Skip to content
Snippets Groups Projects
MachineLearning_inMolecularBiology2022_GroupProject.ipynb 80.4 KiB
Newer Older
jpronkko's avatar
jpronkko committed
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Project Tasks"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In the first few assignments, we have learned how to infer part based components (known as mutational signatures) generated by particular mutational processes using Non-negative Matrix Factorization (NMF). By doing this, we are trying to reconstruct the mutation catalog in a given sample with mutational signatures and their contributions.\n",
    "\n",
    "In this group project, you will use similar mutational profiles and signature activities to predict cancer types but with much larger sample size. \n",
    "You should:\n",
    "* Separate the data into training and test groups within each cancer type.\n",
    "* Find out which features are informative for the prediction of the cancer type (label). You should combine the profiles and activities and use each data type independently.\n",
    "* Implement different models for classification of the samples given the input data and evaluate the model performance using test data to avoid overfitting. Explain briefly how does each model that you have used work.\n",
    "* Report model performance, using standard machine learning metrics such as confusion matrices etc. \n",
    "* Compare model performance across methods and across cancer types, are some types easier top predict than others.\n",
    "* Submit a single Jupyter notebook as the final report and present that during the last assignment session "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The data include both mutational catalogs from multiple cancers and the predicted activities in the paper [\"Alexandrov LB, et al. (2020) The repertoire of mutational signatures in human cancer\"](https://www.nature.com/articles/s41586-020-1943-3). The data either are generated from whole human genome (WGS) or only exomes regions (WES). Since the exome region only constitutes about 1% of human genome, the total mutation numbers in these samples are, of course, much smaller. So if you plan to use WGS together with WES data, remember to normalize the profile for each sample to sum up to 1.\n",
    "\n",
    "Note that, the data is generated from different platforms by different research groups, some of them (e.g. labeled with PCAWG, TCGA) are processed with the same bioinformatics pipeline. Thus, these samples will have less variability related to data processing pipelines."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Cancer types might be labeled under the same tissue, e.g. 'Bone-Benign','Bone-Epith', which can also be combined together or take the one has more samples."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here is a link to background reading [\"Pan-Cancer Analysis of Whole Genomes\"](https://www.nature.com/collections/afdejfafdb). Have a look especially the paper [\"A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns\"](https://www.nature.com/articles/s41467-019-13825-8)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import re"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Mutational catalogs and activities - WGS data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Mutation type</th>\n",
       "      <th>Trinucleotide</th>\n",
       "      <th>Biliary-AdenoCA::SP117655</th>\n",
       "      <th>Biliary-AdenoCA::SP117556</th>\n",
       "      <th>Biliary-AdenoCA::SP117627</th>\n",
       "      <th>Biliary-AdenoCA::SP117775</th>\n",
       "      <th>Biliary-AdenoCA::SP117332</th>\n",
       "      <th>Biliary-AdenoCA::SP117712</th>\n",
       "      <th>Biliary-AdenoCA::SP117017</th>\n",
       "      <th>Biliary-AdenoCA::SP117031</th>\n",
       "      <th>...</th>\n",
       "      <th>Uterus-AdenoCA::SP94540</th>\n",
