Skip to content
Snippets Groups Projects
OctreeBitPlus.f90 75.4 KiB
Newer Older
Douglas Guptill's avatar
Douglas Guptill committed
!-------------------------------------------

! NEW OCTREEBIT LIBRARY (WRITTEN 26-27/02/2004) BY JEAN BRAUN

! This version addresses problems that arose in the computation
! of the icon array for very large octrees. This new version is much
! more efficient and uses the same amount of memory (sometimes less).
! Many of the querry routines have been greatly improved by storing
! additional information in the octree structure. Data storage and
! navigation within the octree are based on the methods described by
! Frisken and Perry from Mitsubishi Electric Research Lab.
! The computation of the icon array is based on a three stage method:
! (1) Compute icon and a nodal position array disregarding the nodal connectivity
! (2) Sort the nodal arrays by ordering along x, y and z coordinates
! (3) Remove the spurious nodes and modify the icon array accordingly
! Because a fast sorting method is used (O(n log log n)), this approach
! is rather efficient.


!=======================!
!=====[OCTREE_INIT]=====!
!=======================!

subroutine octree_init (octree,noctree)

! This routine must be called before any other routine when an octree is created
! the basic structure of the octree is 
! octree(1)=maximum level (unit cube is level 0)
! octree(2)=number of leaves
! octree(3)=total length of octree
! for each cube in the octree (at location loc)
! octree(loc)=level
! octree(loc+1)=address of parent
! octree(loc+2 to loc+9)=address of children (if negative the child is a leaf and the
!         value is the leaf number in the sequence of leaves)

implicit none

integer noctree,octree(noctree)

integer levelmax,nleaves,length,loc,k

levelmax=1
nleaves=8
length=13

octree(1)=levelmax
octree(2)=nleaves
octree(3)=length

loc=4

octree(loc)=1
octree(loc+1)=0
  do k=1,8
  octree(loc+1+k)=-k
  enddo

return
end

!====================================!
!=====[FIND_INTEGER_COORDINATES]=====!
!====================================!

subroutine find_integer_coordinates (x,y,z,ix,iy,iz,levelmax)

! returns the integer coordinates of point (x,y,z) in (ix,iy,iz)
! the integer coordinates are determined by the maximum level in the octree
! levelmax

! the integer coordinate is comprise between 1 and 2**levelmax
! and corresponds to the location of the leaf containing the
! point of given coordinates

implicit none

double precision x,y,z
integer ix,iy,iz,levelmax

double precision powermax

powermax=2.d0**levelmax
ix=int(x*powermax)
iy=int(y*powermax)
iz=int(z*powermax)

return
end

!=================================!
!=====[FIND_REAL_COORDINATES]=====!
!=================================!

subroutine find_real_coordinates (ix,iy,iz,x,y,z,levelmax)

! returns the real coordinates of a point of integer coordinates (ix,iy,iz)
! the real coordinates are determined by the maximum level in the octree

implicit none

double precision x,y,z
integer ix,iy,iz,levelmax

double precision powermax

powermax=2**levelmax
x=dfloat(ix)/powermax
y=dfloat(iy)/powermax
z=dfloat(iz)/powermax

return
end

!========================================!
!=====[OCTREE_CREATE_FROM_PARTICLE]=====!
!========================================!

subroutine octree_create_from_particle (octree,noctree,x,y,z,np,level)

! updates the octree by creating a leaf at point (x,y,z)
! of level level
! if the leaf (or a cube of smaller level) exists, the routine has no effect on the octree
! note that x,y,z must belong to [0,1[

implicit none

integer noctree,octree(noctree),np
double precision x,y,z
integer level
double precision xp,yp,zp

integer levelin,ix,iy,iz,levelmax,loc,ip

levelmax=octree(1)

xp=x
yp=y
zp=z
levelin=0
loc=4
  if (xp.eq.1.d0) xp=1.d0-1.d-20
  if (yp.eq.1.d0) yp=1.d0-1.d-20
  if (zp.eq.1.d0) zp=1.d0-1.d-20
  if (xp.eq.0.d0) xp=1.d-20
  if (yp.eq.0.d0) yp=1.d-20
  if (zp.eq.0.d0) zp=1.d-20
  if (xp*(xp-1.d0).lt.0.d0 .and. yp*(yp-1.d0).lt.0.d0 .and. zp*(zp-1.d0).lt.0.d0) &
    call update (octree,noctree,xp,yp,zp,level,levelin,loc)

return
end

Douglas Guptill's avatar
Douglas Guptill committed
!========================================!
!=====[OCTREE_CREATE_FROM_PARTICLES]=====!
!========================================!

subroutine octree_create_from_particles (octree,noctree,x,y,z,np,level)

! updates the octree by creating a leaf at points (x(1:np),y(1:np),z(1:np))
! of level level(1:np)
! if the leaf (or a cube of smaller level) exists, the routine has no effect on the octree
! note that x,y,z must belong to [0,1[

implicit none

integer noctree,octree(noctree),np
double precision x(np),y(np),z(np)
integer level(np)
double precision xp,yp,zp

integer levelin,ix,iy,iz,levelmax,loc,ip

levelmax=octree(1)

do ip=1,np
xp=x(ip)
yp=y(ip)
zp=z(ip)
levelin=0
loc=4
  if (xp.eq.1.d0) xp=1.d0-1.d-20
  if (yp.eq.1.d0) yp=1.d0-1.d-20
  if (zp.eq.1.d0) zp=1.d0-1.d-20
  if (xp.eq.0.d0) xp=1.d-20
  if (yp.eq.0.d0) yp=1.d-20
  if (zp.eq.0.d0) zp=1.d-20
  if (xp*(xp-1.d0).lt.0.d0 .and. yp*(yp-1.d0).lt.0.d0 .and. zp*(zp-1.d0).lt.0.d0) &
    call update (octree,noctree,xp,yp,zp,level(ip),levelin,loc)
enddo

return
end

!==================!
!=====[UPDATE]=====!
!==================!

recursive subroutine update (octree,noctree,x,y,z,level,levelin,loc)

Douglas Guptill's avatar
Douglas Guptill committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
! DO NOT USE
! internal routine called by OctreeUpdate
! this routine divides a cube of the octree in 8
! if the requested level is greater than0
! and if the requested level is stricly greater than levelin
! loc is the location in the octree of the current cube (to be divided)

implicit none

integer noctree,octree(noctree),ix,iy,iz,levelin,level,loc
double precision x,y,z
integer ibits_jean
external ibits_jean

integer levelmax,ibitx,ibity,ibitz,ichild,iaddress,newaddress

if (level.eq.0) return

if (levelin+1.eq.level) return

levelmax=octree(1)
call find_integer_coordinates (x,y,z,ix,iy,iz,levelmax)
ibitx=ibits_jean(ix,levelmax-levelin-1)
ibity=ibits_jean(iy,levelmax-levelin-1)
ibitz=ibits_jean(iz,levelmax-levelin-1)

ichild=loc+2+ibitz*4+ibity*2+ibitx

if (ichild.gt.octree(3)) then
print*,ichild,' requested ',octree(3),' available'
stop 'octree needs to grow...'
endif

iaddress=octree(ichild)

  if (iaddress.lt.0) then
!adds a level
  newaddress=octree(3)+1
! updates current level
  octree(ichild)=newaddress
! updates octree length
  octree(3)=octree(3)+10
! updates number of leaves
  octree(2)=octree(2)+7
! updates maximum level
  if (levelin+2.gt.octree(1)) octree(1)=levelin+2
! creates new division
  octree(newaddress)=levelin+2
  octree(newaddress+1)=ichild
  octree(newaddress+2)=iaddress
  octree(newaddress+3)=-(octree(2)-6)
  octree(newaddress+4)=-(octree(2)-5)
  octree(newaddress+5)=-(octree(2)-4)
  octree(newaddress+6)=-(octree(2)-3)
  octree(newaddress+7)=-(octree(2)-2)
  octree(newaddress+8)=-(octree(2)-1)
  octree(newaddress+9)=-(octree(2))
  call update (octree,noctree,x,y,z,level,levelin+1,newaddress)
  else
  call update (octree,noctree,x,y,z,level,levelin+1,iaddress)
  endif

return
end


!=================!
!=====[IBITS]=====!
!=================!

integer function ibits_jean(i,ipos)

!internal function, do not modify

integer j
j=i/2**ipos
ibits_jean=j-(j/2)*2
return
end

!============================!
!=====[OCTREE_FIND_LEAF]=====!
!============================!

subroutine octree_find_leaf (octree,noctree,x,y,z,leaf,level,loc,x0,y0,z0,dxyz)

