Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
!-------------------------------------------
! NEW OCTREEBIT LIBRARY (WRITTEN 26-27/02/2004) BY JEAN BRAUN
! This version addresses problems that arose in the computation
! of the icon array for very large octrees. This new version is much
! more efficient and uses the same amount of memory (sometimes less).
! Many of the querry routines have been greatly improved by storing
! additional information in the octree structure. Data storage and
! navigation within the octree are based on the methods described by
! Frisken and Perry from Mitsubishi Electric Research Lab.
! The computation of the icon array is based on a three stage method:
! (1) Compute icon and a nodal position array disregarding the nodal connectivity
! (2) Sort the nodal arrays by ordering along x, y and z coordinates
! (3) Remove the spurious nodes and modify the icon array accordingly
! Because a fast sorting method is used (O(n log log n)), this approach
! is rather efficient.
!=======================!
!=====[OCTREE_INIT]=====!
!=======================!
subroutine octree_init (octree,noctree)
! This routine must be called before any other routine when an octree is created
! the basic structure of the octree is
! octree(1)=maximum level (unit cube is level 0)
! octree(2)=number of leaves
! octree(3)=total length of octree
! for each cube in the octree (at location loc)
! octree(loc)=level
! octree(loc+1)=address of parent
! octree(loc+2 to loc+9)=address of children (if negative the child is a leaf and the
! value is the leaf number in the sequence of leaves)
implicit none
integer noctree,octree(noctree)
integer levelmax,nleaves,length,loc,k
levelmax=1
nleaves=8
length=13
octree(1)=levelmax
octree(2)=nleaves
octree(3)=length
loc=4
octree(loc)=1
octree(loc+1)=0
do k=1,8
octree(loc+1+k)=-k
enddo
return
end
!====================================!
!=====[FIND_INTEGER_COORDINATES]=====!
!====================================!
subroutine find_integer_coordinates (x,y,z,ix,iy,iz,levelmax)
! returns the integer coordinates of point (x,y,z) in (ix,iy,iz)
! the integer coordinates are determined by the maximum level in the octree
! levelmax
! the integer coordinate is comprise between 1 and 2**levelmax
! and corresponds to the location of the leaf containing the
! point of given coordinates
implicit none
double precision x,y,z
integer ix,iy,iz,levelmax
double precision powermax
powermax=2.d0**levelmax
ix=int(x*powermax)
iy=int(y*powermax)
iz=int(z*powermax)
return
end
!=================================!
!=====[FIND_REAL_COORDINATES]=====!
!=================================!
subroutine find_real_coordinates (ix,iy,iz,x,y,z,levelmax)
! returns the real coordinates of a point of integer coordinates (ix,iy,iz)
! the real coordinates are determined by the maximum level in the octree
implicit none
double precision x,y,z
integer ix,iy,iz,levelmax
double precision powermax
powermax=2**levelmax
x=dfloat(ix)/powermax
y=dfloat(iy)/powermax
z=dfloat(iz)/powermax
return
end
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
!========================================!
!=====[OCTREE_CREATE_FROM_PARTICLE]=====!
!========================================!
subroutine octree_create_from_particle (octree,noctree,x,y,z,np,level)
! updates the octree by creating a leaf at point (x,y,z)
! of level level
! if the leaf (or a cube of smaller level) exists, the routine has no effect on the octree
! note that x,y,z must belong to [0,1[
implicit none
integer noctree,octree(noctree),np
double precision x,y,z
integer level
double precision xp,yp,zp
integer levelin,ix,iy,iz,levelmax,loc,ip
levelmax=octree(1)
xp=x
yp=y
zp=z
levelin=0
loc=4
if (xp.eq.1.d0) xp=1.d0-1.d-20
if (yp.eq.1.d0) yp=1.d0-1.d-20
if (zp.eq.1.d0) zp=1.d0-1.d-20
if (xp.eq.0.d0) xp=1.d-20
if (yp.eq.0.d0) yp=1.d-20
if (zp.eq.0.d0) zp=1.d-20
if (xp*(xp-1.d0).lt.0.d0 .and. yp*(yp-1.d0).lt.0.d0 .and. zp*(zp-1.d0).lt.0.d0) &
call update (octree,noctree,xp,yp,zp,level,levelin,loc)
return
end
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
!========================================!
!=====[OCTREE_CREATE_FROM_PARTICLES]=====!
!========================================!
subroutine octree_create_from_particles (octree,noctree,x,y,z,np,level)
! updates the octree by creating a leaf at points (x(1:np),y(1:np),z(1:np))
! of level level(1:np)
! if the leaf (or a cube of smaller level) exists, the routine has no effect on the octree
! note that x,y,z must belong to [0,1[
implicit none
integer noctree,octree(noctree),np
double precision x(np),y(np),z(np)
integer level(np)
double precision xp,yp,zp
integer levelin,ix,iy,iz,levelmax,loc,ip
levelmax=octree(1)
do ip=1,np
xp=x(ip)
yp=y(ip)
zp=z(ip)
levelin=0
loc=4
if (xp.eq.1.d0) xp=1.d0-1.d-20
if (yp.eq.1.d0) yp=1.d0-1.d-20
if (zp.eq.1.d0) zp=1.d0-1.d-20
if (xp.eq.0.d0) xp=1.d-20
if (yp.eq.0.d0) yp=1.d-20
if (zp.eq.0.d0) zp=1.d-20
if (xp*(xp-1.d0).lt.0.d0 .and. yp*(yp-1.d0).lt.0.d0 .and. zp*(zp-1.d0).lt.0.d0) &
call update (octree,noctree,xp,yp,zp,level(ip),levelin,loc)
enddo
return
end
!==================!
!=====[UPDATE]=====!
!==================!
recursive subroutine update (octree,noctree,x,y,z,level,levelin,loc)
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
! DO NOT USE
! internal routine called by OctreeUpdate
! this routine divides a cube of the octree in 8
! if the requested level is greater than0
! and if the requested level is stricly greater than levelin
! loc is the location in the octree of the current cube (to be divided)
implicit none
integer noctree,octree(noctree),ix,iy,iz,levelin,level,loc
double precision x,y,z
integer ibits_jean
external ibits_jean
integer levelmax,ibitx,ibity,ibitz,ichild,iaddress,newaddress
if (level.eq.0) return
if (levelin+1.eq.level) return
levelmax=octree(1)
call find_integer_coordinates (x,y,z,ix,iy,iz,levelmax)
ibitx=ibits_jean(ix,levelmax-levelin-1)
ibity=ibits_jean(iy,levelmax-levelin-1)
ibitz=ibits_jean(iz,levelmax-levelin-1)
ichild=loc+2+ibitz*4+ibity*2+ibitx
if (ichild.gt.octree(3)) then
print*,ichild,' requested ',octree(3),' available'
stop 'octree needs to grow...'
endif
iaddress=octree(ichild)
if (iaddress.lt.0) then
!adds a level
newaddress=octree(3)+1
! updates current level
octree(ichild)=newaddress
! updates octree length
octree(3)=octree(3)+10
! updates number of leaves
octree(2)=octree(2)+7
! updates maximum level
if (levelin+2.gt.octree(1)) octree(1)=levelin+2
! creates new division
octree(newaddress)=levelin+2
octree(newaddress+1)=ichild
octree(newaddress+2)=iaddress
octree(newaddress+3)=-(octree(2)-6)
octree(newaddress+4)=-(octree(2)-5)
octree(newaddress+5)=-(octree(2)-4)
octree(newaddress+6)=-(octree(2)-3)
octree(newaddress+7)=-(octree(2)-2)
octree(newaddress+8)=-(octree(2)-1)
octree(newaddress+9)=-(octree(2))
call update (octree,noctree,x,y,z,level,levelin+1,newaddress)
else
call update (octree,noctree,x,y,z,level,levelin+1,iaddress)
endif
return
end
!=================!
!=====[IBITS]=====!
!=================!
integer function ibits_jean(i,ipos)
!internal function, do not modify
integer j
j=i/2**ipos
ibits_jean=j-(j/2)*2
return
end
!============================!
!=====[OCTREE_FIND_LEAF]=====!
