ix,iy,iz,levelin,locin,leaf,level,loc)
! DO NOT USE
! internal routine used by octree_find_leaf
implicit none
integer noctree,octree(noctree),ix,iy,iz,levelin,leaf,level,loc,locin
integer levelmax,ibitx,ibity,ibitz,ichild,iaddress
integer ibits_jean
external ibits_jean
levelmax=octree(1)
!ibitx=ibits(ix,levelmax-levelin-1,1)
!ibity=ibits(iy,levelmax-levelin-1,1)
!ibitz=ibits(iz,levelmax-levelin-1,1)
ibitx=ibits_jean(ix,levelmax-levelin-1)
ibity=ibits_jean(iy,levelmax-levelin-1)
ibitz=ibits_jean(iz,levelmax-levelin-1)
ichild=locin+2+ibitz*4+ibity*2+ibitx
if (ichild.gt.octree(3)) stop 'octree needs to grow...'
iaddress=octree(ichild)
if (iaddress.lt.0) then
leaf=-iaddress
level=levelin+1
loc=locin
return
else
call find_leaf (octree,noctree,ix,iy,iz,levelin+1,iaddress,leaf,level,loc)
endif
return
end
!===============================!
!=====[OCTREETHROUGHLEAVES]=====!
!===============================!
subroutine OctreeThroughLeaves (octree,noctree)
! DO NOT USE
! this is a general routine that simply goes through the leaves
! this routine is used as a template to build other routines.
! it should not be used
implicit none
integer noctree,octree(noctree)
integer loc,ix,iy,iz
loc=4
ix=0
iy=0
iz=0
call throughleaves (octree,noctree,loc,ix,iy,iz)
return
end
!=========================!
!=====[THROUGHLEAVES]=====!
!=========================!
recursive subroutine throughleaves (octree,noctree,loc,ix,iy,iz)
! DO NOT USE
! internal routine
! on entry we have the address of the current cube
! and the binary coordinates of its bottom corner
implicit none
integer noctree,octree(noctree),loc,ix,iy,iz
integer level,levelmax,ipower,ixn,iyn,izn,locn
integer idx,idy,idz,k
level=octree(loc)
levelmax=octree(1)
do idz=0,1
do idy=0,1
do idx=0,1
k=idx+idy*2+idz*4
locn=octree(loc+2+k)
ipower=2**(levelmax-level)
ixn=ix+idx*ipower
iyn=iy+idy*ipower
izn=iz+idz*ipower
if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! their coordinates (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
else
call throughleaves (octree,noctree,locn,ixn,iyn,izn)
endif
enddo
enddo
enddo
return
end
!===========================!
!=====[OCTREE_SMOOTHEN]=====!
!===========================!
subroutine octree_smoothen (octree,noctree)
! as it names indicates this routine smoothens the octree
! ie it ensures that no two adjacent leaves are more than one level apart
implicit none
integer noctree,octree(noctree)
integer loc,ix,iy,iz,nleaves,nleaves0
integer ioctree_number_of_elements
nleaves=ioctree_number_of_elements (octree,noctree)
do while (nleaves.ne.nleaves0)
nleaves0=nleaves
loc=4
ix=0
iy=0
iz=0
call smooth (octree,noctree,loc,ix,iy,iz)
nleaves=ioctree_number_of_elements (octree,noctree)
enddo
return
end
!==================!
!=====[SMOOTH]=====!
!==================!