! given an octree of size noctree
! this routine returns the leaf number in which a point (x,y,z) resides
! the level of the leaf (0 is unit cube)
! the location in the octree of the part describing the parent of the leaf (loc)
! the centroid of the leaf (x0,y0,z0) and its size (dxyz)

implicit none

integer noctree,octree(noctree)
double precision x,y,z,x0,y0,z0,dxyz
integer leaf,level,loc

integer ix,iy,iz,levelin,locin,levelmax

levelmax=octree(1)
call find_integer_coordinates (x,y,z,ix,iy,iz,levelmax)

levelin=0
locin=4
leaf=0
call find_leaf (octree,noctree,ix,iy,iz,levelin,locin,leaf,level,loc)

call find_integer_coordinates (x,y,z,ix,iy,iz,level)
call find_real_coordinates (ix,iy,iz,x0,y0,z0,level)
dxyz=1.d0/2.d0**level

return
end

!=====================!
!=====[FIND_LEAF]=====!
!=====================!

recursive subroutine find_leaf (octree,noctree,ix,iy,iz,levelin,locin,leaf,level,loc)

! DO NOT USE
! internal routine used by octree_find_leaf

implicit none

integer noctree,octree(noctree),ix,iy,iz,levelin,leaf,level,loc,locin
integer levelmax,ibitx,ibity,ibitz,ichild,iaddress
integer ibits_jean
external ibits_jean

levelmax=octree(1)
!ibitx=ibits(ix,levelmax-levelin-1,1)
!ibity=ibits(iy,levelmax-levelin-1,1)
!ibitz=ibits(iz,levelmax-levelin-1,1)
ibitx=ibits_jean(ix,levelmax-levelin-1)
ibity=ibits_jean(iy,levelmax-levelin-1)
ibitz=ibits_jean(iz,levelmax-levelin-1)

ichild=locin+2+ibitz*4+ibity*2+ibitx

if (ichild.gt.octree(3)) stop 'octree needs to grow...'
iaddress=octree(ichild)

  if (iaddress.lt.0) then
  leaf=-iaddress
  level=levelin+1
  loc=locin
  return
  else
  call find_leaf (octree,noctree,ix,iy,iz,levelin+1,iaddress,leaf,level,loc)
  endif

return
end

!===============================!
!=====[OCTREETHROUGHLEAVES]=====!
!===============================!

subroutine OctreeThroughLeaves (octree,noctree)

! DO NOT USE
! this is a general routine that simply goes through the leaves
! this routine is used as a template to build other routines.
! it should not be used

implicit none

integer noctree,octree(noctree)

integer loc,ix,iy,iz

loc=4
ix=0
iy=0
iz=0
call throughleaves (octree,noctree,loc,ix,iy,iz)

return
end

!=========================!
!=====[THROUGHLEAVES]=====!
!=========================!

recursive subroutine throughleaves (octree,noctree,loc,ix,iy,iz)

! DO NOT USE
! internal routine
! on entry we have the address of the current cube
! and the binary coordinates of its bottom corner

implicit none

integer noctree,octree(noctree),loc,ix,iy,iz

integer level,levelmax,ipower,ixn,iyn,izn,locn
integer idx,idy,idz,k

level=octree(loc)
levelmax=octree(1)

  do idz=0,1
  do idy=0,1
  do idx=0,1
  k=idx+idy*2+idz*4
  locn=octree(loc+2+k)
  ipower=2**(levelmax-level)
  ixn=ix+idx*ipower
  iyn=iy+idy*ipower
  izn=iz+idz*ipower
    if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! their coordinates (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
    else
    call throughleaves (octree,noctree,locn,ixn,iyn,izn)
    endif
  enddo
  enddo
  enddo

return
end

!===========================!
!=====[OCTREE_SMOOTHEN]=====!
!===========================!

subroutine octree_smoothen (octree,noctree)

! as it names indicates this routine smoothens the octree
! ie it ensures that no two adjacent leaves are more than one level apart

implicit none

integer noctree,octree(noctree)

integer loc,ix,iy,iz,nleaves,nleaves0
integer ioctree_number_of_elements

nleaves=ioctree_number_of_elements (octree,noctree)

do while (nleaves.ne.nleaves0)
nleaves0=nleaves
loc=4
ix=0
iy=0
iz=0
call smooth (octree,noctree,loc,ix,iy,iz)
nleaves=ioctree_number_of_elements (octree,noctree)
enddo

return
end

!==================!
!=====[SMOOTH]=====!
!==================!

recursive subroutine smooth (octree,noctree,loc,ix,iy,iz)

! DO NOT USE
! internal routine
! on entry we have the address of the current cube
! and the binary coordinates of its bottom corner

implicit none

integer noctree,octree(noctree),loc,ix,iy,iz

integer level,levelmax,ipower,ixn,iyn,izn,locn
integer k,idx,idy,idz,ip
integer ipmax,iddx,iddy,iddz,ixp,iyp,izp,levelin,locp
double precision xp,yp,zp

level=octree(loc)
levelmax=octree(1)

  do idz=0,1
  do idy=0,1
  do idx=0,1
  k=idx+idy*2+idz*4
  locn=octree(loc+2+k)
  ipower=2**(levelmax-level)
  ixn=ix+idx*ipower
  iyn=iy+idy*ipower
  izn=iz+idz*ipower
    if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! the binary coordinate of their bottom corner (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
! the address of their parent (loc)

! first check that `right' neighbours are not down by more than 1 level
    ipmax=2**levelmax
    ip=2**level
    izp=izn+ipower
    iyp=iyn+ipower
    ixp=ixn+ipower
      if (izp.lt.ipmax) then
      zp=dfloat(izp)/ipmax
      yp=dfloat(iyn)/ipmax
      xp=dfloat(ixn)/ipmax
      levelin=0
      locp=4
      call update (octree,noctree,xp,yp,zp,level-1,levelin,locp)
      endif
      if (iyp.lt.ipmax) then
      zp=dfloat(izn)/ipmax
      yp=dfloat(iyp)/ipmax
      xp=dfloat(ixn)/ipmax
      levelin=0
      locp=4
      call update (octree,noctree,xp,yp,zp,level-1,levelin,locp)
      endif
      if (ixp.lt.ipmax) then
      zp=dfloat(izn)/ipmax
      yp=dfloat(iyn)/ipmax
      xp=dfloat(ixp)/ipmax
      levelin=0
      locp=4
      call update (octree,noctree,xp,yp,zp,level-1,levelin,locp)
      endif

! second check if the 'left' neighbours are not down by more than one level
    izp=izn-1
    iyp=iyn-1
    ixp=ixn-1
      if (izp.ge.0) then
      zp=dfloat(izp)/ipmax
      yp=dfloat(iyn)/ipmax
      xp=dfloat(ixn)/ipmax
      levelin=0
      locp=4
      call update (octree,noctree,xp,yp,zp,level-1,levelin,locp)
      endif
      if (iyp.ge.0) then
      zp=dfloat(izn)/ipmax
      yp=dfloat(iyp)/ipmax
      xp=dfloat(ixn)/ipmax
      levelin=0
      locp=4
      call update (octree,noctree,xp,yp,zp,level-1,levelin,locp)
      endif
      if (ixp.ge.0) then
      zp=dfloat(izn)/ipmax
      yp=dfloat(iyn)/ipmax
      xp=dfloat(ixp)/ipmax
      levelin=0
      locp=4
      call update (octree,noctree,xp,yp,zp,level-1,levelin,locp)
      endif

    else
    call smooth(octree,noctree,locn,ixn,iyn,izn)
    endif
  enddo
  enddo
  enddo

return
end

!=================================!
!=====[OCTREE_SUPER_SMOOTHEN]=====!
!=================================!

subroutine octree_super_smoothen (octree,noctree)

! as it names indicates this routine further smoothens the octree
! ie it ensures that for any given leaf and its six closest neighbouring
! leaves, ther is no difference in level larger than 1

! Note that contrary to octree_smoothen, octree_super_smoothen can
! be used iteratively to increase the smoothness of the octree

implicit none

integer noctree,octree(noctree)

integer loc,ix,iy,iz,nleaves,nleaves0
integer ioctree_number_of_elements

nleaves=ioctree_number_of_elements (octree,noctree)

do while (nleaves.ne.nleaves0)
nleaves0=nleaves
loc=4
ix=0
iy=0
iz=0
call super_smooth (octree,noctree,loc,ix,iy,iz,nleaves)
nleaves=ioctree_number_of_elements (octree,noctree)
enddo

call octree_smoothen (octree,noctree)

return
end

!========================!
!=====[SUPER_SMOOTH]=====!
!========================!

recursive subroutine super_smooth (octree,noctree,loc,ix,iy,iz,nleaves0)