!============================!
subroutine octree_find_leaf (octree,noctree,x,y,z,leaf,level,loc,x0,y0,z0,dxyz)
! given an octree of size noctree
! this routine returns the leaf number in which a point (x,y,z) resides
! the level of the leaf (0 is unit cube)
! the location in the octree of the part describing the parent of the leaf (loc)
! the centroid of the leaf (x0,y0,z0) and its size (dxyz)
implicit none
integer noctree,octree(noctree)
double precision x,y,z,x0,y0,z0,dxyz
integer leaf,level,loc
integer ix,iy,iz,levelin,locin,levelmax
levelmax=octree(1)
call find_integer_coordinates (x,y,z,ix,iy,iz,levelmax)
levelin=0
locin=4
leaf=0
call find_leaf (octree,noctree,ix,iy,iz,levelin,locin,leaf,level,loc)
call find_integer_coordinates (x,y,z,ix,iy,iz,level)
call find_real_coordinates (ix,iy,iz,x0,y0,z0,level)
dxyz=1.d0/2.d0**level
return
end
!=====================!
!=====[FIND_LEAF]=====!
!=====================!
recursive subroutine find_leaf (octree,noctree,ix,iy,iz,levelin,locin,leaf,level,loc)
! DO NOT USE
! internal routine used by octree_find_leaf
implicit none
integer noctree,octree(noctree),ix,iy,iz,levelin,leaf,level,loc,locin
integer levelmax,ibitx,ibity,ibitz,ichild,iaddress
integer ibits_jean
external ibits_jean
levelmax=octree(1)
!ibitx=ibits(ix,levelmax-levelin-1,1)
!ibity=ibits(iy,levelmax-levelin-1,1)
!ibitz=ibits(iz,levelmax-levelin-1,1)
ibitx=ibits_jean(ix,levelmax-levelin-1)
ibity=ibits_jean(iy,levelmax-levelin-1)
ibitz=ibits_jean(iz,levelmax-levelin-1)
ichild=locin+2+ibitz*4+ibity*2+ibitx
if (ichild.gt.octree(3)) stop 'octree needs to grow...'
iaddress=octree(ichild)
if (iaddress.lt.0) then
leaf=-iaddress
level=levelin+1
loc=locin
return
else
call find_leaf (octree,noctree,ix,iy,iz,levelin+1,iaddress,leaf,level,loc)
endif
return
end
!===============================!
!=====[OCTREETHROUGHLEAVES]=====!
!===============================!
subroutine OctreeThroughLeaves (octree,noctree)
! DO NOT USE
! this is a general routine that simply goes through the leaves
! this routine is used as a template to build other routines.
! it should not be used
implicit none
integer noctree,octree(noctree)
integer loc,ix,iy,iz
loc=4
ix=0
iy=0
iz=0
call throughleaves (octree,noctree,loc,ix,iy,iz)
return
end
!=========================!
!=====[THROUGHLEAVES]=====!
!=========================!
recursive subroutine throughleaves (octree,noctree,loc,ix,iy,iz)
! DO NOT USE
! internal routine
! on entry we have the address of the current cube
! and the binary coordinates of its bottom corner
implicit none
integer noctree,octree(noctree),loc,ix,iy,iz
integer level,levelmax,ipower,ixn,iyn,izn,locn
integer idx,idy,idz,k
level=octree(loc)
levelmax=octree(1)
do idz=0,1
do idy=0,1
do idx=0,1
k=idx+idy*2+idz*4
locn=octree(loc+2+k)
ipower=2**(levelmax-level)
ixn=ix+idx*ipower
iyn=iy+idy*ipower
izn=iz+idz*ipower
if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! their coordinates (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
else
call throughleaves (octree,noctree,locn,ixn,iyn,izn)
endif
enddo
enddo
enddo
return
end
!===========================!
!=====[OCTREE_SMOOTHEN]=====!
!===========================!
subroutine octree_smoothen (octree,noctree)
! as it names indicates this routine smoothens the octree
! ie it ensures that no two adjacent leaves are more than one level apart
implicit none
integer noctree,octree(noctree)
integer loc,ix,iy,iz,nleaves,nleaves0
integer ioctree_number_of_elements
nleaves=ioctree_number_of_elements (octree,noctree)
do while (nleaves.ne.nleaves0)
nleaves0=nleaves
loc=4
ix=0
iy=0
iz=0
call smooth (octree,noctree,loc,ix,iy,iz)
nleaves=ioctree_number_of_elements (octree,noctree)
enddo
return
end
!==================!
!=====[SMOOTH]=====!
!==================!
recursive subroutine smooth (octree,noctree,loc,ix,iy,iz)
! DO NOT USE
! internal routine
! on entry we have the address of the current cube
! and the binary coordinates of its bottom corner
implicit none
integer noctree,octree(noctree),loc,ix,iy,iz
integer level,levelmax,ipower,ixn,iyn,izn,locn
integer k,idx,idy,idz,ip
integer ipmax,iddx,iddy,iddz,ixp,iyp,izp,levelin,locp
double precision xp,yp,zp
level=octree(loc)
levelmax=octree(1)
do idz=0,1
do idy=0,1
do idx=0,1
k=idx+idy*2+idz*4
locn=octree(loc+2+k)
ipower=2**(levelmax-level)
ixn=ix+idx*ipower
iyn=iy+idy*ipower
izn=iz+idz*ipower
if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! the binary coordinate of their bottom corner (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
! the address of their parent (loc)
! first check that `right' neighbours are not down by more than 1 level
ipmax=2**levelmax
ip=2**level
izp=izn+ipower
iyp=iyn+ipower
ixp=ixn+ipower
if (izp.lt.ipmax) then
zp=dfloat(izp)/ipmax
yp=dfloat(iyn)/ipmax
xp=dfloat(ixn)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,level-1,levelin,locp)
endif
if (iyp.lt.ipmax) then
zp=dfloat(izn)/ipmax
yp=dfloat(iyp)/ipmax
xp=dfloat(ixn)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,level-1,levelin,locp)
endif
if (ixp.lt.ipmax) then
zp=dfloat(izn)/ipmax
yp=dfloat(iyn)/ipmax
xp=dfloat(ixp)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,level-1,levelin,locp)
endif
! second check if the 'left' neighbours are not down by more than one level
izp=izn-1
iyp=iyn-1
ixp=ixn-1
if (izp.ge.0) then
zp=dfloat(izp)/ipmax
yp=dfloat(iyn)/ipmax
xp=dfloat(ixn)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,level-1,levelin,locp)
endif
if (iyp.ge.0) then
zp=dfloat(izn)/ipmax
yp=dfloat(iyp)/ipmax
xp=dfloat(ixn)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,level-1,levelin,locp)
endif
if (ixp.ge.0) then
zp=dfloat(izn)/ipmax
yp=dfloat(iyn)/ipmax
xp=dfloat(ixp)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,level-1,levelin,locp)
endif
else
call smooth(octree,noctree,locn,ixn,iyn,izn)
endif
enddo
enddo
enddo
return
end
!=================================!
!=====[OCTREE_SUPER_SMOOTHEN]=====!
!=================================!
subroutine octree_super_smoothen (octree,noctree)
! as it names indicates this routine further smoothens the octree
! ie it ensures that for any given leaf and its six closest neighbouring
! leaves, ther is no difference in level larger than 1
! Note that contrary to octree_smoothen, octree_super_smoothen can
! be used iteratively to increase the smoothness of the octree
implicit none
integer noctree,octree(noctree)
integer loc,ix,iy,iz,nleaves,nleaves0
integer ioctree_number_of_elements
nleaves=ioctree_number_of_elements (octree,noctree)
do while (nleaves.ne.nleaves0)
nleaves0=nleaves
loc=4
ix=0
iy=0
iz=0
call super_smooth (octree,noctree,loc,ix,iy,iz,nleaves)
nleaves=ioctree_number_of_elements (octree,noctree)
enddo
call octree_smoothen (octree,noctree)
return
end
!========================!
!=====[SUPER_SMOOTH]=====!