       "      <th>Uterus-AdenoCA::SP95222</th>\n",
       "      <th>Uterus-AdenoCA::SP89389</th>\n",
       "      <th>Uterus-AdenoCA::SP90503</th>\n",
       "      <th>Uterus-AdenoCA::SP92460</th>\n",
       "      <th>Uterus-AdenoCA::SP92931</th>\n",
       "      <th>Uterus-AdenoCA::SP91265</th>\n",
       "      <th>Uterus-AdenoCA::SP89909</th>\n",
       "      <th>Uterus-AdenoCA::SP90629</th>\n",
       "      <th>Uterus-AdenoCA::SP95550</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>C&gt;A</td>\n",
       "      <td>ACA</td>\n",
       "      <td>269</td>\n",
       "      <td>114</td>\n",
       "      <td>105</td>\n",
       "      <td>217</td>\n",
       "      <td>52</td>\n",
       "      <td>192</td>\n",
       "      <td>54</td>\n",
       "      <td>196</td>\n",
       "      <td>...</td>\n",
       "      <td>117</td>\n",
       "      <td>233</td>\n",
       "      <td>94</td>\n",
       "      <td>114</td>\n",
       "      <td>257</td>\n",
       "      <td>139</td>\n",
       "      <td>404</td>\n",
       "      <td>97</td>\n",
       "      <td>250</td>\n",
       "      <td>170</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>C&gt;A</td>\n",
       "      <td>ACC</td>\n",
       "      <td>148</td>\n",
       "      <td>56</td>\n",
       "      <td>71</td>\n",
       "      <td>123</td>\n",
       "      <td>36</td>\n",
       "      <td>139</td>\n",
       "      <td>54</td>\n",
       "      <td>102</td>\n",
       "      <td>...</td>\n",
       "      <td>90</td>\n",
       "      <td>167</td>\n",
       "      <td>59</td>\n",
       "      <td>64</td>\n",
       "      <td>268</td>\n",
       "      <td>75</td>\n",
       "      <td>255</td>\n",
       "      <td>78</td>\n",
       "      <td>188</td>\n",
       "      <td>137</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2 rows × 2782 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "  Mutation type Trinucleotide  Biliary-AdenoCA::SP117655  \\\n",
       "0           C>A           ACA                        269   \n",
       "1           C>A           ACC                        148   \n",
       "\n",
       "   Biliary-AdenoCA::SP117556  Biliary-AdenoCA::SP117627  \\\n",
       "0                        114                        105   \n",
       "1                         56                         71   \n",
       "\n",
       "   Biliary-AdenoCA::SP117775  Biliary-AdenoCA::SP117332  \\\n",
       "0                        217                         52   \n",
       "1                        123                         36   \n",
       "\n",
       "   Biliary-AdenoCA::SP117712  Biliary-AdenoCA::SP117017  \\\n",
       "0                        192                         54   \n",
       "1                        139                         54   \n",
       "\n",
       "   Biliary-AdenoCA::SP117031  ...  Uterus-AdenoCA::SP94540  \\\n",
       "0                        196  ...                      117   \n",
       "1                        102  ...                       90   \n",
       "\n",
       "   Uterus-AdenoCA::SP95222  Uterus-AdenoCA::SP89389  Uterus-AdenoCA::SP90503  \\\n",
       "0                      233                       94                      114   \n",
       "1                      167                       59                       64   \n",
       "\n",
jpronkko's avatar
jpronkko committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
       "   Uterus-AdenoCA::SP92460  Uterus-AdenoCA::SP92931  Uterus-AdenoCA::SP91265  \\\n",
       "0                      257                      139                      404   \n",
       "1                      268                       75                      255   \n",
       "\n",
       "   Uterus-AdenoCA::SP89909  Uterus-AdenoCA::SP90629  Uterus-AdenoCA::SP95550  \n",
       "0                       97                      250                      170  \n",