! DO NOT USE
! internal routine
! on entry we have the address of the current cube
! and the binary coordinates of its bottom corner

implicit none

integer noctree,octree(noctree),loc,ix,iy,iz

integer level,levelmax,ipower,ixn,iyn,izn,locn
integer k,idx,idy,idz,ip
integer ipmax,iddx,iddy,iddz,ixp,iyp,izp,levelin,locp
double precision xp,yp,zp
integer levelout(6),levelset,leaf,locin,nleaves0

level=octree(loc)
levelmax=octree(1)

  do idz=0,1
  do idy=0,1
  do idx=0,1
  k=idx+idy*2+idz*4
  locn=octree(loc+2+k)
  ipower=2**(levelmax-level)
  ixn=ix+idx*ipower
  iyn=iy+idy*ipower
  izn=iz+idz*ipower
    if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! the binary coordinate of their bottom corner (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
! the address of their parent (loc)

! first find `right' neighbours levels
    ipmax=2**levelmax
    ip=2**level
    izp=izn+ipower
    iyp=iyn+ipower
    ixp=ixn+ipower
    levelout=level
      if (izp.lt.ipmax) then
      levelin=0
      locin=4
      leaf=0
      call find_leaf (octree,noctree,ixn,iyn,izp,levelin,locin,leaf,levelout(1),locp)
      if (leaf.gt.nleaves0) levelout(1)=level
      endif
      if (iyp.lt.ipmax) then
      levelin=0
      locin=4
      leaf=0
      call find_leaf (octree,noctree,ixn,iyp,izn,levelin,locin,leaf,levelout(2),locp)
      if (leaf.gt.nleaves0) levelout(2)=level
      endif
      if (ixp.lt.ipmax) then
      levelin=0
      locin=4
      leaf=0
      call find_leaf (octree,noctree,ixp,iyn,izn,levelin,locin,leaf,levelout(3),locp)
      if (leaf.gt.nleaves0) levelout(3)=level
      endif

! second find 'left' neighbours levels
    izp=izn-1
    iyp=iyn-1
    ixp=ixn-1
      if (izp.ge.0) then
      levelin=0
      locin=4
      leaf=0
      call find_leaf (octree,noctree,ixn,iyn,izp,levelin,locin,leaf,levelout(4),locp)
      if (leaf.gt.nleaves0) levelout(4)=level
      endif
      if (iyp.ge.0) then
      levelin=0
      locin=4
      leaf=0
      call find_leaf (octree,noctree,ixn,iyp,izn,levelin,locin,leaf,levelout(5),locp)
      if (leaf.gt.nleaves0) levelout(5)=level
      endif
      if (ixp.ge.0) then
      levelin=0
      locin=4
      leaf=0
      call find_leaf (octree,noctree,ixp,iyn,izn,levelin,locin,leaf,levelout(6),locp)
      if (leaf.gt.nleaves0) levelout(6)=level
      endif

! if the difference in level between the leaf and any of its neighbours is greater
! than 1, all leaves are set to the maximum level minus one at least

      if (maxval(levelout)-minval(levelout).gt.1) then
      levelset=maxval(levelout)-1
! now check that `right' neighbours are at least at this level
      izp=izn+ipower
      iyp=iyn+ipower
      ixp=ixn+ipower
        if (izp.lt.ipmax) then
        zp=dfloat(izp)/ipmax
        yp=dfloat(iyn)/ipmax
        xp=dfloat(ixn)/ipmax
        levelin=0
        locp=4
        call update (octree,noctree,xp,yp,zp,levelset,levelin,locp)
        endif
        if (iyp.lt.ipmax) then
        zp=dfloat(izn)/ipmax
        yp=dfloat(iyp)/ipmax
        xp=dfloat(ixn)/ipmax
        levelin=0
        locp=4
        call update (octree,noctree,xp,yp,zp,levelset,levelin,locp)
        endif
        if (ixp.lt.ipmax) then
        zp=dfloat(izn)/ipmax
        yp=dfloat(iyn)/ipmax
        xp=dfloat(ixp)/ipmax
        levelin=0
        locp=4
        call update (octree,noctree,xp,yp,zp,levelset,levelin,locp)
        endif
  ! now check that 'left' neighbours are at least at this level
      izp=izn-1
      iyp=iyn-1
      ixp=ixn-1
        if (izp.ge.0) then
        zp=dfloat(izp)/ipmax
        yp=dfloat(iyn)/ipmax
        xp=dfloat(ixn)/ipmax
        levelin=0
        locp=4
        call update (octree,noctree,xp,yp,zp,levelset,levelin,locp)
        endif
        if (iyp.ge.0) then
        zp=dfloat(izn)/ipmax
        yp=dfloat(iyp)/ipmax
        xp=dfloat(ixn)/ipmax
        levelin=0
        locp=4
        call update (octree,noctree,xp,yp,zp,levelset,levelin,locp)
        endif
        if (ixp.ge.0) then
        zp=dfloat(izn)/ipmax
        yp=dfloat(iyn)/ipmax
        xp=dfloat(ixp)/ipmax
        levelin=0
        locp=4
        call update (octree,noctree,xp,yp,zp,levelset,levelin,locp)
        endif
  
      endif

    else
    call super_smooth(octree,noctree,locn,ixn,iyn,izn,nleaves0)
    endif
  enddo
  enddo
  enddo

return
end

!===============================!
!=====[OCTREE_SHOW_AS_MESH]=====!
!===============================!

subroutine octree_show_as_mesh (octree,noctree)

! routine to show the octree as a mesh in vrml
! produces a VRML file called mesh.wrl
! this is mostly used for debugging purposes

implicit none

integer noctree,octree(noctree)

integer loc,ix,iy,iz

open (7,file='mesh.wrl',status='unknown')
write (7,'(a)') '#VRML V2.0 utf8'
write (7,'(a)') 'Transform { children ['
write (7,'(a)') 'NavigationInfo { '
write (7,'(a)') 'type ["EXAMINE"]'
write (7,'(a)') 'headlight FALSE}'
write (7,'(a)') 'Background{groundColor 1 1 1 skyColor 1 1 1}'
write (7,'(a)') 'DirectionalLight {ambientIntensity  0.2'
write (7,'(a)') '                  color      1 1 1'
write (7,'(a)') '                  direction  .8 1 .5}'
write (7,'(a)') 'DirectionalLight {ambientIntensity  0.2'
write (7,'(a)') '                  color      1 1 1'
write (7,'(a)') '                  direction  -.8 -1 -.5}'
write (7,'(a)') 'Transform { children Viewpoint {'
write (7,'(a)') '      description "Starting"'
write (7,'(a)') '      fieldOfView 1'
write (7,'(a,3f12.8,a)') '      position    ',-.41885125637054443, -.8311104774475098, 1.5406757593154907
write (7,'(a,4f12.8,a)') '      orientation ', .7352051138877869, -.10698327422142029, -.669348955154419, 1.3260198831558228,'}}'
write (7,'(a,a)') 'DEF Node0 Shape{geometry Sphere{radius 0.0075', &
                ' }appearance Appearance{material Material{diffuseColor 1 0 0}}}'
write (7,'(a,3f10.6,a)') 'Transform{translation',0.,0.,0., &
                         ' children [USE Node0]}'
loc=4
ix=0
iy=0
iz=0
call show (octree,noctree,loc,ix,iy,iz)
write (7,'(a)') ']}'
close (7)

return
end

!================!
!=====[SHOW]=====!
!================!

recursive subroutine show (octree,noctree,loc,ix,iy,iz)

! DO NOT USE
! internal routine
! to show the octree as a mesh

implicit none

integer noctree,octree(noctree),loc,ix,iy,iz

integer level,levelmax,ipower,ixn,iyn,izn,locn
integer idx,idy,idz,k
double precision x1,y1,z1,x2,y2,z2,dxyz

level=octree(loc)
levelmax=octree(1)

  do idz=0,1
  do idy=0,1
  do idx=0,1
  k=idx+idy*2+idz*4
  locn=octree(loc+2+k)
  ipower=2**(levelmax-level)
  ixn=ix+idx*ipower
  iyn=iy+idy*ipower
  izn=iz+idz*ipower
    if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! their coordinates (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
    call find_real_coordinates (ixn,iyn,izn,x1,y1,z1,levelmax)
    dxyz=1.d0/(2.d0**level)
    x2=x1+dxyz
    y2=y1+dxyz
    z2=z1+dxyz
    write (7,'(a,24f10.3,a,a,a)') &
         'Shape { geometry IndexedLineSet { coord Coordinate { point [', &
          x1,y1,z1,x2,y1,z1,x2,y2,z1,x1,y2,z1,x1,y1,z2,x2,y1,z2,x2,y2,z2,x1,y2,z2, &
          ']} coordIndex [0 1 2 3 0 -1 4 5 6 7 4 -1 0 4 -1 1 5 -1 2 6 -1 3 7 -1', &
          ']}appearance Appearance { material Material { emissiveColor 0 0 0}}}'
    else
    call show (octree,noctree,locn,ixn,iyn,izn)
    endif
  enddo
  enddo
  enddo

return
end

!=====================================!
!=====[OCTREE_FIND_ELEMENT_LEVEL]=====!
!=====================================!