!========================!
recursive subroutine super_smooth (octree,noctree,loc,ix,iy,iz,nleaves0)
! DO NOT USE
! internal routine
! on entry we have the address of the current cube
! and the binary coordinates of its bottom corner
implicit none
integer noctree,octree(noctree),loc,ix,iy,iz
integer level,levelmax,ipower,ixn,iyn,izn,locn
integer k,idx,idy,idz,ip
integer ipmax,iddx,iddy,iddz,ixp,iyp,izp,levelin,locp
double precision xp,yp,zp
integer levelout(6),levelset,leaf,locin,nleaves0
level=octree(loc)
levelmax=octree(1)
do idz=0,1
do idy=0,1
do idx=0,1
k=idx+idy*2+idz*4
locn=octree(loc+2+k)
ipower=2**(levelmax-level)
ixn=ix+idx*ipower
iyn=iy+idy*ipower
izn=iz+idz*ipower
if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! the binary coordinate of their bottom corner (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
! the address of their parent (loc)
! first find `right' neighbours levels
ipmax=2**levelmax
ip=2**level
izp=izn+ipower
iyp=iyn+ipower
ixp=ixn+ipower
levelout=level
if (izp.lt.ipmax) then
levelin=0
locin=4
leaf=0
call find_leaf (octree,noctree,ixn,iyn,izp,levelin,locin,leaf,levelout(1),locp)
if (leaf.gt.nleaves0) levelout(1)=level
endif
if (iyp.lt.ipmax) then
levelin=0
locin=4
leaf=0
call find_leaf (octree,noctree,ixn,iyp,izn,levelin,locin,leaf,levelout(2),locp)
if (leaf.gt.nleaves0) levelout(2)=level
endif
if (ixp.lt.ipmax) then
levelin=0
locin=4
leaf=0
call find_leaf (octree,noctree,ixp,iyn,izn,levelin,locin,leaf,levelout(3),locp)
if (leaf.gt.nleaves0) levelout(3)=level
endif
! second find 'left' neighbours levels
izp=izn-1
iyp=iyn-1
ixp=ixn-1
if (izp.ge.0) then
levelin=0
locin=4
leaf=0
call find_leaf (octree,noctree,ixn,iyn,izp,levelin,locin,leaf,levelout(4),locp)
if (leaf.gt.nleaves0) levelout(4)=level
endif
if (iyp.ge.0) then
levelin=0
locin=4
leaf=0
call find_leaf (octree,noctree,ixn,iyp,izn,levelin,locin,leaf,levelout(5),locp)
if (leaf.gt.nleaves0) levelout(5)=level
endif
if (ixp.ge.0) then
levelin=0
locin=4
leaf=0
call find_leaf (octree,noctree,ixp,iyn,izn,levelin,locin,leaf,levelout(6),locp)
if (leaf.gt.nleaves0) levelout(6)=level
endif
! if the difference in level between the leaf and any of its neighbours is greater
! than 1, all leaves are set to the maximum level minus one at least
if (maxval(levelout)-minval(levelout).gt.1) then
levelset=maxval(levelout)-1
! now check that `right' neighbours are at least at this level
izp=izn+ipower
iyp=iyn+ipower
ixp=ixn+ipower
if (izp.lt.ipmax) then
zp=dfloat(izp)/ipmax
yp=dfloat(iyn)/ipmax
xp=dfloat(ixn)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,levelset,levelin,locp)
endif
if (iyp.lt.ipmax) then
zp=dfloat(izn)/ipmax
yp=dfloat(iyp)/ipmax
xp=dfloat(ixn)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,levelset,levelin,locp)
endif
if (ixp.lt.ipmax) then
zp=dfloat(izn)/ipmax
yp=dfloat(iyn)/ipmax
xp=dfloat(ixp)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,levelset,levelin,locp)
endif
! now check that 'left' neighbours are at least at this level
izp=izn-1
iyp=iyn-1
ixp=ixn-1
if (izp.ge.0) then
zp=dfloat(izp)/ipmax
yp=dfloat(iyn)/ipmax
xp=dfloat(ixn)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,levelset,levelin,locp)
endif
if (iyp.ge.0) then
zp=dfloat(izn)/ipmax
yp=dfloat(iyp)/ipmax
xp=dfloat(ixn)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,levelset,levelin,locp)
endif
if (ixp.ge.0) then
zp=dfloat(izn)/ipmax
yp=dfloat(iyn)/ipmax
xp=dfloat(ixp)/ipmax
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,levelset,levelin,locp)
endif
endif
else
call super_smooth(octree,noctree,locn,ixn,iyn,izn,nleaves0)
endif
enddo
enddo
enddo
return
end
!===============================!
!=====[OCTREE_SHOW_AS_MESH]=====!
!===============================!
subroutine octree_show_as_mesh (octree,noctree)
! routine to show the octree as a mesh in vrml
! produces a VRML file called mesh.wrl
! this is mostly used for debugging purposes
implicit none
integer noctree,octree(noctree)
integer loc,ix,iy,iz
open (7,file='mesh.wrl',status='unknown')
write (7,'(a)') '#VRML V2.0 utf8'
write (7,'(a)') 'Transform { children ['
write (7,'(a)') 'NavigationInfo { '
write (7,'(a)') 'type ["EXAMINE"]'
write (7,'(a)') 'headlight FALSE}'
write (7,'(a)') 'Background{groundColor 1 1 1 skyColor 1 1 1}'
write (7,'(a)') 'DirectionalLight {ambientIntensity 0.2'
write (7,'(a)') ' color 1 1 1'
write (7,'(a)') ' direction .8 1 .5}'
write (7,'(a)') 'DirectionalLight {ambientIntensity 0.2'
write (7,'(a)') ' color 1 1 1'
write (7,'(a)') ' direction -.8 -1 -.5}'
write (7,'(a)') 'Transform { children Viewpoint {'
write (7,'(a)') ' description "Starting"'
write (7,'(a)') ' fieldOfView 1'
write (7,'(a,3f12.8,a)') ' position ',-.41885125637054443, -.8311104774475098, 1.5406757593154907
write (7,'(a,4f12.8,a)') ' orientation ', .7352051138877869, -.10698327422142029, -.669348955154419, 1.3260198831558228,'}}'
write (7,'(a,a)') 'DEF Node0 Shape{geometry Sphere{radius 0.0075', &
' }appearance Appearance{material Material{diffuseColor 1 0 0}}}'
write (7,'(a,3f10.6,a)') 'Transform{translation',0.,0.,0., &
' children [USE Node0]}'
loc=4
ix=0
iy=0
iz=0
call show (octree,noctree,loc,ix,iy,iz)
write (7,'(a)') ']}'
close (7)
return
end
!================!
!=====[SHOW]=====!
!================!
recursive subroutine show (octree,noctree,loc,ix,iy,iz)
! DO NOT USE
! internal routine
! to show the octree as a mesh
implicit none
integer noctree,octree(noctree),loc,ix,iy,iz
integer level,levelmax,ipower,ixn,iyn,izn,locn
integer idx,idy,idz,k
double precision x1,y1,z1,x2,y2,z2,dxyz
level=octree(loc)
levelmax=octree(1)
do idz=0,1
do idy=0,1
do idx=0,1
k=idx+idy*2+idz*4
locn=octree(loc+2+k)
ipower=2**(levelmax-level)
ixn=ix+idx*ipower
iyn=iy+idy*ipower
izn=iz+idz*ipower
if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! their coordinates (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
call find_real_coordinates (ixn,iyn,izn,x1,y1,z1,levelmax)
dxyz=1.d0/(2.d0**level)
x2=x1+dxyz
y2=y1+dxyz
z2=z1+dxyz
write (7,'(a,24f10.3,a,a,a)') &
'Shape { geometry IndexedLineSet { coord Coordinate { point [', &
x1,y1,z1,x2,y1,z1,x2,y2,z1,x1,y2,z1,x1,y1,z2,x2,y1,z2,x2,y2,z2,x1,y2,z2, &
']} coordIndex [0 1 2 3 0 -1 4 5 6 7 4 -1 0 4 -1 1 5 -1 2 6 -1 3 7 -1', &
']}appearance Appearance { material Material { emissiveColor 0 0 0}}}'
else
call show (octree,noctree,locn,ixn,iyn,izn)
endif
enddo
enddo
enddo
return
end
!=====================================!
!=====[OCTREE_FIND_ELEMENT_LEVEL]=====!
!=====================================!
subroutine octree_find_element_level (octree,noctree,levs,nleaves)
! routine to return the level of each leaf
! the result is returned in the array levs of dimension nleaves
! the function ioctree_number_of_elements should be called first to
! find nleaves and dimension levs accordingly
implicit none
integer noctree,octree(noctree),nleaves,levs(nleaves)
integer loc,ix,iy,iz
loc=4
ix=0
iy=0
iz=0
call levels (octree,noctree,loc,ix,iy,iz,levs,nleaves)
return
end
!==================!