       "1                       78                      188                      137  \n",
       "\n",
       "[2 rows x 2782 columns]"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "## PCAWG data is performed by the same pipeline\n",
    "PCAWG_wgs_mut = pd.read_csv (\"./project_data/catalogs/WGS/WGS_PCAWG.96.csv\")\n",
    "PCAWG_wgs_mut.head(2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Accuracy is the cosine similarity of reconstruct catalog to the observed catalog "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Cancer Types</th>\n",
       "      <th>Sample Names</th>\n",
       "      <th>Accuracy</th>\n",
       "      <th>SBS1</th>\n",
       "      <th>SBS2</th>\n",
       "      <th>SBS3</th>\n",
       "      <th>SBS4</th>\n",
       "      <th>SBS5</th>\n",
       "      <th>SBS6</th>\n",
       "      <th>SBS7a</th>\n",
       "      <th>...</th>\n",
       "      <th>SBS51</th>\n",
       "      <th>SBS52</th>\n",
       "      <th>SBS53</th>\n",
       "      <th>SBS54</th>\n",
       "      <th>SBS55</th>\n",
       "      <th>SBS56</th>\n",
       "      <th>SBS57</th>\n",
       "      <th>SBS58</th>\n",
       "      <th>SBS59</th>\n",
       "      <th>SBS60</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Biliary-AdenoCA</td>\n",
       "      <td>SP117655</td>\n",
       "      <td>0.968</td>\n",
       "      <td>1496</td>\n",
       "      <td>1296</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1825</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Biliary-AdenoCA</td>\n",
       "      <td>SP117556</td>\n",
       "      <td>0.963</td>\n",
       "      <td>985</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>922</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2 rows × 68 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "      Cancer Types Sample Names  Accuracy  SBS1  SBS2  SBS3  SBS4  SBS5  SBS6  \\\n",
       "0  Biliary-AdenoCA     SP117655     0.968  1496  1296     0     0  1825     0   \n",
       "1  Biliary-AdenoCA     SP117556     0.963   985     0     0     0   922     0   \n",
       "\n",
       "   SBS7a  ...  SBS51  SBS52  SBS53  SBS54  SBS55  SBS56  SBS57  SBS58  SBS59  \\\n",
       "0      0  ...      0      0      0      0      0      0      0      0      0   \n",
       "1      0  ...      0      0      0      0      0      0      0      0      0   \n",
       "\n",
       "   SBS60  \n",
       "0      0  \n",
       "1      0  \n",
       "\n",
       "[2 rows x 68 columns]"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "## Activities:\n",
    "PCAWG_wgs_act = pd.read_csv (\"./project_data/activities/WGS/WGS_PCAWG.activities.csv\")\n",
    "PCAWG_wgs_act.head(2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Mutation type</th>\n",
       "      <th>Trinucleotide</th>\n",
       "      <th>ALL::PD4020a</th>\n",
       "      <th>ALL::SJBALL011_D</th>\n",
       "      <th>ALL::SJBALL012_D</th>\n",
       "      <th>ALL::SJBALL020013_D1</th>\n",
       "      <th>ALL::SJBALL020422_D1</th>\n",
       "      <th>ALL::SJBALL020579_D1</th>\n",
       "      <th>ALL::SJBALL020589_D1</th>\n",
       "      <th>ALL::SJBALL020625_D1</th>\n",
       "      <th>...</th>\n",
       "      <th>Stomach-AdenoCa::pfg316T</th>\n",
       "      <th>Stomach-AdenoCa::pfg317T</th>\n",
       "      <th>Stomach-AdenoCa::pfg344T</th>\n",
       "      <th>Stomach-AdenoCa::pfg373T</th>\n",
       "      <th>Stomach-AdenoCa::pfg375T</th>\n",
       "      <th>Stomach-AdenoCa::pfg378T</th>\n",
       "      <th>Stomach-AdenoCa::pfg398T</th>\n",
       "      <th>Stomach-AdenoCa::pfg413T</th>\n",
       "      <th>Stomach-AdenoCa::pfg416T</th>\n",
       "      <th>Stomach-AdenoCa::pfg424T</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>C&gt;A</td>\n",
       "      <td>ACA</td>\n",
       "      <td>35</td>\n",
       "      <td>9</td>\n",
       "      <td>2</td>\n",
       "      <td>7</td>\n",