subroutine octree_find_element_level (octree,noctree,levs,nleaves)

! routine to return the level of each leaf
! the result is returned in the array levs of dimension nleaves

! the function ioctree_number_of_elements should be called first to
! find nleaves and dimension levs accordingly

implicit none

integer noctree,octree(noctree),nleaves,levs(nleaves)

integer loc,ix,iy,iz

loc=4
ix=0
iy=0
iz=0
call levels (octree,noctree,loc,ix,iy,iz,levs,nleaves)

return
end

!==================!
!=====[LEVELS]=====!
!==================!

recursive subroutine levels (octree,noctree,loc,ix,iy,iz,levs,nleaves)

! DO NOT USE
! internal routine
! on entry we have the address of the current cube
! and the binary coordinates of its bottom corner

implicit none

integer noctree,octree(noctree),loc,ix,iy,iz
integer nleaves,levs(nleaves)

integer level,levelmax,ipower,ixn,iyn,izn,locn
integer idx,idy,idz,k

level=octree(loc)
levelmax=octree(1)

  do idz=0,1
  do idy=0,1
  do idx=0,1
  k=idx+idy*2+idz*4
  locn=octree(loc+2+k)
  ipower=2**(levelmax-level)
  ixn=ix+idx*ipower
  iyn=iy+idy*ipower
  izn=iz+idz*ipower
    if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! their coordinates (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
    if (-locn.gt.nleaves) stop 'array level needs to grow'
    levs(-locn)=level
    else
    call levels (octree,noctree,locn,ixn,iyn,izn,levs,nleaves)
    endif
  enddo
  enddo
  enddo

return
end

!======================================!
!=====[IOCTREE_NUMBER_OF_ELEMENTS]=====!
!======================================!

integer function ioctree_number_of_elements (octree,noctree)

! function that returns (in ioctree_number_of_elements) the number of leaves in the octree

implicit none

integer noctree,octree(noctree)

ioctree_number_of_elements=octree(2)

return
end

!=================================!
!=====[IOCTREE_MAXIMUM_LEVEL]=====!
!=================================!

integer function ioctree_maximum_level (octree,noctree)

! function that returns (in ioctree_maximum_level) the maximum level in the octree

implicit none

integer noctree,octree(noctree)

ioctree_maximum_level=octree(1)

return
end

!========================!
!=====[IOCTREE_SIZE]=====!
!========================!

integer function ioctree_size (octree,noctree)

! function that returns (in ioctree_size) the size of the octree

implicit none

integer noctree,octree(noctree)

ioctree_size=octree(3)

return
end

!=================================!
!=====[OCTREE_CREATE_UNIFORM]=====!
!=================================!

subroutine octree_create_uniform (octree,noctree,levelt)

! routine to generate a uniform octree down to level levelt

implicit none

integer noctree,octree(noctree),levelt

integer nl,levelin,loc,iz,ix,iy
double precision x,y,z

nl=2**levelt
do iz=0,nl-1
z=dfloat(iz)/nl
do iy=0,nl-1
y=dfloat(iy)/nl
do ix=0,nl-1
x=dfloat(ix)/nl
levelin=0
loc=4
call update (octree,noctree,x,y,z,levelt,levelin,loc)
enddo
enddo
enddo

return
end


!=================================!
!=====[OCTREE_RENUMBER_NODES]=====!
!=================================!

subroutine octree_renumber_nodes (icon,nleaves,xa,ya,za,na)

! This routine renumbers the nodes to minimize the maximum
! difference (in the least square sense) between the numbers
! of the nodes belonging to any given element.

! This is useful is one wishes to use the octree mesh for FE
! calculations.

! This uses SLOAN's algorithm and routines

! in output, the icon array is modified as well as the node
! location arrays (xa,ya,za) that have been reordered

implicit none

integer nleaves,icon(8,nleaves),na
double precision xa(na),ya(na),za(na)
integer,dimension(:),allocatable::npn,xnpn,adj,xadj,sort,working
integer,dimension(:,:),allocatable::jcon
double precision,dimension(:),allocatable::xyz
integer ie,k,inpn,iadj,oldpro,newpro

inpn=nleaves*8
iadj=nleaves*8*7

allocate (xnpn(nleaves+1),npn(inpn),adj(iadj),xadj(na+1))
allocate (sort(na),working(3*na+1))

xnpn(1)=1
  do ie=1,nleaves
  xnpn(ie+1)=xnpn(ie)+8-1
    do k=1,8
    npn(xnpn(ie)+k-1)=icon(k,ie)
    enddo
  enddo

call graph_sloan (na,nleaves,inpn,npn,xnpn,iadj,adj,xadj)

call label_sloan (na,xadj(na+1)-1,adj,xadj,sort,working,oldpro,newpro)

deallocate (xnpn,npn,adj,xadj,working)

allocate (jcon(8,nleaves),xyz(na))

  do ie=1,nleaves
    do k=1,8
    jcon(k,ie)=sort(icon(k,ie))
    enddo
  enddo
icon=jcon

  do k=1,na
  xyz(sort(k))=xa(k)
  enddo
xa=xyz

  do k=1,na
  xyz(sort(k))=ya(k)
  enddo
ya=xyz

  do k=1,na
  xyz(sort(k))=za(k)
  enddo
za=xyz

deallocate (sort,jcon,xyz)

return
end

!=========================================!
!=====[OCTREE_FIND_NODE_CONNECTIVITY]=====!
!=========================================!

subroutine octree_find_node_connectivity (octree,noctree,icon,nleaves,xa,ya,za,na)

! This routine finds the number (na) and locations (xa,ya,za)
! of the nodes of the octree
! It also computes the connectivity array between nodes and leaves
! (icon). Icon is dimensioned icon(8,nleaves) and contains the number
! of the 8 nodes connected by each leaf
! When calling this routine, na shold have the dimension used to dimension
! the coordinate arrys in the calling routine
! on return na contains the true dimension of these array (ie how many nodes 
! there are in the octree

implicit none

integer noctree,octree(noctree),nleaves,icon(8,nleaves),na
double precision xa(*),ya(*),za(*)
integer,dimension(:),allocatable::kx,ky,kz,isort,jsort,ksort
integer loc,ix,iy,iz,nk
integer k1,nnk,kk1,nnnk
integer i0,in,levelmax,npower,il,i,k,l,ii

allocate (kx(8*nleaves),ky(8*nleaves),kz(8*nleaves))

! first build a general/redondant icon array

loc=4
ix=0
iy=0
iz=0
nk=0
call iconfind (octree,noctree,loc,ix,iy,iz,icon,kx,ky,kz,nk)

if (nk.ne.8*nleaves) stop 'error in iconfind'

allocate (isort(nk),jsort(nk),ksort(nk))

! here we rank the nodes according to their x, y and then z coordinates

call mrgrnk (kx,isort,nk)
call sort (kx,isort,nk)
call sort (ky,isort,nk)
call sort (kz,isort,nk)

jsort=isort

k1=1
do i=1,nk
  if (kx(i).gt.kx(k1).or.i.eq.nk) then
  nnk=i-k1
    if (nnk.gt.1) then
    call mrgrnk (ky(k1),isort(k1),nnk)
    call sort (kx(k1),isort(k1),nnk)
    call sort (ky(k1),isort(k1),nnk)
    call sort (kz(k1),isort(k1),nnk)
      do l=k1,k1+nnk-1
      ksort(l)=jsort(k1+isort(l)-1)
      enddo
      do l=k1,k1+nnk-1
      jsort(l)=ksort(l)
      enddo
    kk1=k1
    do ii=k1,k1+nnk-1
      if (ky(ii).gt.ky(kk1).or.ii.eq.k1+nnk-1) then
      nnnk=ii-kk1
        if (nnnk.gt.1) then
        call mrgrnk (kz(kk1),isort(kk1),nnnk)
        call sort (kx(kk1),isort(kk1),nnnk)
        call sort (ky(kk1),isort(kk1),nnnk)
        call sort (kz(kk1),isort(kk1),nnnk)
          do l=kk1,kk1+nnnk-1
          ksort(l)=jsort(kk1+isort(l)-1)
          enddo
          do l=kk1,kk1+nnnk-1
          jsort(l)=ksort(l)
          enddo
        endif
      kk1=ii
      endif
    enddo
    endif
  k1=i
  endif
enddo

isort=jsort

do i=1,nk
jsort(isort(i))=i
enddo

! at this point isort(i) is the location of the point of rank i
! whereas jsort(i) is the rank of the point of location i