!=====[LEVELS]=====!
!==================!
recursive subroutine levels (octree,noctree,loc,ix,iy,iz,levs,nleaves)
! DO NOT USE
! internal routine
! on entry we have the address of the current cube
! and the binary coordinates of its bottom corner
implicit none
integer noctree,octree(noctree),loc,ix,iy,iz
integer nleaves,levs(nleaves)
integer level,levelmax,ipower,ixn,iyn,izn,locn
integer idx,idy,idz,k
level=octree(loc)
levelmax=octree(1)
do idz=0,1
do idy=0,1
do idx=0,1
k=idx+idy*2+idz*4
locn=octree(loc+2+k)
ipower=2**(levelmax-level)
ixn=ix+idx*ipower
iyn=iy+idy*ipower
izn=iz+idz*ipower
if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! their coordinates (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
if (-locn.gt.nleaves) stop 'array level needs to grow'
levs(-locn)=level
else
call levels (octree,noctree,locn,ixn,iyn,izn,levs,nleaves)
endif
enddo
enddo
enddo
return
end
!======================================!
!=====[IOCTREE_NUMBER_OF_ELEMENTS]=====!
!======================================!
integer function ioctree_number_of_elements (octree,noctree)
! function that returns (in ioctree_number_of_elements) the number of leaves in the octree
implicit none
integer noctree,octree(noctree)
ioctree_number_of_elements=octree(2)
return
end
!=================================!
!=====[IOCTREE_MAXIMUM_LEVEL]=====!
!=================================!
integer function ioctree_maximum_level (octree,noctree)
! function that returns (in ioctree_maximum_level) the maximum level in the octree
implicit none
integer noctree,octree(noctree)
ioctree_maximum_level=octree(1)
return
end
!========================!
!=====[IOCTREE_SIZE]=====!
!========================!
integer function ioctree_size (octree,noctree)
! function that returns (in ioctree_size) the size of the octree
implicit none
integer noctree,octree(noctree)
ioctree_size=octree(3)
return
end
!=================================!
!=====[OCTREE_CREATE_UNIFORM]=====!
!=================================!
subroutine octree_create_uniform (octree,noctree,levelt)
! routine to generate a uniform octree down to level levelt
implicit none
integer noctree,octree(noctree),levelt
integer nl,levelin,loc,iz,ix,iy
double precision x,y,z
nl=2**levelt
do iz=0,nl-1
z=dfloat(iz)/nl
do iy=0,nl-1
y=dfloat(iy)/nl
do ix=0,nl-1
x=dfloat(ix)/nl
levelin=0
loc=4
call update (octree,noctree,x,y,z,levelt,levelin,loc)
enddo
enddo
enddo
return
end
!=================================!
!=====[OCTREE_RENUMBER_NODES]=====!
!=================================!
subroutine octree_renumber_nodes (icon,nleaves,xa,ya,za,na)
! This routine renumbers the nodes to minimize the maximum
! difference (in the least square sense) between the numbers
! of the nodes belonging to any given element.
! This is useful is one wishes to use the octree mesh for FE
! calculations.
! This uses SLOAN's algorithm and routines
! in output, the icon array is modified as well as the node
! location arrays (xa,ya,za) that have been reordered
implicit none
integer nleaves,icon(8,nleaves),na
double precision xa(na),ya(na),za(na)
integer,dimension(:),allocatable::npn,xnpn,adj,xadj,sort,working
integer,dimension(:,:),allocatable::jcon
double precision,dimension(:),allocatable::xyz
integer ie,k,inpn,iadj,oldpro,newpro
inpn=nleaves*8
iadj=nleaves*8*7
allocate (xnpn(nleaves+1),npn(inpn),adj(iadj),xadj(na+1))
allocate (sort(na),working(3*na+1))
xnpn(1)=1
do ie=1,nleaves
xnpn(ie+1)=xnpn(ie)+8-1
do k=1,8
npn(xnpn(ie)+k-1)=icon(k,ie)
enddo
enddo
call graph_sloan (na,nleaves,inpn,npn,xnpn,iadj,adj,xadj)
call label_sloan (na,xadj(na+1)-1,adj,xadj,sort,working,oldpro,newpro)
deallocate (xnpn,npn,adj,xadj,working)
allocate (jcon(8,nleaves),xyz(na))
do ie=1,nleaves
do k=1,8
jcon(k,ie)=sort(icon(k,ie))
enddo
enddo
icon=jcon
do k=1,na
xyz(sort(k))=xa(k)
enddo
xa=xyz
do k=1,na
xyz(sort(k))=ya(k)
enddo
ya=xyz
do k=1,na
xyz(sort(k))=za(k)
enddo
za=xyz
deallocate (sort,jcon,xyz)
return
end
!=========================================!
!=====[OCTREE_FIND_NODE_CONNECTIVITY]=====!
!=========================================!
subroutine octree_find_node_connectivity (octree,noctree,icon,nleaves,xa,ya,za,na)
! This routine finds the number (na) and locations (xa,ya,za)
! of the nodes of the octree
! It also computes the connectivity array between nodes and leaves
! (icon). Icon is dimensioned icon(8,nleaves) and contains the number
! of the 8 nodes connected by each leaf
! When calling this routine, na shold have the dimension used to dimension
! the coordinate arrys in the calling routine
! on return na contains the true dimension of these array (ie how many nodes
! there are in the octree
implicit none
integer noctree,octree(noctree),nleaves,icon(8,nleaves),na
double precision xa(*),ya(*),za(*)
integer,dimension(:),allocatable::kx,ky,kz,isort,jsort,ksort
integer loc,ix,iy,iz,nk
integer k1,nnk,kk1,nnnk
integer i0,in,levelmax,npower,il,i,k,l,ii
allocate (kx(8*nleaves),ky(8*nleaves),kz(8*nleaves))
! first build a general/redondant icon array
loc=4
ix=0
iy=0
iz=0
nk=0
call iconfind (octree,noctree,loc,ix,iy,iz,icon,kx,ky,kz,nk)
if (nk.ne.8*nleaves) stop 'error in iconfind'
allocate (isort(nk),jsort(nk),ksort(nk))
! here we rank the nodes according to their x, y and then z coordinates
call mrgrnk (kx,isort,nk)
call sort (kx,isort,nk)
call sort (ky,isort,nk)
call sort (kz,isort,nk)
jsort=isort
k1=1
do i=1,nk
if (kx(i).gt.kx(k1).or.i.eq.nk) then
nnk=i-k1
if (nnk.gt.1) then
call mrgrnk (ky(k1),isort(k1),nnk)
call sort (kx(k1),isort(k1),nnk)
call sort (ky(k1),isort(k1),nnk)
call sort (kz(k1),isort(k1),nnk)
do l=k1,k1+nnk-1
ksort(l)=jsort(k1+isort(l)-1)
enddo
do l=k1,k1+nnk-1
jsort(l)=ksort(l)
enddo
kk1=k1
do ii=k1,k1+nnk-1
if (ky(ii).gt.ky(kk1).or.ii.eq.k1+nnk-1) then
nnnk=ii-kk1
if (nnnk.gt.1) then
call mrgrnk (kz(kk1),isort(kk1),nnnk)
call sort (kx(kk1),isort(kk1),nnnk)
call sort (ky(kk1),isort(kk1),nnnk)
call sort (kz(kk1),isort(kk1),nnnk)
do l=kk1,kk1+nnnk-1
ksort(l)=jsort(kk1+isort(l)-1)
enddo
do l=kk1,kk1+nnnk-1
jsort(l)=ksort(l)
enddo
endif
kk1=ii
endif
enddo
endif
k1=i
endif
enddo
isort=jsort
do i=1,nk
jsort(isort(i))=i
enddo
! at this point isort(i) is the location of the point of rank i
! whereas jsort(i) is the rank of the point of location i
! we modify isort to remove reference to identical points
! we introduce ksort to reorder the node into consecutive numbers
i0=1
na=1
do i=1,nk
in=0
if (kz(i).eq.kz(i0)) then
if (ky(i).eq.ky(i0)) then
if (kx(i).eq.kx(i0)) then
isort(i)=isort(i0)
ksort(isort(i))=na
in=1
endif
endif
endif
if (in.eq.0) then
i0=i
na=na+1
isort(i)=isort(i0)
ksort(isort(i))=na
endif
enddo
!print*,'There are ',na,' nodes'
! we modify icon to represent the new node representation
do il=1,nleaves
do k=1,8
icon(k,il)=ksort(isort(jsort(icon(k,il))))
enddo
enddo
! we build coordinates arrays
deallocate (jsort)
allocate (jsort(na))
! we define the correspondence between global and reduced node set
do i=1,nk
jsort(ksort(isort(i)))=i
enddo
! we compute the geometry of the nodes
levelmax=octree(1)
npower=2**levelmax
do i=1,na
xa(i)=dfloat(kx(jsort(i)))/npower
ya(i)=dfloat(ky(jsort(i)))/npower
za(i)=dfloat(kz(jsort(i)))/npower
enddo
deallocate (kx,ky,kz,isort,jsort,ksort)
return
end
!================!