       "      <td>5</td>\n",
       "      <td>7</td>\n",
       "      <td>3</td>\n",
       "      <td>5</td>\n",
       "      <td>...</td>\n",
       "      <td>133</td>\n",
       "      <td>185</td>\n",
       "      <td>202</td>\n",
       "      <td>185</td>\n",
       "      <td>96</td>\n",
       "      <td>134</td>\n",
       "      <td>12</td>\n",
       "      <td>279</td>\n",
       "      <td>75</td>\n",
       "      <td>135</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>C&gt;A</td>\n",
       "      <td>ACC</td>\n",
       "      <td>16</td>\n",
       "      <td>2</td>\n",
       "      <td>4</td>\n",
       "      <td>10</td>\n",
       "      <td>5</td>\n",
       "      <td>9</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>...</td>\n",
       "      <td>48</td>\n",
       "      <td>70</td>\n",
       "      <td>126</td>\n",
       "      <td>88</td>\n",
       "      <td>35</td>\n",
       "      <td>54</td>\n",
       "      <td>16</td>\n",
       "      <td>112</td>\n",
       "      <td>31</td>\n",
       "      <td>91</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2 rows × 1867 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "  Mutation type Trinucleotide  ALL::PD4020a  ALL::SJBALL011_D  \\\n",
       "0           C>A           ACA            35                 9   \n",
       "1           C>A           ACC            16                 2   \n",
       "\n",
       "   ALL::SJBALL012_D  ALL::SJBALL020013_D1  ALL::SJBALL020422_D1  \\\n",
       "0                 2                     7                     5   \n",
       "1                 4                    10                     5   \n",
       "\n",
       "   ALL::SJBALL020579_D1  ALL::SJBALL020589_D1  ALL::SJBALL020625_D1  ...  \\\n",
       "0                     7                     3                     5  ...   \n",
       "1                     9                     1                     2  ...   \n",
       "\n",
       "   Stomach-AdenoCa::pfg316T  Stomach-AdenoCa::pfg317T  \\\n",
       "0                       133                       185   \n",
       "1                        48                        70   \n",
       "\n",
       "   Stomach-AdenoCa::pfg344T  Stomach-AdenoCa::pfg373T  \\\n",
       "0                       202                       185   \n",
       "1                       126                        88   \n",
       "\n",
       "   Stomach-AdenoCa::pfg375T  Stomach-AdenoCa::pfg378T  \\\n",
       "0                        96                       134   \n",
       "1                        35                        54   \n",
       "\n",
       "   Stomach-AdenoCa::pfg398T  Stomach-AdenoCa::pfg413T  \\\n",
       "0                        12                       279   \n",
       "1                        16                       112   \n",
       "\n",
       "   Stomach-AdenoCa::pfg416T  Stomach-AdenoCa::pfg424T  \n",
       "0                        75                       135  \n",
       "1                        31                        91  \n",
       "\n",
       "[2 rows x 1867 columns]"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "nonPCAWG_wgs_mut = pd.read_csv (\"./project_data/catalogs/WGS/WGS_Other.96.csv\")\n",
    "nonPCAWG_wgs_mut.head(2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Cancer Types</th>\n",
       "      <th>Sample Names</th>\n",
       "      <th>Accuracy</th>\n",
       "      <th>SBS1</th>\n",
       "      <th>SBS2</th>\n",
       "      <th>SBS3</th>\n",
       "      <th>SBS4</th>\n",
       "      <th>SBS5</th>\n",
       "      <th>SBS6</th>\n",
       "      <th>SBS7a</th>\n",
       "      <th>...</th>\n",
       "      <th>SBS51</th>\n",
       "      <th>SBS52</th>\n",
       "      <th>SBS53</th>\n",
       "      <th>SBS54</th>\n",
       "      <th>SBS55</th>\n",
       "      <th>SBS56</th>\n",
       "      <th>SBS57</th>\n",
       "      <th>SBS58</th>\n",