! we modify isort to remove reference to identical points

! we introduce ksort to reorder the node into consecutive numbers

i0=1
na=1
do i=1,nk
in=0
if (kz(i).eq.kz(i0)) then
if (ky(i).eq.ky(i0)) then
if (kx(i).eq.kx(i0)) then
isort(i)=isort(i0)
ksort(isort(i))=na
in=1
endif
endif
endif
  if (in.eq.0) then
  i0=i
  na=na+1
  isort(i)=isort(i0)
  ksort(isort(i))=na
  endif
enddo

!print*,'There are ',na,' nodes'

! we modify icon to represent the new node representation

do il=1,nleaves
do k=1,8
icon(k,il)=ksort(isort(jsort(icon(k,il))))
enddo
enddo

! we build coordinates arrays

deallocate (jsort)

allocate (jsort(na))

! we define the correspondence between global and reduced node set

do i=1,nk
jsort(ksort(isort(i)))=i
enddo

! we compute the geometry of the nodes

levelmax=octree(1)
npower=2**levelmax
do i=1,na
xa(i)=dfloat(kx(jsort(i)))/npower
ya(i)=dfloat(ky(jsort(i)))/npower
za(i)=dfloat(kz(jsort(i)))/npower
enddo

deallocate (kx,ky,kz,isort,jsort,ksort)

return
end

!================!
!=====[SORT]=====!
!================!

subroutine sort (k,is,n)

! DO NOT USE
! this routine is used to sort an array according to an sorting array

implicit none

integer n,k(n),is(n)
integer,dimension(:),allocatable::kk
integer i

allocate (kk(n))

do i=1,n
kk(i)=k(is(i))
enddo

do i=1,n
k(i)=kk(i)
enddo

deallocate(kk)

return
end

!====================!
!=====[ICONFIND]=====!
!====================!

recursive subroutine iconfind (octree,noctree,loc,ix,iy,iz,icon,kx,ky,kz,nk)

! DO NOT USE
! internal routine
! on entry we have the address of the current cube
! and the binary coordinates of its bottom corner

implicit none

integer noctree,octree(noctree),loc,ix,iy,iz
integer icon(8,*),kx(*),ky(*),kz(*),nk

integer level,levelmax,ipower,ixn,iyn,izn,locn
integer idx,idy,idz,k,kkx,kky,kkz

level=octree(loc)
levelmax=octree(1)

  do idz=0,1
  do idy=0,1
  do idx=0,1
  k=idx+idy*2+idz*4
  locn=octree(loc+2+k)
  ipower=2**(levelmax-level)
  ixn=ix+idx*ipower
  iyn=iy+idy*ipower
  izn=iz+idz*ipower
    if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! their coordinates (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
      do kkz=0,1
      do kky=0,1
      do kkx=0,1
      nk=nk+1
      k=kkx+kky*2+kkz*4
      icon(k+1,-locn)=nk
      kx(nk)=ixn+kkx*ipower
      ky(nk)=iyn+kky*ipower
      kz(nk)=izn+kkz*ipower
      enddo
      enddo
      enddo
    else
    call iconfind (octree,noctree,locn,ixn,iyn,izn,icon,kx,ky,kz,nk)
    endif
  enddo
  enddo
  enddo

return
end

!============================!
!=====[OCTREE_SHOW_ICON]=====!
!============================!

subroutine octree_show_icon (icon,nelem,x,y,z,nnode)

! this routine creates a VRML file called icon.wrl
! that shows the octree as a mesh and the nodes as small spheres
! note that this routine does use icon
! note that it uses the octree definition for icon

! it creates a VRML file called icon.wrl

implicit none

integer nelem,icon(8,nelem),nnode
double precision x(nnode),y(nnode),z(nnode)
integer ie,i,kkk

open (7,file='icon.wrl',status='unknown')
write (7,'(a)') '#VRML V2.0 utf8'
write (7,'(a)') 'Transform { children ['
write (7,'(a)') 'NavigationInfo { '
write (7,'(a)') 'type ["EXAMINE"]'
write (7,'(a)') 'headlight FALSE}'
write (7,'(a)') 'Background{groundColor 1 1 1 skyColor 1 1 1}'
write (7,'(a)') 'DirectionalLight {ambientIntensity  0.2'
write (7,'(a)') '                  color      1 1 1'
write (7,'(a)') '                  direction  .8 1 .5}'
write (7,'(a)') 'DirectionalLight {ambientIntensity  0.2'
write (7,'(a)') '                  color      1 1 1'
write (7,'(a)') '                  direction  -.8 -1 -.5}'
write (7,'(a)') 'Transform { children Viewpoint {'
write (7,'(a)') '      description "Starting"'
write (7,'(a)') '      fieldOfView 1'
write (7,'(a,3f12.8,a)') '      position    ',-.41885125637054443, -.8311104774475098, 1.5406757593154907
write (7,'(a,4f12.8,a)') '      orientation ', .7352051138877869, -.10698327422142029, -.669348955154419, 1.3260198831558228,'}}'
write (7,'(a,a)') 'DEF Node0 Shape{geometry Sphere{radius 0.0075', &
                      ' }appearance Appearance{material Material{diffuseColor 1 0 0}}}'

do ie=1,nelem
write (7,'(a,24f10.3,a,a,a)') &
     'Shape { geometry IndexedLineSet { coord Coordinate { point [', &
      (x(icon(kkk,ie)),y(icon(kkk,ie)),z(icon(kkk,ie)),kkk=1,8), &
     ']} coordIndex [0 1 3 2 0 -1 4 5 7 6 4 -1 0 4 -1 1 5 -1 2 6 -1 3 7 -1', &
     ']}appearance Appearance { material Material { emissiveColor 0 0 0}}}'
enddo

do i=1,nnode
write (7,'(a,3f10.6,a)') 'Transform{translation',x(i),y(i),z(i), &
                         ' children [USE Node0]}'
enddo

write (7,'(a)') ']}'
close (7)

return
end

!=================================!
!=====[OCTREE_FIND_BAD_FACES]=====!
!=================================!

subroutine octree_find_bad_faces (octree,noctree,iface,nface,icon,nelem)

! returns the bad faces as an array (iface) of 9 nodes per face
! numbering used is different from earlier version of octreebit
! here it is:

! 4--7--3
! |  |  |
! 8--9--6
! |  |  |
! 1--5--2

! iface is the resulting bad face information iface(9,nface)
! nface is the number of bad faces found
! icon is the connectivity array
! of dimension nelem

implicit none

integer noctree,octree(noctree)
integer nface,iface(9,nface),nelem,icon(8,nelem)

integer loc,ix,iy,iz,mface

loc=4
ix=0
iy=0
iz=0
mface=nface
nface=0
call badface (octree,noctree,loc,ix,iy,iz,iface,nface,mface,icon,nelem)

return
end

!===================!
!=====[BADFACE]=====!
!===================!

recursive subroutine badface (octree,noctree,loc,ix,iy,iz,iface,nface,mface,icon,nelem)

! DO NOT USE
! internal routine used by octree_find_bad_faces

implicit none

integer noctree,octree(noctree),loc,ix,iy,iz
integer mface,iface(9,mface),nelem,icon(8,nelem),nface

integer level,levelmax,ipower,ixn,iyn,izn,locn,ipowerne
integer k,idx,idy,idz,ip,ixpp,iypp,izpp
integer ipmax,iddx,iddy,iddz,ixp,iyp,izp,levelin,locp,locne,levelne,leaf
double precision xp,yp,zp,x0,y0,z0,dxyz

level=octree(loc)
levelmax=octree(1)

  do idz=0,1
  do idy=0,1
  do idx=0,1
  k=idx+idy*2+idz*4
  locn=octree(loc+2+k)
  ipower=2**(levelmax-level)
  ixn=ix+idx*ipower
  iyn=iy+idy*ipower
  izn=iz+idz*ipower
    if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! the binary coordinate of their bottom corner (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
! the address of their parent (loc)