!=====[SORT]=====!
!================!
subroutine sort (k,is,n)
! DO NOT USE
! this routine is used to sort an array according to an sorting array
implicit none
integer n,k(n),is(n)
integer,dimension(:),allocatable::kk
integer i
allocate (kk(n))
do i=1,n
kk(i)=k(is(i))
enddo
do i=1,n
k(i)=kk(i)
enddo
deallocate(kk)
return
end
!====================!
!=====[ICONFIND]=====!
!====================!
recursive subroutine iconfind (octree,noctree,loc,ix,iy,iz,icon,kx,ky,kz,nk)
! DO NOT USE
! internal routine
! on entry we have the address of the current cube
! and the binary coordinates of its bottom corner
implicit none
integer noctree,octree(noctree),loc,ix,iy,iz
integer icon(8,*),kx(*),ky(*),kz(*),nk
integer level,levelmax,ipower,ixn,iyn,izn,locn
integer idx,idy,idz,k,kkx,kky,kkz
level=octree(loc)
levelmax=octree(1)
do idz=0,1
do idy=0,1
do idx=0,1
k=idx+idy*2+idz*4
locn=octree(loc+2+k)
ipower=2**(levelmax-level)
ixn=ix+idx*ipower
iyn=iy+idy*ipower
izn=iz+idz*ipower
if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! their coordinates (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
do kkz=0,1
do kky=0,1
do kkx=0,1
nk=nk+1
k=kkx+kky*2+kkz*4
icon(k+1,-locn)=nk
kx(nk)=ixn+kkx*ipower
ky(nk)=iyn+kky*ipower
kz(nk)=izn+kkz*ipower
enddo
enddo
enddo
else
call iconfind (octree,noctree,locn,ixn,iyn,izn,icon,kx,ky,kz,nk)
endif
enddo
enddo
enddo
return
end
!============================!
!=====[OCTREE_SHOW_ICON]=====!
!============================!
subroutine octree_show_icon (icon,nelem,x,y,z,nnode)
! this routine creates a VRML file called icon.wrl
! that shows the octree as a mesh and the nodes as small spheres
! note that this routine does use icon
! note that it uses the octree definition for icon
! it creates a VRML file called icon.wrl
implicit none
integer nelem,icon(8,nelem),nnode
double precision x(nnode),y(nnode),z(nnode)
integer ie,i,kkk
open (7,file='icon.wrl',status='unknown')
write (7,'(a)') '#VRML V2.0 utf8'
write (7,'(a)') 'Transform { children ['
write (7,'(a)') 'NavigationInfo { '
write (7,'(a)') 'type ["EXAMINE"]'
write (7,'(a)') 'headlight FALSE}'
write (7,'(a)') 'Background{groundColor 1 1 1 skyColor 1 1 1}'
write (7,'(a)') 'DirectionalLight {ambientIntensity 0.2'
write (7,'(a)') ' color 1 1 1'
write (7,'(a)') ' direction .8 1 .5}'
write (7,'(a)') 'DirectionalLight {ambientIntensity 0.2'
write (7,'(a)') ' color 1 1 1'
write (7,'(a)') ' direction -.8 -1 -.5}'
write (7,'(a)') 'Transform { children Viewpoint {'
write (7,'(a)') ' description "Starting"'
write (7,'(a)') ' fieldOfView 1'
write (7,'(a,3f12.8,a)') ' position ',-.41885125637054443, -.8311104774475098, 1.5406757593154907
write (7,'(a,4f12.8,a)') ' orientation ', .7352051138877869, -.10698327422142029, -.669348955154419, 1.3260198831558228,'}}'
write (7,'(a,a)') 'DEF Node0 Shape{geometry Sphere{radius 0.0075', &
' }appearance Appearance{material Material{diffuseColor 1 0 0}}}'
do ie=1,nelem
write (7,'(a,24f10.3,a,a,a)') &
'Shape { geometry IndexedLineSet { coord Coordinate { point [', &
(x(icon(kkk,ie)),y(icon(kkk,ie)),z(icon(kkk,ie)),kkk=1,8), &
']} coordIndex [0 1 3 2 0 -1 4 5 7 6 4 -1 0 4 -1 1 5 -1 2 6 -1 3 7 -1', &
']}appearance Appearance { material Material { emissiveColor 0 0 0}}}'
enddo
do i=1,nnode
write (7,'(a,3f10.6,a)') 'Transform{translation',x(i),y(i),z(i), &
' children [USE Node0]}'
enddo
write (7,'(a)') ']}'
close (7)
return
end
!=================================!
!=====[OCTREE_FIND_BAD_FACES]=====!
!=================================!
subroutine octree_find_bad_faces (octree,noctree,iface,nface,icon,nelem)
! returns the bad faces as an array (iface) of 9 nodes per face
! numbering used is different from earlier version of octreebit
! here it is:
! 4--7--3
! | | |
! 8--9--6
! | | |
! 1--5--2
! iface is the resulting bad face information iface(9,nface)
! nface is the number of bad faces found
! icon is the connectivity array
! of dimension nelem
implicit none
integer noctree,octree(noctree)
integer nface,iface(9,nface),nelem,icon(8,nelem)
integer loc,ix,iy,iz,mface
loc=4
ix=0
iy=0
iz=0
mface=nface
nface=0
call badface (octree,noctree,loc,ix,iy,iz,iface,nface,mface,icon,nelem)
return
end
!===================!
!=====[BADFACE]=====!
!===================!