       "      <th>SBS59</th>\n",
       "      <th>SBS60</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>ALL</td>\n",
       "      <td>PD4020a</td>\n",
       "      <td>0.995</td>\n",
       "      <td>208</td>\n",
       "      <td>3006</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>365</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>ALL</td>\n",
       "      <td>SJBALL011_D</td>\n",
       "      <td>0.905</td>\n",
       "      <td>66</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>144</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2 rows × 68 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "  Cancer Types Sample Names  Accuracy  SBS1  SBS2  SBS3  SBS4  SBS5  SBS6  \\\n",
       "0          ALL      PD4020a     0.995   208  3006     0     0   365     0   \n",
       "1          ALL  SJBALL011_D     0.905    66     0     0     0   144     0   \n",
       "\n",
       "   SBS7a  ...  SBS51  SBS52  SBS53  SBS54  SBS55  SBS56  SBS57  SBS58  SBS59  \\\n",
       "0      0  ...      0      0      0      0      0      0      0      0      0   \n",
       "1      0  ...      0      0      0      0      0      0      0      0      0   \n",
       "\n",
       "   SBS60  \n",
       "0      0  \n",
       "1      0  \n",
       "\n",
       "[2 rows x 68 columns]"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "nonPCAWG_wgs_act = pd.read_csv (\"./project_data/activities/WGS/WGS_Other.activities.csv\")\n",
    "nonPCAWG_wgs_act.head(2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Mutational catalogs - WES data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Mutation type</th>\n",
       "      <th>Trinucleotide</th>\n",
       "      <th>AML::TCGA-AB-2802-03B-01W-0728-08</th>\n",
       "      <th>AML::TCGA-AB-2803-03B-01W-0728-08</th>\n",
       "      <th>AML::TCGA-AB-2804-03B-01W-0728-08</th>\n",
       "      <th>AML::TCGA-AB-2805-03B-01W-0728-08</th>\n",
       "      <th>AML::TCGA-AB-2806-03B-01W-0728-08</th>\n",
       "      <th>AML::TCGA-AB-2807-03B-01W-0728-08</th>\n",
       "      <th>AML::TCGA-AB-2808-03B-01W-0728-08</th>\n",
       "      <th>AML::TCGA-AB-2809-03D-01W-0755-09</th>\n",
       "      <th>...</th>\n",
       "      <th>Eye-Melanoma::TCGA-WC-A885-01A-11D-A39W-08</th>\n",
       "      <th>Eye-Melanoma::TCGA-WC-A888-01A-11D-A39W-08</th>\n",
       "      <th>Eye-Melanoma::TCGA-WC-A88A-01A-11D-A39W-08</th>\n",
       "      <th>Eye-Melanoma::TCGA-WC-AA9A-01A-11D-A39W-08</th>\n",
       "      <th>Eye-Melanoma::TCGA-WC-AA9E-01A-11D-A39W-08</th>\n",
       "      <th>Eye-Melanoma::TCGA-YZ-A980-01A-11D-A39W-08</th>\n",
       "      <th>Eye-Melanoma::TCGA-YZ-A982-01A-11D-A39W-08</th>\n",
       "      <th>Eye-Melanoma::TCGA-YZ-A983-01A-11D-A39W-08</th>\n",
       "      <th>Eye-Melanoma::TCGA-YZ-A984-01A-11D-A39W-08</th>\n",
       "      <th>Eye-Melanoma::TCGA-YZ-A985-01A-11D-A39W-08</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>C&gt;A</td>\n",
       "      <td>ACA</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>4</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>C&gt;A</td>\n",
       "      <td>ACC</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2 rows × 9495 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "  Mutation type Trinucleotide  AML::TCGA-AB-2802-03B-01W-0728-08  \\\n",
       "0           C>A           ACA                                  0   \n",
       "1           C>A           ACC                                  0   \n",
       "\n",
       "   AML::TCGA-AB-2803-03B-01W-0728-08  AML::TCGA-AB-2804-03B-01W-0728-08  \\\n",
       "0                                  0                                  0   \n",
       "1                                  2                                  0   \n",
       "\n",
       "   AML::TCGA-AB-2805-03B-01W-0728-08  AML::TCGA-AB-2806-03B-01W-0728-08  \\\n",
       "0                                  0                                  4   \n",