! first check that 'right' neighbours are of a higher level
    ipmax=2**levelmax
    ip=2**level
    ixp=ixn+ipower
    iyp=iyn+ipower
    izp=izn+ipower
      if (izp.lt.ipmax) then
      zp=dble(izp)/ipmax
      yp=dble(iyn)/ipmax
      xp=dble(ixn)/ipmax
      levelin=0
      locp=4
      call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
        if (levelne.gt.level) then
        ipowerne=2**(levelmax-levelne)
        nface=nface+1
        if (nface.gt.mface) stop 'nface needs to grow'
        iface(1,nface)=icon(5,-locn)
        iface(2,nface)=icon(6,-locn)
        iface(3,nface)=icon(8,-locn)
        iface(4,nface)=icon(7,-locn)
        iface(5,nface)=icon(2,leaf)
        iface(8,nface)=icon(3,leaf)
        iface(9,nface)=icon(4,leaf)
        ixpp=ixn+ipowerne
        xp=dble(ixpp)/ipmax
        call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
        iface(6,nface)=icon(4,leaf)
        iypp=iyn+ipowerne
        yp=dble(iypp)/ipmax
        call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
        iface(7,nface)=icon(3,leaf)
        endif
      endif
      if (iyp.lt.ipmax) then
      zp=dble(izn)/ipmax
      yp=dble(iyp)/ipmax
      xp=dble(ixn)/ipmax
      levelin=0
      locp=4
      call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
        if (levelne.gt.level) then
        ipowerne=2**(levelmax-levelne)
        nface=nface+1
        if (nface.gt.mface) stop 'nface needs to grow'
        iface(1,nface)=icon(3,-locn)
        iface(2,nface)=icon(7,-locn)
        iface(3,nface)=icon(8,-locn)
        iface(4,nface)=icon(4,-locn)
        iface(5,nface)=icon(5,leaf)
        iface(8,nface)=icon(2,leaf)
        iface(9,nface)=icon(6,leaf)
        izpp=izn+ipowerne
        zp=dble(izpp)/ipmax
        call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
        iface(6,nface)=icon(6,leaf)
        ixpp=ixn+ipowerne
        xp=dble(ixpp)/ipmax
        call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
        iface(7,nface)=icon(2,leaf)
        endif
      endif
      if (ixp.lt.ipmax) then
      zp=dble(izn)/ipmax
      yp=dble(iyn)/ipmax
      xp=dble(ixp)/ipmax
      levelin=0
      locp=4
      call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
        if (levelne.gt.level) then
        ipowerne=2**(levelmax-levelne)
        nface=nface+1
        if (nface.gt.mface) stop 'nface needs to grow'
        iface(1,nface)=icon(2,-locn)
        iface(2,nface)=icon(4,-locn)
        iface(3,nface)=icon(8,-locn)
        iface(4,nface)=icon(6,-locn)
        iface(5,nface)=icon(3,leaf)
        iface(8,nface)=icon(5,leaf)
        iface(9,nface)=icon(7,leaf)
        iypp=iyn+ipowerne
        yp=dble(iypp)/ipmax
        call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
        iface(6,nface)=icon(7,leaf)
        izpp=izn+ipowerne
        zp=dble(izpp)/ipmax
        call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
        iface(7,nface)=icon(5,leaf)
        endif
      endif

! second check if the 'left' neighbours are of a higher level
    ixp=ixn-1
    iyp=iyn-1
    izp=izn-1
      if (izp.ge.0) then
      zp=dble(izp)/ipmax
      yp=dble(iyn)/ipmax
      xp=dble(ixn)/ipmax
      levelin=0
      locp=4
      call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
        if (levelne.gt.level) then
        ipowerne=2**(levelmax-levelne)
        nface=nface+1
        if (nface.gt.mface) stop 'nface needs to grow'
        iface(1,nface)=icon(1,-locn)
        iface(2,nface)=icon(2,-locn)
        iface(3,nface)=icon(4,-locn)
        iface(4,nface)=icon(3,-locn)
        iface(5,nface)=icon(6,leaf)
        iface(8,nface)=icon(7,leaf)
        iface(9,nface)=icon(8,leaf)
        ixpp=ixn+ipowerne
        xp=dble(ixpp)/ipmax
        call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
        iface(6,nface)=icon(8,leaf)
        iypp=iyn+ipowerne
        yp=dble(iypp)/ipmax
        call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
        iface(7,nface)=icon(7,leaf)
        endif
      endif
      if (iyp.ge.0) then
      zp=dble(izn)/ipmax
      yp=dble(iyp)/ipmax
      xp=dble(ixn)/ipmax
      levelin=0
      locp=4
      call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
        if (levelne.gt.level) then
        ipowerne=2**(levelmax-levelne)
        nface=nface+1
        if (nface.gt.mface) stop 'nface needs to grow'
        iface(1,nface)=icon(1,-locn)
        iface(2,nface)=icon(2,-locn)
        iface(3,nface)=icon(6,-locn)
        iface(4,nface)=icon(5,-locn)
        iface(5,nface)=icon(4,leaf)
        iface(8,nface)=icon(7,leaf)
        iface(9,nface)=icon(8,leaf)
        izpp=izn+ipowerne
        zp=dble(izpp)/ipmax
        call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
        iface(7,nface)=icon(8,leaf)
        ixpp=ixn+ipowerne
        xp=dble(ixpp)/ipmax
        call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
        iface(6,nface)=icon(4,leaf)
        endif
      endif
      if (ixp.ge.0) then
      zp=dble(izn)/ipmax
      yp=dble(iyn)/ipmax
      xp=dble(ixp)/ipmax
      levelin=0
      locp=4
      call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
        if (levelne.gt.level) then
        ipowerne=2**(levelmax-levelne)
        nface=nface+1
        if (nface.gt.mface) stop 'nface needs to grow'
        iface(1,nface)=icon(1,-locn)
        iface(2,nface)=icon(5,-locn)
        iface(3,nface)=icon(7,-locn)
        iface(4,nface)=icon(3,-locn)
        iface(5,nface)=icon(6,leaf)
        iface(8,nface)=icon(4,leaf)
        iface(9,nface)=icon(8,leaf)
        iypp=iyn+ipowerne
        yp=dble(iypp)/ipmax
        call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
        iface(7,nface)=icon(8,leaf)
        izpp=izn+ipowerne
        zp=dble(izpp)/ipmax
        call octree_find_leaf (octree,noctree,xp,yp,zp,leaf,levelne,locne,x0,y0,z0,dxyz)
        iface(6,nface)=icon(6,leaf)
        endif
      endif

    else
    call badface (octree,noctree,locn,ixn,iyn,izn,iface,nface,mface,icon,nelem)
    endif
  enddo
  enddo
  enddo

return
end

!=================================!
!=====[OCTREE_SHOW_BAD_FACES]=====!
!=================================!

subroutine octree_show_bad_faces (octree,noctree,iface,nface,x,y,z,nnode)

! this routine creates a VRML file called bad_faces.wrl
! that shows the octree as produced by show_octree but it
! adds color to the bad faces to locate them

implicit none

integer noctree,octree(noctree)
integer nface,nnode,iface(9,nface)
double precision x(nnode),y(nnode),z(nnode)
integer loc,ix,iy,iz,i,k

open (7,file='bad_faces.wrl',status='unknown')
write (7,'(a)') '#VRML V2.0 utf8'
write (7,'(a)') 'Transform { children ['
write (7,'(a)') 'NavigationInfo { '
write (7,'(a)') 'type ["EXAMINE"]'
write (7,'(a)') 'headlight FALSE}'
write (7,'(a)') 'Background{groundColor 1 1 1 skyColor 1 1 1}'
write (7,'(a)') 'DirectionalLight {ambientIntensity  0.2'
write (7,'(a)') '                  color      1 1 1'
write (7,'(a)') '                  direction  .8 1 .5}'
write (7,'(a)') 'DirectionalLight {ambientIntensity  0.2'
write (7,'(a)') '                  color      1 1 1'
write (7,'(a)') '                  direction  -.8 -1 -.5}'
write (7,'(a)') 'Transform { children Viewpoint {'
write (7,'(a)') '      description "Starting"'
write (7,'(a)') '      fieldOfView 1'
write (7,'(a,3f12.8,a)') '      position    ',-.41885125637054443, -.8311104774475098, 1.5406757593154907
write (7,'(a,4f12.8,a)') '      orientation ', .7352051138877869, -.10698327422142029, -.669348955154419, 1.3260198831558228,'}}'

loc=4
ix=0
iy=0
iz=0
call show (octree,noctree,loc,ix,iy,iz)

do i=1,nface
write (7,'(a,27f10.3,a,a,a)') &
     'Shape { geometry IndexedLineSet { coord Coordinate { point [', &
     (x(iface(k,i)),y(iface(k,i)),z(iface(k,i)),k=1,9), &
     ']} coordIndex [8 1 -1 8 2 -1 8 3 -1 8 4 -1 8 5 -1 8 6 -1 8 7 -1 8 0 -1', &
     ']}appearance Appearance { material Material { emissiveColor 0 1 0}}}'
enddo

write (7,'(a)') ']}'
close (7)

return
end

!========================!
!=====[OCTREE_UNION]=====!
!========================!

subroutine octree_union (octree,noctree,octree1,noctree1,octree2,noctree2)