recursive subroutine badface (octree,noctree,loc,ix,iy,iz,iface,nface,mface,icon,nelem)
! DO NOT USE
! internal routine used by octree_find_bad_faces
implicit none
integer noctree,octree(noctree),loc,ix,iy,iz
integer mface,iface(9,mface),nelem,icon(8,nelem),nface
integer level,levelmax,ipower,ixn,iyn,izn,locn,ipowerne
integer k,idx,idy,idz,ip,ixpp,iypp,izpp
integer ipmax,iddx,iddy,iddz,ixp,iyp,izp,levelin,locp,locne,levelne,leaf
double precision xp,yp,zp,x0,y0,z0,dxyz
level=octree(loc)
levelmax=octree(1)
do idz=0,1
do idy=0,1
do idx=0,1
k=idx+idy*2+idz*4
locn=octree(loc+2+k)
ipower=2**(levelmax-level)
ixn=ix+idx*ipower
iyn=iy+idy*ipower
izn=iz+idz*ipower
if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! the binary coordinate of their bottom corner (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
! the address of their parent (loc)
! first check that 'right' neighbours are of a higher level
ipmax=2**levelmax
ip=2**level
ixp=ixn+ipower
iyp=iyn+ipower
izp=izn+ipower
if (izp.lt.ipmax) then
zp=dble(izp)/ipmax
yp=dble(iyn)/ipmax
xp=dble(ixn)/ipmax
levelin=0
locp=4
call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
if (levelne.gt.level) then
ipowerne=2**(levelmax-levelne)
nface=nface+1
if (nface.gt.mface) stop 'nface needs to grow'
iface(1,nface)=icon(5,-locn)
iface(2,nface)=icon(6,-locn)
iface(3,nface)=icon(8,-locn)
iface(4,nface)=icon(7,-locn)
iface(5,nface)=icon(2,leaf)
iface(8,nface)=icon(3,leaf)
iface(9,nface)=icon(4,leaf)
ixpp=ixn+ipowerne
xp=dble(ixpp)/ipmax
call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
iface(6,nface)=icon(4,leaf)
iypp=iyn+ipowerne
yp=dble(iypp)/ipmax
call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
iface(7,nface)=icon(3,leaf)
endif
endif
if (iyp.lt.ipmax) then
zp=dble(izn)/ipmax
yp=dble(iyp)/ipmax
xp=dble(ixn)/ipmax
levelin=0
locp=4
call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
if (levelne.gt.level) then
ipowerne=2**(levelmax-levelne)
nface=nface+1
if (nface.gt.mface) stop 'nface needs to grow'
iface(1,nface)=icon(3,-locn)
iface(2,nface)=icon(7,-locn)
iface(3,nface)=icon(8,-locn)
iface(4,nface)=icon(4,-locn)
iface(5,nface)=icon(5,leaf)
iface(8,nface)=icon(2,leaf)
iface(9,nface)=icon(6,leaf)
izpp=izn+ipowerne
zp=dble(izpp)/ipmax
call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
iface(6,nface)=icon(6,leaf)
ixpp=ixn+ipowerne
xp=dble(ixpp)/ipmax
call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
iface(7,nface)=icon(2,leaf)
endif
endif
if (ixp.lt.ipmax) then
zp=dble(izn)/ipmax
yp=dble(iyn)/ipmax
xp=dble(ixp)/ipmax
levelin=0
locp=4
call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
if (levelne.gt.level) then
ipowerne=2**(levelmax-levelne)
nface=nface+1
if (nface.gt.mface) stop 'nface needs to grow'
iface(1,nface)=icon(2,-locn)
iface(2,nface)=icon(4,-locn)
iface(3,nface)=icon(8,-locn)
iface(4,nface)=icon(6,-locn)
iface(5,nface)=icon(3,leaf)
iface(8,nface)=icon(5,leaf)
iface(9,nface)=icon(7,leaf)
iypp=iyn+ipowerne
yp=dble(iypp)/ipmax
call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
iface(6,nface)=icon(7,leaf)
izpp=izn+ipowerne
zp=dble(izpp)/ipmax
call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
iface(7,nface)=icon(5,leaf)
endif
endif
! second check if the 'left' neighbours are of a higher level
ixp=ixn-1
iyp=iyn-1
izp=izn-1
if (izp.ge.0) then
zp=dble(izp)/ipmax
yp=dble(iyn)/ipmax
xp=dble(ixn)/ipmax
levelin=0
locp=4
call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
if (levelne.gt.level) then
ipowerne=2**(levelmax-levelne)
nface=nface+1
if (nface.gt.mface) stop 'nface needs to grow'
iface(1,nface)=icon(1,-locn)
iface(2,nface)=icon(2,-locn)
iface(3,nface)=icon(4,-locn)
iface(4,nface)=icon(3,-locn)
iface(5,nface)=icon(6,leaf)
iface(8,nface)=icon(7,leaf)
iface(9,nface)=icon(8,leaf)
ixpp=ixn+ipowerne
xp=dble(ixpp)/ipmax
call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
iface(6,nface)=icon(8,leaf)
iypp=iyn+ipowerne
yp=dble(iypp)/ipmax
call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
iface(7,nface)=icon(7,leaf)
endif
endif
if (iyp.ge.0) then
zp=dble(izn)/ipmax
yp=dble(iyp)/ipmax
xp=dble(ixn)/ipmax
levelin=0
locp=4
call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
if (levelne.gt.level) then
ipowerne=2**(levelmax-levelne)
nface=nface+1
if (nface.gt.mface) stop 'nface needs to grow'
iface(1,nface)=icon(1,-locn)
iface(2,nface)=icon(2,-locn)
iface(3,nface)=icon(6,-locn)
iface(4,nface)=icon(5,-locn)
iface(5,nface)=icon(4,leaf)
iface(8,nface)=icon(7,leaf)
iface(9,nface)=icon(8,leaf)
izpp=izn+ipowerne
zp=dble(izpp)/ipmax
call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
iface(7,nface)=icon(8,leaf)
ixpp=ixn+ipowerne
xp=dble(ixpp)/ipmax
call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
iface(6,nface)=icon(4,leaf)
endif
endif
if (ixp.ge.0) then
zp=dble(izn)/ipmax
yp=dble(iyn)/ipmax
xp=dble(ixp)/ipmax
levelin=0
locp=4
call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
if (levelne.gt.level) then
ipowerne=2**(levelmax-levelne)
nface=nface+1
if (nface.gt.mface) stop 'nface needs to grow'
iface(1,nface)=icon(1,-locn)
iface(2,nface)=icon(5,-locn)
iface(3,nface)=icon(7,-locn)
iface(4,nface)=icon(3,-locn)
iface(5,nface)=icon(6,leaf)
iface(8,nface)=icon(4,leaf)
iface(9,nface)=icon(8,leaf)
iypp=iyn+ipowerne
yp=dble(iypp)/ipmax
call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
iface(7,nface)=icon(8,leaf)
izpp=izn+ipowerne
zp=dble(izpp)/ipmax
call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
iface(6,nface)=icon(6,leaf)
endif
endif
else
call badface (octree,noctree,locn,ixn,iyn,izn,iface,nface,mface,icon,nelem)
endif
enddo
enddo
enddo
return
end
!=================================!
!=====[OCTREE_SHOW_BAD_FACES]=====!
!=================================!
subroutine octree_show_bad_faces (octree,noctree,iface,nface,x,y,z,nnode)
! this routine creates a VRML file called bad_faces.wrl
! that shows the octree as produced by show_octree but it
! adds color to the bad faces to locate them
implicit none
integer noctree,octree(noctree)
integer nface,nnode,iface(9,nface)
double precision x(nnode),y(nnode),z(nnode)
integer loc,ix,iy,iz,i,k
open (7,file='bad_faces.wrl',status='unknown')
write (7,'(a)') '#VRML V2.0 utf8'
write (7,'(a)') 'Transform { children ['
write (7,'(a)') 'NavigationInfo { '
write (7,'(a)') 'type ["EXAMINE"]'
write (7,'(a)') 'headlight FALSE}'
write (7,'(a)') 'Background{groundColor 1 1 1 skyColor 1 1 1}'
write (7,'(a)') 'DirectionalLight {ambientIntensity 0.2'
write (7,'(a)') ' color 1 1 1'
write (7,'(a)') ' direction .8 1 .5}'
write (7,'(a)') 'DirectionalLight {ambientIntensity 0.2'
write (7,'(a)') ' color 1 1 1'
write (7,'(a)') ' direction -.8 -1 -.5}'
write (7,'(a)') 'Transform { children Viewpoint {'
write (7,'(a)') ' description "Starting"'
write (7,'(a)') ' fieldOfView 1'
write (7,'(a,3f12.8,a)') ' position ',-.41885125637054443, -.8311104774475098, 1.5406757593154907
write (7,'(a,4f12.8,a)') ' orientation ', .7352051138877869, -.10698327422142029, -.669348955154419, 1.3260198831558228,'}}'
loc=4
ix=0
iy=0
iz=0
call show (octree,noctree,loc,ix,iy,iz)
do i=1,nface
write (7,'(a,27f10.3,a,a,a)') &
'Shape { geometry IndexedLineSet { coord Coordinate { point [', &
(x(iface(k,i)),y(iface(k,i)),z(iface(k,i)),k=1,9), &
']} coordIndex [8 1 -1 8 2 -1 8 3 -1 8 4 -1 8 5 -1 8 6 -1 8 7 -1 8 0 -1', &
']}appearance Appearance { material Material { emissiveColor 0 1 0}}}'
enddo
write (7,'(a)') ']}'
close (7)
return
end
!========================!
!=====[OCTREE_UNION]=====!
!========================!
subroutine octree_union (octree,noctree,octree1,noctree1,octree2,noctree2)
! NOTE: JEAN FOUND A BUG IN THIS ROUTINE ON JULY 4th 2006; HAS NOT BEEN FIXED!!!!
! IT SHOULD NOT BE USED.