       "1                                  0                                  0   \n",
       "\n",
       "   AML::TCGA-AB-2807-03B-01W-0728-08  AML::TCGA-AB-2808-03B-01W-0728-08  \\\n",
       "0                                  0                                  2   \n",
       "1                                  1                                  3   \n",
       "\n",
       "   AML::TCGA-AB-2809-03D-01W-0755-09  ...  \\\n",
       "0                                  0  ...   \n",
       "1                                  0  ...   \n",
       "\n",
       "   Eye-Melanoma::TCGA-WC-A885-01A-11D-A39W-08  \\\n",
       "0                                           1   \n",
       "1                                           0   \n",
       "\n",
       "   Eye-Melanoma::TCGA-WC-A888-01A-11D-A39W-08  \\\n",
       "0                                           0   \n",
       "1                                           0   \n",
       "\n",
       "   Eye-Melanoma::TCGA-WC-A88A-01A-11D-A39W-08  \\\n",
       "0                                           0   \n",
       "1                                           0   \n",
       "\n",
       "   Eye-Melanoma::TCGA-WC-AA9A-01A-11D-A39W-08  \\\n",
       "0                                           0   \n",
       "1                                           0   \n",
       "\n",
       "   Eye-Melanoma::TCGA-WC-AA9E-01A-11D-A39W-08  \\\n",
       "0                                           0   \n",
       "1                                           0   \n",
       "\n",
       "   Eye-Melanoma::TCGA-YZ-A980-01A-11D-A39W-08  \\\n",
       "0                                           0   \n",
       "1                                           0   \n",
       "\n",
       "   Eye-Melanoma::TCGA-YZ-A982-01A-11D-A39W-08  \\\n",
       "0                                           0   \n",
       "1                                           0   \n",
       "\n",
       "   Eye-Melanoma::TCGA-YZ-A983-01A-11D-A39W-08  \\\n",
       "0                                           0   \n",
       "1                                           1   \n",
       "\n",
       "   Eye-Melanoma::TCGA-YZ-A984-01A-11D-A39W-08  \\\n",
       "0                                           0   \n",
       "1                                           0   \n",
       "\n",
       "   Eye-Melanoma::TCGA-YZ-A985-01A-11D-A39W-08  \n",
       "0                                           0  \n",
       "1                                           0  \n",
       "\n",
       "[2 rows x 9495 columns]"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "## Performed by TCGA pipeline\n",
    "TCGA_wes_mut = pd.read_csv (\"./project_data/catalogs/WES/WES_TCGA.96.csv\")\n",
    "TCGA_wes_mut.head(2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Cancer Types</th>\n",
       "      <th>Sample Names</th>\n",
       "      <th>Accuracy</th>\n",
       "      <th>SBS1</th>\n",
       "      <th>SBS2</th>\n",
       "      <th>SBS3</th>\n",
       "      <th>SBS4</th>\n",
       "      <th>SBS5</th>\n",
       "      <th>SBS6</th>\n",
       "      <th>SBS7a</th>\n",
       "      <th>...</th>\n",
       "      <th>SBS51</th>\n",
       "      <th>SBS52</th>\n",
       "      <th>SBS53</th>\n",
       "      <th>SBS54</th>\n",
       "      <th>SBS55</th>\n",
       "      <th>SBS56</th>\n",
       "      <th>SBS57</th>\n",
       "      <th>SBS58</th>\n",
       "      <th>SBS59</th>\n",
       "      <th>SBS60</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>AML</td>\n",
       "      <td>TCGA-AB-2802-03B-01W-0728-08</td>\n",
       "      <td>0.811</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>AML</td>\n",
       "      <td>TCGA-AB-2803-03B-01W-0728-08</td>\n",
       "      <td>0.608</td>\n",