recursive subroutine smooth (octree,noctree,loc,ix,iy,iz)
! DO NOT USE
! internal routine
! on entry we have the address of the current cube
! and the binary coordinates of its bottom corner
implicit none
integer noctree,octree(noctree),loc,ix,iy,iz
integer level,levelmax,ipower,ixn,iyn,izn,locn
integer k,idx,idy,idz,ip
integer ipmax,iddx,iddy,iddz,ixp,iyp,izp,levelin,locp
double precision xp,yp,zp
level=octree(loc)
levelmax=octree(1)
do idz=0,1
do idy=0,1
do idx=0,1
k=idx+idy*2+idz*4
locn=octree(loc+2+k)
ipower=2**(levelmax-level)
ixn=ix+idx*ipower
iyn=iy+idy*ipower
izn=iz+idz*ipower
if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! the binary coordinate of their bottom corner (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
! the address of their parent (loc)
! first check that `right' neighbours are not down by more than 1 level
ipmax=2**levelmax
ip=2**level
izp=izn+ipower
iyp=iyn+ipower
ixp=ixn+ipower
if (izp.lt.ipmax) then
zp=dfloat(izp)/ipmax
yp=dfloat(iyn)/ipmax
xp=dfloat(ixn)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,level-1,levelin,locp)
endif
if (iyp.lt.ipmax) then
zp=dfloat(izn)/ipmax
yp=dfloat(iyp)/ipmax
xp=dfloat(ixn)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,level-1,levelin,locp)
endif
if (ixp.lt.ipmax) then
zp=dfloat(izn)/ipmax
yp=dfloat(iyn)/ipmax
xp=dfloat(ixp)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,level-1,levelin,locp)
endif
! second check if the 'left' neighbours are not down by more than one level
izp=izn-1
iyp=iyn-1
ixp=ixn-1
if (izp.ge.0) then
zp=dfloat(izp)/ipmax
yp=dfloat(iyn)/ipmax
xp=dfloat(ixn)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,level-1,levelin,locp)
endif
if (iyp.ge.0) then
zp=dfloat(izn)/ipmax
yp=dfloat(iyp)/ipmax
xp=dfloat(ixn)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,level-1,levelin,locp)
endif
if (ixp.ge.0) then
zp=dfloat(izn)/ipmax
yp=dfloat(iyn)/ipmax
xp=dfloat(ixp)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,level-1,levelin,locp)
endif
else
call smooth(octree,noctree,locn,ixn,iyn,izn)
endif
enddo
enddo
enddo
return
end
!=================================!
!=====[OCTREE_SUPER_SMOOTHEN]=====!
!=================================!
subroutine octree_super_smoothen (octree,noctree)
! as it names indicates this routine further smoothens the octree
! ie it ensures that for any given leaf and its six closest neighbouring
! leaves, ther is no difference in level larger than 1
! Note that contrary to octree_smoothen, octree_super_smoothen can
! be used iteratively to increase the smoothness of the octree
implicit none
integer noctree,octree(noctree)
integer loc,ix,iy,iz,nleaves,nleaves0
integer ioctree_number_of_elements
nleaves=ioctree_number_of_elements (octree,noctree)
do while (nleaves.ne.nleaves0)
nleaves0=nleaves
loc=4
ix=0
iy=0
iz=0
call super_smooth (octree,noctree,loc,ix,iy,iz,nleaves)
nleaves=ioctree_number_of_elements (octree,noctree)
enddo
call octree_smoothen (octree,noctree)
return
end
!========================!
!=====[SUPER_SMOOTH]=====!
!========================!
recursive subroutine super_smooth (octree,noctree,loc,ix,iy,iz,nleaves0)
! DO NOT USE
! internal routine
! on entry we have the address of the current cube
! and the binary coordinates of its bottom corner
implicit none
integer noctree,octree(noctree),loc,ix,iy,iz
integer level,levelmax,ipower,ixn,iyn,izn,locn
integer k,idx,idy,idz,ip
integer ipmax,iddx,iddy,iddz,ixp,iyp,izp,levelin,locp
double precision xp,yp,zp
integer levelout(6),levelset,leaf,locin,nleaves0
level=octree(loc)
levelmax=octree(1)
do idz=0,1
do idy=0,1
do idx=0,1
k=idx+idy*2+idz*4
locn=octree(loc+2+k)
ipower=2**(levelmax-level)
ixn=ix+idx*ipower
iyn=iy+idy*ipower
izn=iz+idz*ipower
if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! the binary coordinate of their bottom corner (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
! the address of their parent (loc)
! first find `right' neighbours levels
ipmax=2**levelmax
ip=2**level
izp=izn+ipower
iyp=iyn+ipower
ixp=ixn+ipower
levelout=level
if (izp.lt.ipmax) then
levelin=0
locin=4
leaf=0