! NOTE: JEAN FOUND A BUG IN THIS ROUTINE ON JULY 4th 2006; HAS NOT BEEN FIXED!!!!
! IT SHOULD NOT BE USED.
! DOUAR HAS BEEN MODIFIED TO PERFORM THIS OPERATION FROM OTHER LOWER LEVEL ROUTINES
! IN OCTREEBITPLUS

! subroutine to calculate the union of two octrees (octree1,octree2)
! and store the result in a third octree (octree)
! it is recommended that the largest of the two octrees be octree1
! (as defined by their size ioctree_size (octree,noctree))
! on exit the two original octrees are left unchanged

implicit none

integer noctree,octree(noctree)
integer noctree1,octree1(noctree1)
integer noctree2,octree2(noctree2)

integer loc,ix,iy,iz

octree=octree1
noctree=noctree1

loc=4
ix=0
iy=0
iz=0
call unite (octree2,noctree2,loc,ix,iy,iz,octree,noctree)

return
end

!=================!
!=====[UNITE]=====!
!=================!

recursive subroutine unite (octree2,noctree2,loc,ix,iy,iz,octree,noctree)

! DO NOT USE
! internal routine
! called by octree_union

implicit none

integer noctree,octree(noctree),loc,ix,iy,iz
integer noctree2,octree2(noctree2)

integer level,levelmax,ipower,ixn,iyn,izn,locn
integer k,idx,idy,idz,ip
integer ipmax,iddx,iddy,iddz,ixp,iyp,izp,levelin,locp
double precision xp,yp,zp

level=octree2(loc)
levelmax=octree2(1)

  do idz=0,1
  do idy=0,1
  do idx=0,1
  k=idx+idy*2+idz*4
  locn=octree2(loc+2+k)
  ipower=2**(levelmax-level)
  ixn=ix+idx*ipower
  iyn=iy+idy*ipower
  izn=iz+idz*ipower
    if (locn.lt.0) then
! here i am going through the leaves one by one and i know
! the binary coordinate of their bottom corner (ixn,iyn,izn)
! their address (loc+2+k)
! their leaf number (-locn)
! their level (level)
! the address of their parent (loc)
    ip=2**level
    zp=dfloat(izn)/ip
    yp=dfloat(iyn)/ip
    xp=dfloat(ixn)/ip
    levelin=0
    locp=4
    call update (octree,noctree,xp,yp,zp,level,levelin,locp)
    else
    call unite (octree2,noctree2,locn,ixn,iyn,izn,octree,noctree)
    endif
  enddo
  enddo
  enddo

return
end




!==============================!
!=====[OCTREE_INTERPOLATE]=====!
!==============================!

subroutine octree_interpolate (octree,noctree,icon,nleaves,field,nfield,x,y,z,f)

! This function returns the value of a field (field) known at the nodes
! of an octree by trilinear interpolation

! icon is the connectivity matrix
! nleaves is the number of leaves in the octree
! field is the array of dimension nfield containing the field 
!     known at the nodes of the octree and to be interpolated
! x,y,z are the location of the point where the field is to be interpolated
! f is the resulting interpolated field

implicit none

integer noctree,octree(noctree),nleaves,icon(8,nleaves)
integer nfield
double precision field(nfield),x,y,z,x0,y0,z0,dxyz,r,s,t,h(8),phi,xt,yt,zt,f
integer leaf,level,loc,k,iii,jjj,kkk

! function modified by JEAN BRAUN on September 26 2005
! to correct for an error in the logics that led to an interpolation
! from an octree to another identical octree with differences in the
! interpolated function. The reason for this problem was related to
! bad faces or hanging nodes. Indeed, for a hanging node it was very likely
! that the leaf that was detected as the loeaf in which the node resides
! was in fact a leave where the node was a hanging node (ie not one of the
! 4 corner nodes). This meant that the interpolated value was not equal
! to the "constrained" value imposed by the linear constraint at the 
! hanging node. To correct for this we first check if the node can
! be interpolated with r,s,t values that are equal to 1 or -1. If this is
! true than this value is chosen as this would correspond to a nodal value

xt=x
yt=y
zt=z

if (xt.lt.-1.e-11 .or. xt.gt.1.d0+1.d-11) return
if (yt.lt.-1.e-11 .or. yt.gt.1.d0+1.d-11) return
if (zt.lt.-1.e-11 .or. zt.gt.1.d0+1.d-11) return

if (x.lt.1.e-11) xt=1.e-11
if (x.gt.1.d0-1.d-11) xt=1.d0-1.d-11
if (y.lt.1.e-11) yt=1.e-11
if (y.gt.1.d0-1.d-11) yt=1.d0-1.d-11
if (z.lt.1.e-11) zt=1.e-11
if (z.gt.1.d0-1.d-11) zt=1.d0-1.d-11

do kkk=-1,1,2
do jjj=-1,1,2
do iii=-1,1,2

xt=x+iii*1.d-10
yt=y+jjj*1.d-10
zt=z+kkk*1.d-10

if (xt*(xt-1.d0).ge.0d0 .or. yt*(yt-1.d0).ge.0d0 .or. zt*(zt-1.d0).ge.0d0) goto 111

call octree_find_leaf (octree,noctree,xt,yt,zt,leaf,level,loc,x0,y0,z0,dxyz)

r=(x-x0)/dxyz*2.d0-1.d0
s=(y-y0)/dxyz*2.d0-1.d0
t=(z-z0)/dxyz*2.d0-1.d0
h(1)=(1.d0-r)*(1.d0-s)*(1.d0-t)/8.d0
h(2)=(1.d0+r)*(1.d0-s)*(1.d0-t)/8.d0
h(3)=(1.d0-r)*(1.d0+s)*(1.d0-t)/8.d0
h(4)=(1.d0+r)*(1.d0+s)*(1.d0-t)/8.d0
h(5)=(1.d0-r)*(1.d0-s)*(1.d0+t)/8.d0
h(6)=(1.d0+r)*(1.d0-s)*(1.d0+t)/8.d0
h(7)=(1.d0-r)*(1.d0+s)*(1.d0+t)/8.d0
h(8)=(1.d0+r)*(1.d0+s)*(1.d0+t)/8.d0
phi=0.d0
  do k=1,8
  phi=phi+h(k)*field(icon(k,leaf))
  enddo
f=phi
if (abs(abs(r)-1.d0).lt.1.d-10 .and. abs(abs(s)-1.d0).lt.1.d-10 .and. abs(abs(t)-1.d0).lt.1.d-10) return

111 continue

enddo
enddo
enddo

return
end

!==============================!
!=====[OCTREE_INTERPOLATE]=====!
!==============================!

subroutine octree_interpolate3 (octree,noctree,icon,nleaves,field,nodex,nodey,nodez,nnode,x,y,z,f)

! This function returns the value of a field (field) known at the nodes
! of an octree by trilinear interpolation

! icon is the connectivity matrix
! nleaves is the number of leaves in the octree
! field is the array of dimension nfield containing the field 
!     known at the nodes of the octree and to be interpolated
! x,y,z are the location of the point where the field is to be interpolated
! f is the resulting interpolated field

implicit none

integer noctree,octree(noctree),nleaves,icon(8,nleaves)
integer nnode,inode
double precision nodex(nnode),nodey(nnode),nodez(nnode)
double precision field(nnode),x,y,z,x0,y0,z0,dxyz,r,s,t,h(8),phi,xt,yt,zt,f
integer leaf,level,loc,k,iii,jjj,kkk

! function modified by JEAN BRAUN on September 26 2005
! to correct for an error in the logics that led to an interpolation
! from an octree to another identical octree with differences in the
! interpolated function. The reason for this problem was related to
! bad faces or hanging nodes. Indeed, for a hanging node it was very likely
! that the leaf that was detected as the loeaf in which the node resides
! was in fact a leave where the node was a hanging node (ie not one of the
! 4 corner nodes). This meant that the interpolated value was not equal
! to the "constrained" value imposed by the linear constraint at the 
! hanging node. To correct for this we first check if the node can
! be interpolated with r,s,t values that are equal to 1 or -1. If this is
! true than this value is chosen as this would correspond to a nodal value

! function modified by Cedric Thieulot on November 21st 2007
! to correct for an apparent little bug in the case of the interpolation of 
! a given field from an octree onto the same one.
! this modification simply checks whether the point on which we want to interpolate
! already exists in the octree structure. The first three do-loops explore the 8
! points distant from point (x,y,z) by a tiny distance in all three dimensions.
! After having checked that the predicted point falls within the unit cube, 
! the leaf in which the predicted point falls in is found, and we check whether
! any of the nodes of the leaf has the same coordinates as point (x,y,z).
! This slows down a bit the function but also insures and exact interpolation on 
! common nodes of both octrees which are many since they usually at least 
! share the nodes of a level 5 uniform octree, i.e. 35937 nodes.