! DOUAR HAS BEEN MODIFIED TO PERFORM THIS OPERATION FROM OTHER LOWER LEVEL ROUTINES
! IN OCTREEBITPLUS
! subroutine to calculate the union of two octrees (octree1,octree2)
! and store the result in a third octree (octree)
! it is recommended that the largest of the two octrees be octree1
! (as defined by their size ioctree_size (octree,noctree))
! on exit the two original octrees are left unchanged
implicit none
integer noctree,octree(noctree)
integer noctree1,octree1(noctree1)
integer noctree2,octree2(noctree2)
integer loc,ix,iy,iz
octree=octree1
noctree=noctree1
loc=4
ix=0
iy=0
iz=0
call unite (octree2,noctree2,loc,ix,iy,iz,octree,noctree)
return
end
!=================!
!=====[UNITE]=====!
!=================!
recursive subroutine unite (octree2,noctree2,loc,ix,iy,iz,octree,noctree)
! DO NOT USE
! internal routine
! called by octree_union
implicit none
integer noctree,octree(noctree),loc,ix,iy,iz
integer noctree2,octree2(noctree2)
integer level,levelmax,ipower,ixn,iyn,izn,locn
integer k,idx,idy,idz,ip
integer ipmax,iddx,iddy,iddz,ixp,iyp,izp,levelin,locp
double precision xp,yp,zp
level=octree2(loc)
levelmax=octree2(1)
do idz=0,1
do idy=0,1
do idx=0,1
k=idx+idy*2+idz*4
locn=octree2(loc+2+k)
ipower=2**(levelmax-level)
ixn=ix+idx*ipower
iyn=iy+idy*ipower
izn=iz+idz*ipower
if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! the binary coordinate of their bottom corner (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
! the address of their parent (loc)
ip=2**level
zp=dfloat(izn)/ip
yp=dfloat(iyn)/ip
xp=dfloat(ixn)/ip
levelin=0
locp=4
call update (octree,noctree,xp,yp,zp,level,levelin,locp)
else
call unite (octree2,noctree2,locn,ixn,iyn,izn,octree,noctree)
endif
enddo
enddo
enddo
return
end
!==============================!
!=====[OCTREE_INTERPOLATE]=====!
!==============================!
subroutine octree_interpolate (octree,noctree,icon,nleaves,field,nfield,x,y,z,f)
! This function returns the value of a field (field) known at the nodes
! of an octree by trilinear interpolation
! icon is the connectivity matrix
! nleaves is the number of leaves in the octree
! field is the array of dimension nfield containing the field
! known at the nodes of the octree and to be interpolated
! x,y,z are the location of the point where the field is to be interpolated
! f is the resulting interpolated field
implicit none
integer noctree,octree(noctree),nleaves,icon(8,nleaves)
integer nfield
double precision field(nfield),x,y,z,x0,y0,z0,dxyz,r,s,t,h(8),phi,xt,yt,zt,f
integer leaf,level,loc,k,iii,jjj,kkk
! function modified by JEAN BRAUN on September 26 2005
! to correct for an error in the logics that led to an interpolation
! from an octree to another identical octree with differences in the
! interpolated function. The reason for this problem was related to
! bad faces or hanging nodes. Indeed, for a hanging node it was very likely
! that the leaf that was detected as the loeaf in which the node resides
! was in fact a leave where the node was a hanging node (ie not one of the
! 4 corner nodes). This meant that the interpolated value was not equal
! to the "constrained" value imposed by the linear constraint at the
! hanging node. To correct for this we first check if the node can
! be interpolated with r,s,t values that are equal to 1 or -1. If this is
! true than this value is chosen as this would correspond to a nodal value
xt=x
yt=y
zt=z
if (xt.lt.-1.e-11 .or. xt.gt.1.d0+1.d-11) return
if (yt.lt.-1.e-11 .or. yt.gt.1.d0+1.d-11) return
if (zt.lt.-1.e-11 .or. zt.gt.1.d0+1.d-11) return
if (x.lt.1.e-11) xt=1.e-11
if (x.gt.1.d0-1.d-11) xt=1.d0-1.d-11
if (y.lt.1.e-11) yt=1.e-11
if (y.gt.1.d0-1.d-11) yt=1.d0-1.d-11
if (z.lt.1.e-11) zt=1.e-11
if (z.gt.1.d0-1.d-11) zt=1.d0-1.d-11
do kkk=-1,1,2
do jjj=-1,1,2
do iii=-1,1,2
xt=x+iii*1.d-10
yt=y+jjj*1.d-10
zt=z+kkk*1.d-10
if (xt*(xt-1.d0).ge.0d0 .or. yt*(yt-1.d0).ge.0d0 .or. zt*(zt-1.d0).ge.0d0) goto 111
call octree_find_leaf (octree,noctree,xt,yt,zt,leaf,level,loc,x0,y0,z0,dxyz)
r=(x-x0)/dxyz*2.d0-1.d0
s=(y-y0)/dxyz*2.d0-1.d0
t=(z-z0)/dxyz*2.d0-1.d0
h(1)=(1.d0-r)*(1.d0-s)*(1.d0-t)/8.d0
h(2)=(1.d0+r)*(1.d0-s)*(1.d0-t)/8.d0
h(3)=(1.d0-r)*(1.d0+s)*(1.d0-t)/8.d0
h(4)=(1.d0+r)*(1.d0+s)*(1.d0-t)/8.d0
h(5)=(1.d0-r)*(1.d0-s)*(1.d0+t)/8.d0
h(6)=(1.d0+r)*(1.d0-s)*(1.d0+t)/8.d0
h(7)=(1.d0-r)*(1.d0+s)*(1.d0+t)/8.d0
h(8)=(1.d0+r)*(1.d0+s)*(1.d0+t)/8.d0
phi=0.d0
do k=1,8
phi=phi+h(k)*field(icon(k,leaf))
enddo
f=phi
if (abs(abs(r)-1.d0).lt.1.d-10 .and. abs(abs(s)-1.d0).lt.1.d-10 .and. abs(abs(t)-1.d0).lt.1.d-10) return
111 continue
enddo
enddo
enddo
return
end
!==============================!
!=====[OCTREE_INTERPOLATE]=====!
!==============================!
subroutine octree_interpolate3 (octree,noctree,icon,nleaves,field,nodex,nodey,nodez,nnode,x,y,z,f)
! This function returns the value of a field (field) known at the nodes
! of an octree by trilinear interpolation
! icon is the connectivity matrix
! nleaves is the number of leaves in the octree
! field is the array of dimension nfield containing the field
! known at the nodes of the octree and to be interpolated
! x,y,z are the location of the point where the field is to be interpolated
! f is the resulting interpolated field
implicit none
integer noctree,octree(noctree),nleaves,icon(8,nleaves)
integer nnode,inode
double precision nodex(nnode),nodey(nnode),nodez(nnode)
double precision field(nnode),x,y,z,x0,y0,z0,dxyz,r,s,t,h(8),phi,xt,yt,zt,f
integer leaf,level,loc,k,iii,jjj,kkk
! function modified by JEAN BRAUN on September 26 2005
! to correct for an error in the logics that led to an interpolation
! from an octree to another identical octree with differences in the
! interpolated function. The reason for this problem was related to
! bad faces or hanging nodes. Indeed, for a hanging node it was very likely
! that the leaf that was detected as the loeaf in which the node resides
! was in fact a leave where the node was a hanging node (ie not one of the
! 4 corner nodes). This meant that the interpolated value was not equal
! to the "constrained" value imposed by the linear constraint at the
! hanging node. To correct for this we first check if the node can
! be interpolated with r,s,t values that are equal to 1 or -1. If this is
! true than this value is chosen as this would correspond to a nodal value
! function modified by Cedric Thieulot on November 21st 2007
! to correct for an apparent little bug in the case of the interpolation of
! a given field from an octree onto the same one.
! this modification simply checks whether the point on which we want to interpolate
! already exists in the octree structure. The first three do-loops explore the 8
! points distant from point (x,y,z) by a tiny distance in all three dimensions.
! After having checked that the predicted point falls within the unit cube,
! the leaf in which the predicted point falls in is found, and we check whether
! any of the nodes of the leaf has the same coordinates as point (x,y,z).
! This slows down a bit the function but also insures and exact interpolation on
! common nodes of both octrees which are many since they usually at least
! share the nodes of a level 5 uniform octree, i.e. 35937 nodes.