call find_leaf (octree,noctree,ixn,iyn,izp,levelin,locin,leaf,levelout(1),locp)
if (leaf.gt.nleaves0) levelout(1)=level
endif
if (iyp.lt.ipmax) then
levelin=0
locin=4
leaf=0
call find_leaf (octree,noctree,ixn,iyp,izn,levelin,locin,leaf,levelout(2),locp)
if (leaf.gt.nleaves0) levelout(2)=level
endif
if (ixp.lt.ipmax) then
levelin=0
locin=4
leaf=0
call find_leaf (octree,noctree,ixp,iyn,izn,levelin,locin,leaf,levelout(3),locp)
if (leaf.gt.nleaves0) levelout(3)=level
endif
! second find 'left' neighbours levels
izp=izn-1
iyp=iyn-1
ixp=ixn-1
if (izp.ge.0) then
levelin=0
locin=4
leaf=0
call find_leaf (octree,noctree,ixn,iyn,izp,levelin,locin,leaf,levelout(4),locp)
if (leaf.gt.nleaves0) levelout(4)=level
endif
if (iyp.ge.0) then
levelin=0
locin=4
leaf=0
call find_leaf (octree,noctree,ixn,iyp,izn,levelin,locin,leaf,levelout(5),locp)
if (leaf.gt.nleaves0) levelout(5)=level
endif
if (ixp.ge.0) then
levelin=0
locin=4
leaf=0
call find_leaf (octree,noctree,ixp,iyn,izn,levelin,locin,leaf,levelout(6),locp)
if (leaf.gt.nleaves0) levelout(6)=level
endif
! if the difference in level between the leaf and any of its neighbours is greater
! than 1, all leaves are set to the maximum level minus one at least
if (maxval(levelout)-minval(levelout).gt.1) then
levelset=maxval(levelout)-1
! now check that `right' neighbours are at least at this level
izp=izn+ipower
iyp=iyn+ipower
ixp=ixn+ipower
if (izp.lt.ipmax) then
zp=dfloat(izp)/ipmax
yp=dfloat(iyn)/ipmax
xp=dfloat(ixn)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,levelset,levelin,locp)
endif
if (iyp.lt.ipmax) then
zp=dfloat(izn)/ipmax
yp=dfloat(iyp)/ipmax
xp=dfloat(ixn)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,levelset,levelin,locp)
endif
if (ixp.lt.ipmax) then
zp=dfloat(izn)/ipmax
yp=dfloat(iyn)/ipmax
xp=dfloat(ixp)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,levelset,levelin,locp)
endif
! now check that 'left' neighbours are at least at this level
izp=izn-1
iyp=iyn-1
ixp=ixn-1
if (izp.ge.0) then
zp=dfloat(izp)/ipmax
yp=dfloat(iyn)/ipmax
xp=dfloat(ixn)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,levelset,levelin,locp)
endif
if (iyp.ge.0) then
zp=dfloat(izn)/ipmax
yp=dfloat(iyp)/ipmax
xp=dfloat(ixn)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,levelset,levelin,locp)
endif
if (ixp.ge.0) then
zp=dfloat(izn)/ipmax
yp=dfloat(iyn)/ipmax
xp=dfloat(ixp)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,levelset,levelin,locp)
endif
endif
else
call super_smooth(octree,noctree,locn,ixn,iyn,izn,nleaves0)
endif
enddo
enddo
enddo
return
end
!===============================!
!=====[OCTREE_SHOW_AS_MESH]=====!
!===============================!
subroutine octree_show_as_mesh (octree,noctree)
! routine to show the octree as a mesh in vrml
! produces a VRML file called mesh.wrl
! this is mostly used for debugging purposes
implicit none
integer noctree,octree(noctree)
integer loc,ix,iy,iz
open (7,file='mesh.wrl',status='unknown')
write (7,'(a)') '#VRML V2.0 utf8'
write (7,'(a)') 'Transform { children ['
write (7,'(a)') 'NavigationInfo { '
write (7,'(a)') 'type ["EXAMINE"]'
write (7,'(a)') 'headlight FALSE}'
write (7,'(a)') 'Background{groundColor 1 1 1 skyColor 1 1 1}'
write (7,'(a)') 'DirectionalLight {ambientIntensity 0.2'
write (7,'(a)') ' color 1 1 1'
write (7,'(a)') ' direction .8 1 .5}'
write (7,'(a)') 'DirectionalLight {ambientIntensity 0.2'
write (7,'(a)') ' color 1 1 1'
write (7,'(a)') ' direction -.8 -1 -.5}'
write (7,'(a)') 'Transform { children Viewpoint {'
write (7,'(a)') ' description "Starting"'
write (7,'(a)') ' fieldOfView 1'
write (7,'(a,3f12.8,a)') ' position ',-.41885125637054443, -.8311104774475098, 1.5406757593154907
write (7,'(a,4f12.8,a)') ' orientation ', .7352051138877869, -.10698327422142029, -.669348955154419, 1.3260198831558228,'}}'
write (7,'(a,a)') 'DEF Node0 Shape{geometry Sphere{radius 0.0075', &
' }appearance Appearance{material Material{diffuseColor 1 0 0}}}'
write (7,'(a,3f10.6,a)') 'Transform{translation',0.,0.,0., &
' children [USE Node0]}'
loc=4
ix=0
iy=0
iz=0
call show (octree,noctree,loc,ix,iy,iz)
write (7,'(a)') ']}'
close (7)
return
end
!================!