!=====[CT]=====
do kkk=-1,1,2
   zt=z+kkk*1.d-8
   do jjj=-1,1,2
      yt=y+jjj*1.d-8
      do iii=-1,1,2
         xt=x+iii*1.d-8
         if (xt>0.d0 .and. xt<1.d0 .and. &
             yt>0.d0 .and. yt<1.d0 .and. &
             zt>0.d0 .and. zt<1.d0 ) then
            call octree_find_leaf (octree,noctree,xt,yt,zt,leaf,level,loc,x0,y0,z0,dxyz)
            do k=1,8
               inode=icon(k,leaf)
               if (abs(nodex(inode)-x)<1.d-10 .and. &
                   abs(nodey(inode)-y)<1.d-10 .and. &
                   abs(nodez(inode)-z)<1.d-10 ) then
                  f=field(inode)
                  return
               end if
            end do
         end if
      end do
   end do
end do
!==============


xt=x
yt=y
zt=z

do kkk=-1,1,2
   zt=z+kkk*1.d-10
   do jjj=-1,1,2
      yt=y+jjj*1.d-10
      do iii=-1,1,2
         xt=x+iii*1.d-10
         if (xt*(xt-1.d0).ge.0d0 .or. &
             yt*(yt-1.d0).ge.0d0 .or. &
             zt*(zt-1.d0).ge.0d0) goto 111
         call octree_find_leaf (octree,noctree,xt,yt,zt,leaf,level,loc,x0,y0,z0,dxyz)
         r=(x-x0)/dxyz*2.d0-1.d0
         s=(y-y0)/dxyz*2.d0-1.d0
         t=(z-z0)/dxyz*2.d0-1.d0
         h(1)=(1.d0-r)*(1.d0-s)*(1.d0-t)/8.d0
         h(2)=(1.d0+r)*(1.d0-s)*(1.d0-t)/8.d0
         h(3)=(1.d0-r)*(1.d0+s)*(1.d0-t)/8.d0
         h(4)=(1.d0+r)*(1.d0+s)*(1.d0-t)/8.d0
         h(5)=(1.d0-r)*(1.d0-s)*(1.d0+t)/8.d0
         h(6)=(1.d0+r)*(1.d0-s)*(1.d0+t)/8.d0
         h(7)=(1.d0-r)*(1.d0+s)*(1.d0+t)/8.d0
         h(8)=(1.d0+r)*(1.d0+s)*(1.d0+t)/8.d0
         phi=0.d0
         do k=1,8
            phi=phi+h(k)*field(icon(k,leaf))
         enddo
         f=phi
         if (abs(r)-1.d0+abs(s)-1.d0+abs(t)-1.d0.lt.1.d-10) return
         111 continue
      enddo
   enddo
enddo

return
end














!===================================!
!=====[OCTREE_INTERPOLATE_MANY]=====!
!===================================!

subroutine octree_interpolate_many (nf,octree,noctree,icon,nleaves,nfield,x,y,z, &
                                    field1,f1,field2,f2,field3,f3, &
                                    field4,f4,field5,f5,field6,f6, &
                                    field7,f7,field8,f8,field9,f9, &
                                    field10,f10,field11,f11,field12,f12, &
                                    field13,f13,field14,f14,field15,f15)
! This function returns the value of several fields (fieldi) known at the nodes
! of an octree by trilinear interpolation

! nf is the number of fields being interpolate (must be comprised between 1 and 15)
! icon is the connectivity matrix
! nleaves is the number of leaves in the octree
! fieldi are the arrays of dimension nfield containing the fields
!     known at the nodes of the octree and to be interpolated
! x,y,z are the location of the point where the fields are to be interpolated
! fi are the resulting interpolated fields

! Note that the number of arguments to this routine depends on the number of
! fields to be interpolated (nf). This is why some of the arguments are declared
! as optional

implicit none

optional :: field2,f2,field3,f3,field4,f4,field5,f5,field6,f6
optional :: field7,f7,field8,f8,field9,f9,field10,f10
optional :: field11,f11,field12,f12,field13,f13,field14,f14,field15,f15

integer noctree,octree(noctree),nleaves,icon(8,nleaves)
integer nfield,nf
double precision field1(nfield),field2(nfield),field3(nfield),field4(nfield), &
                 field5(nfield),field6(nfield),field7(nfield),field8(nfield)
double precision field9(nfield),field10(nfield),field11(nfield),field12(nfield), &
                 field13(nfield),field14(nfield),field15(nfield)
double precision f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15
double precision x,y,z,x0,y0,z0,dxyz,r,s,t,h(8),phi,xt,yt,zt
integer leaf,level,loc,k,iii,jjj,kkk,ii

! function modified by JEAN BRAUN on September 26 2005
! to correct for an error in the logics that led to an interpolation
! from an octree to another identical octree with differences in the
! interpolated function. The reason for this problem was related to
! bad faces or hanging nodes. Indeed, for a hanging node it was very likely
! that the leaf that was detected as the loeaf in which the node resides
! was in fact a leave where the node was a hanging node (ie not one of the
! 4 corner nodes). This meant that the interpolated value was not equal
! to the "constrained" value imposed by the linear constraint at the
! hanging node. To correct for this we first check if the node can
! be interpolated with r,s,t values that are equal to 1 or -1. If this is
! true than this value is chosen as this would correspond to a nodal value

xt=x
yt=y
zt=z

if (xt.lt.-1.e-11 .or. xt.gt.1.d0+1.d-11) return
if (yt.lt.-1.e-11 .or. yt.gt.1.d0+1.d-11) return
if (zt.lt.-1.e-11 .or. zt.gt.1.d0+1.d-11) return

if (x.lt.1.e-11) xt=1.e-11
if (x.gt.1.d0-1.d-11) xt=1.d0-1.d-11
if (y.lt.1.e-11) yt=1.e-11
if (y.gt.1.d0-1.d-11) yt=1.d0-1.d-11
if (z.lt.1.e-11) zt=1.e-11
if (z.gt.1.d0-1.d-11) zt=1.d0-1.d-11

do kkk=-1,1,2
do jjj=-1,1,2
do iii=-1,1,2

xt=x+iii*1.d-10
yt=y+jjj*1.d-10
zt=z+kkk*1.d-10

if (xt*(xt-1.d0).ge.0d0 .or. yt*(yt-1.d0).ge.0d0 .or. zt*(zt-1.d0).ge.0d0) goto 111

call octree_find_leaf (octree,noctree,xt,yt,zt,leaf,level,loc,x0,y0,z0,dxyz)

r=(x-x0)/dxyz*2.d0-1.d0
s=(y-y0)/dxyz*2.d0-1.d0
t=(z-z0)/dxyz*2.d0-1.d0
h(1)=(1.d0-r)*(1.d0-s)*(1.d0-t)/8.d0
h(2)=(1.d0+r)*(1.d0-s)*(1.d0-t)/8.d0
h(3)=(1.d0-r)*(1.d0+s)*(1.d0-t)/8.d0
h(4)=(1.d0+r)*(1.d0+s)*(1.d0-t)/8.d0
h(5)=(1.d0-r)*(1.d0-s)*(1.d0+t)/8.d0
h(6)=(1.d0+r)*(1.d0-s)*(1.d0+t)/8.d0
h(7)=(1.d0-r)*(1.d0+s)*(1.d0+t)/8.d0
h(8)=(1.d0+r)*(1.d0+s)*(1.d0+t)/8.d0
  phi=0.d0
    do k=1,8
    phi=phi+h(k)*field1(icon(k,leaf))
    enddo
  f1=phi
if (nf.eq.1) goto 222
  phi=0.d0
    do k=1,8
    phi=phi+h(k)*field2(icon(k,leaf))
    enddo
  f2=phi
if (nf.eq.2) goto 222
  phi=0.d0
    do k=1,8
    phi=phi+h(k)*field3(icon(k,leaf))
    enddo
  f3=phi
if (nf.eq.3) goto 222
  phi=0.d0
    do k=1,8
    phi=phi+h(k)*field4(icon(k,leaf))
    enddo
  f4=phi
if (nf.eq.4) goto 222
  phi=0.d0
    do k=1,8
    phi=phi+h(k)*field5(icon(k,leaf))
    enddo
  f5=phi
if (nf.eq.5) goto 222
  phi=0.d0
    do k=1,8
    phi=phi+h(k)*field6(icon(k,leaf))
    enddo
  f6=phi
if (nf.eq.6) goto 222
  phi=0.d0
    do k=1,8
    phi=phi+h(k)*field7(icon(k,leaf))
    enddo
  f7=phi
if (nf.eq.7) goto 222
  phi=0.d0
    do k=1,8
Loading
Loading full blame...