!=====[CT]=====
do kkk=-1,1,2
zt=z+kkk*1.d-8
do jjj=-1,1,2
yt=y+jjj*1.d-8
do iii=-1,1,2
xt=x+iii*1.d-8
if (xt>0.d0 .and. xt<1.d0 .and. &
yt>0.d0 .and. yt<1.d0 .and. &
zt>0.d0 .and. zt<1.d0 ) then
call octree_find_leaf (octree,noctree,xt,yt,zt,leaf,level,loc,x0,y0,z0,dxyz)
do k=1,8
inode=icon(k,leaf)
if (abs(nodex(inode)-x)<1.d-10 .and. &
abs(nodey(inode)-y)<1.d-10 .and. &
abs(nodez(inode)-z)<1.d-10 ) then
f=field(inode)
return
end if
end do
end if
end do
end do
end do
!==============
xt=x
yt=y
zt=z
do kkk=-1,1,2
zt=z+kkk*1.d-10
do jjj=-1,1,2
yt=y+jjj*1.d-10
do iii=-1,1,2
xt=x+iii*1.d-10
if (xt*(xt-1.d0).ge.0d0 .or. &
yt*(yt-1.d0).ge.0d0 .or. &
zt*(zt-1.d0).ge.0d0) goto 111
call octree_find_leaf (octree,noctree,xt,yt,zt,leaf,level,loc,x0,y0,z0,dxyz)
r=(x-x0)/dxyz*2.d0-1.d0
s=(y-y0)/dxyz*2.d0-1.d0
t=(z-z0)/dxyz*2.d0-1.d0
h(1)=(1.d0-r)*(1.d0-s)*(1.d0-t)/8.d0
h(2)=(1.d0+r)*(1.d0-s)*(1.d0-t)/8.d0
h(3)=(1.d0-r)*(1.d0+s)*(1.d0-t)/8.d0
h(4)=(1.d0+r)*(1.d0+s)*(1.d0-t)/8.d0
h(5)=(1.d0-r)*(1.d0-s)*(1.d0+t)/8.d0
h(6)=(1.d0+r)*(1.d0-s)*(1.d0+t)/8.d0
h(7)=(1.d0-r)*(1.d0+s)*(1.d0+t)/8.d0
h(8)=(1.d0+r)*(1.d0+s)*(1.d0+t)/8.d0
phi=0.d0
do k=1,8
phi=phi+h(k)*field(icon(k,leaf))
enddo
f=phi
if (abs(r)-1.d0+abs(s)-1.d0+abs(t)-1.d0.lt.1.d-10) return
111 continue
enddo
enddo
enddo
return
end
!===================================!
!=====[OCTREE_INTERPOLATE_MANY]=====!
!===================================!
subroutine octree_interpolate_many (nf,octree,noctree,icon,nleaves,nfield,x,y,z, &
field1,f1,field2,f2,field3,f3, &
field4,f4,field5,f5,field6,f6, &
field7,f7,field8,f8,field9,f9, &
field10,f10,field11,f11,field12,f12, &
field13,f13,field14,f14,field15,f15)
! This function returns the value of several fields (fieldi) known at the nodes
! of an octree by trilinear interpolation
! nf is the number of fields being interpolate (must be comprised between 1 and 15)
! icon is the connectivity matrix
! nleaves is the number of leaves in the octree
! fieldi are the arrays of dimension nfield containing the fields
! known at the nodes of the octree and to be interpolated
! x,y,z are the location of the point where the fields are to be interpolated
! fi are the resulting interpolated fields
! Note that the number of arguments to this routine depends on the number of
! fields to be interpolated (nf). This is why some of the arguments are declared
! as optional
implicit none
optional :: field2,f2,field3,f3,field4,f4,field5,f5,field6,f6
optional :: field7,f7,field8,f8,field9,f9,field10,f10
optional :: field11,f11,field12,f12,field13,f13,field14,f14,field15,f15
integer noctree,octree(noctree),nleaves,icon(8,nleaves)
integer nfield,nf
double precision field1(nfield),field2(nfield),field3(nfield),field4(nfield), &
field5(nfield),field6(nfield),field7(nfield),field8(nfield)
double precision field9(nfield),field10(nfield),field11(nfield),field12(nfield), &
field13(nfield),field14(nfield),field15(nfield)
double precision f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15
double precision x,y,z,x0,y0,z0,dxyz,r,s,t,h(8),phi,xt,yt,zt
integer leaf,level,loc,k,iii,jjj,kkk,ii
! function modified by JEAN BRAUN on September 26 2005
! to correct for an error in the logics that led to an interpolation
! from an octree to another identical octree with differences in the
! interpolated function. The reason for this problem was related to
! bad faces or hanging nodes. Indeed, for a hanging node it was very likely
! that the leaf that was detected as the loeaf in which the node resides
! was in fact a leave where the node was a hanging node (ie not one of the
! 4 corner nodes). This meant that the interpolated value was not equal
! to the "constrained" value imposed by the linear constraint at the
! hanging node. To correct for this we first check if the node can
! be interpolated with r,s,t values that are equal to 1 or -1. If this is
! true than this value is chosen as this would correspond to a nodal value
xt=x
yt=y
zt=z
if (xt.lt.-1.e-11 .or. xt.gt.1.d0+1.d-11) return
if (yt.lt.-1.e-11 .or. yt.gt.1.d0+1.d-11) return
if (zt.lt.-1.e-11 .or. zt.gt.1.d0+1.d-11) return
if (x.lt.1.e-11) xt=1.e-11
if (x.gt.1.d0-1.d-11) xt=1.d0-1.d-11
if (y.lt.1.e-11) yt=1.e-11
if (y.gt.1.d0-1.d-11) yt=1.d0-1.d-11
if (z.lt.1.e-11) zt=1.e-11
if (z.gt.1.d0-1.d-11) zt=1.d0-1.d-11
do kkk=-1,1,2
do jjj=-1,1,2
do iii=-1,1,2
xt=x+iii*1.d-10
yt=y+jjj*1.d-10
zt=z+kkk*1.d-10
if (xt*(xt-1.d0).ge.0d0 .or. yt*(yt-1.d0).ge.0d0 .or. zt*(zt-1.d0).ge.0d0) goto 111
call octree_find_leaf (octree,noctree,xt,yt,zt,leaf,level,loc,x0,y0,z0,dxyz)
r=(x-x0)/dxyz*2.d0-1.d0
s=(y-y0)/dxyz*2.d0-1.d0
t=(z-z0)/dxyz*2.d0-1.d0
h(1)=(1.d0-r)*(1.d0-s)*(1.d0-t)/8.d0
h(2)=(1.d0+r)*(1.d0-s)*(1.d0-t)/8.d0
h(3)=(1.d0-r)*(1.d0+s)*(1.d0-t)/8.d0
h(4)=(1.d0+r)*(1.d0+s)*(1.d0-t)/8.d0
h(5)=(1.d0-r)*(1.d0-s)*(1.d0+t)/8.d0
h(6)=(1.d0+r)*(1.d0-s)*(1.d0+t)/8.d0
h(7)=(1.d0-r)*(1.d0+s)*(1.d0+t)/8.d0
h(8)=(1.d0+r)*(1.d0+s)*(1.d0+t)/8.d0
phi=0.d0
do k=1,8
phi=phi+h(k)*field1(icon(k,leaf))
enddo
f1=phi
if (nf.eq.1) goto 222
phi=0.d0
do k=1,8
phi=phi+h(k)*field2(icon(k,leaf))
enddo
f2=phi
if (nf.eq.2) goto 222
phi=0.d0
do k=1,8
phi=phi+h(k)*field3(icon(k,leaf))
enddo
f3=phi
if (nf.eq.3) goto 222
phi=0.d0
do k=1,8
phi=phi+h(k)*field4(icon(k,leaf))
enddo
f4=phi
if (nf.eq.4) goto 222
phi=0.d0
do k=1,8
phi=phi+h(k)*field5(icon(k,leaf))
enddo
f5=phi
if (nf.eq.5) goto 222
phi=0.d0
do k=1,8
phi=phi+h(k)*field6(icon(k,leaf))
enddo
f6=phi
if (nf.eq.6) goto 222
phi=0.d0
do k=1,8
phi=phi+h(k)*field7(icon(k,leaf))
enddo
f7=phi
if (nf.eq.7) goto 222
phi=0.d0
do k=1,8
Loading
Loading full blame...