!=====[SHOW]=====!
!================!
recursive subroutine show (octree,noctree,loc,ix,iy,iz)
! DO NOT USE
! internal routine
! to show the octree as a mesh
implicit none
integer noctree,octree(noctree),loc,ix,iy,iz
integer level,levelmax,ipower,ixn,iyn,izn,locn
integer idx,idy,idz,k
double precision x1,y1,z1,x2,y2,z2,dxyz
level=octree(loc)
levelmax=octree(1)
do idz=0,1
do idy=0,1
do idx=0,1
k=idx+idy*2+idz*4
locn=octree(loc+2+k)
ipower=2**(levelmax-level)
ixn=ix+idx*ipower
iyn=iy+idy*ipower
izn=iz+idz*ipower
if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! their coordinates (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
call find_real_coordinates (ixn,iyn,izn,x1,y1,z1,levelmax)
dxyz=1.d0/(2.d0**level)
x2=x1+dxyz
y2=y1+dxyz
z2=z1+dxyz
write (7,'(a,24f10.3,a,a,a)') &
'Shape { geometry IndexedLineSet { coord Coordinate { point [', &
x1,y1,z1,x2,y1,z1,x2,y2,z1,x1,y2,z1,x1,y1,z2,x2,y1,z2,x2,y2,z2,x1,y2,z2, &
']} coordIndex [0 1 2 3 0 -1 4 5 6 7 4 -1 0 4 -1 1 5 -1 2 6 -1 3 7 -1', &
']}appearance Appearance { material Material { emissiveColor 0 0 0}}}'
else
call show (octree,noctree,locn,ixn,iyn,izn)
endif
enddo
enddo
enddo
return
end
!=====================================!
!=====[OCTREE_FIND_ELEMENT_LEVEL]=====!
!=====================================!
subroutine octree_find_element_level (octree,noctree,levs,nleaves)
! routine to return the level of each leaf
! the result is returned in the array levs of dimension nleaves
! the function ioctree_number_of_elements should be called first to
! find nleaves and dimension levs accordingly
implicit none
integer noctree,octree(noctree),nleaves,levs(nleaves)
integer loc,ix,iy,iz
loc=4
ix=0
iy=0
iz=0
call levels (octree,noctree,loc,ix,iy,iz,levs,nleaves)
return
end
!==================!
!=====[LEVELS]=====!
!==================!
recursive subroutine levels (octree,noctree,loc,ix,iy,iz,levs,nleaves)
! DO NOT USE
! internal routine
! on entry we have the address of the current cube
! and the binary coordinates of its bottom corner
implicit none
integer noctree,octree(noctree),loc,ix,iy,iz
integer nleaves,levs(nleaves)
integer level,levelmax,ipower,ixn,iyn,izn,locn
integer idx,idy,idz,k
level=octree(loc)
levelmax=octree(1)
do idz=0,1
do idy=0,1
do idx=0,1
k=idx+idy*2+idz*4
locn=octree(loc+2+k)
ipower=2**(levelmax-level)
ixn=ix+idx*ipower
iyn=iy+idy*ipower
izn=iz+idz*ipower
if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! their coordinates (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
if (-locn.gt.nleaves) stop 'array level needs to grow'
levs(-locn)=level
else
call levels (octree,noctree,locn,ixn,iyn,izn,levs,nleaves)
endif
enddo
enddo
enddo
return
end
!======================================!
!=====[IOCTREE_NUMBER_OF_ELEMENTS]=====!
!======================================!
integer function ioctree_number_of_elements (octree,noctree)
! function that returns (in ioctree_number_of_elements) the number of leaves in the octree
implicit none
integer noctree,octree(noctree)
ioctree_number_of_elements=octree(2)
return
end
!=================================!
!=====[IOCTREE_MAXIMUM_LEVEL]=====!
!=================================!
integer function ioctree_maximum_level (octree,noctree)
! function that returns (in ioctree_maximum_level) the maximum level in the octree
implicit none
integer noctree,octree(noctree)
ioctree_maximum_level=octree(1)
return
end
!========================!
!=====[IOCTREE_SIZE]=====!
!========================!
integer function ioctree_size (octree,noctree)
! function that returns (in ioctree_size) the size of the octree
implicit none