       "      <td>4</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>7</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2 rows × 68 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "  Cancer Types                  Sample Names  Accuracy  SBS1  SBS2  SBS3  \\\n",
       "0          AML  TCGA-AB-2802-03B-01W-0728-08     0.811     3     0     0   \n",
       "1          AML  TCGA-AB-2803-03B-01W-0728-08     0.608     4     0     0   \n",
       "\n",
       "   SBS4  SBS5  SBS6  SBS7a  ...  SBS51  SBS52  SBS53  SBS54  SBS55  SBS56  \\\n",
       "0     0     0     0      0  ...      0      0      0      0      0      0   \n",
       "1     0     7     0      0  ...      0      0      0      0      0      0   \n",
       "\n",
       "   SBS57  SBS58  SBS59  SBS60  \n",
       "0      0      0      0      0  \n",
       "1      0      0      0      0  \n",
       "\n",
       "[2 rows x 68 columns]"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "##Activities\n",
    "TCGA_wes_act = pd.read_csv(\"./project_data/activities/WES/WES_TCGA.activities.csv\")\n",
    "TCGA_wes_act.head(2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Mutation type</th>\n",
       "      <th>Trinucleotide</th>\n",
       "      <th>ALL::TARGET-10-PAIXPH-03A-01D</th>\n",
       "      <th>ALL::TARGET-10-PAKHZT-03A-01R</th>\n",
       "      <th>ALL::TARGET-10-PAKMVD-09A-01D</th>\n",
       "      <th>ALL::TARGET-10-PAKSWW-03A-01D</th>\n",
       "      <th>ALL::TARGET-10-PALETF-03A-01D</th>\n",
       "      <th>ALL::TARGET-10-PALLSD-09A-01D</th>\n",
       "      <th>ALL::TARGET-10-PAMDKS-03A-01D</th>\n",
       "      <th>ALL::TARGET-10-PAPJIB-04A-01D</th>\n",
       "      <th>...</th>\n",
       "      <th>Head-SCC::V-109</th>\n",
       "      <th>Head-SCC::V-112</th>\n",
       "      <th>Head-SCC::V-116</th>\n",
       "      <th>Head-SCC::V-119</th>\n",
       "      <th>Head-SCC::V-123</th>\n",
       "      <th>Head-SCC::V-124</th>\n",
       "      <th>Head-SCC::V-125</th>\n",
       "      <th>Head-SCC::V-14</th>\n",
       "      <th>Head-SCC::V-29</th>\n",
       "      <th>Head-SCC::V-98</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>C&gt;A</td>\n",
       "      <td>ACA</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>C&gt;A</td>\n",
       "      <td>ACC</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2 rows × 9693 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "  Mutation type Trinucleotide  ALL::TARGET-10-PAIXPH-03A-01D  \\\n",
       "0           C>A           ACA                              0   \n",
       "1           C>A           ACC                              0   \n",
       "\n",
       "   ALL::TARGET-10-PAKHZT-03A-01R  ALL::TARGET-10-PAKMVD-09A-01D  \\\n",
       "0                              0                              0   \n",
       "1                              0                              0   \n",
       "\n",
       "   ALL::TARGET-10-PAKSWW-03A-01D  ALL::TARGET-10-PALETF-03A-01D  \\\n",
       "0                              1                              0   \n",
       "1                              1                              0   \n",
       "\n",
       "   ALL::TARGET-10-PALLSD-09A-01D  ALL::TARGET-10-PAMDKS-03A-01D  \\\n",
       "0                              0                              0   \n",
       "1                              0                              0   \n",
       "\n",
       "   ALL::TARGET-10-PAPJIB-04A-01D  ...  Head-SCC::V-109  Head-SCC::V-112  \\\n",
       "0                              2  ...                0                0   \n",
       "1                              0  ...                1                0   \n",
       "\n",
       "   Head-SCC::V-116  Head-SCC::V-119  Head-SCC::V-123  Head-SCC::V-124  \\\n",
       "0                0                0                0                0   \n",
       "1                0                0                0                0   \n",
       "\n",
       "   Head-SCC::V-125  Head-SCC::V-14  Head-SCC::V-29  Head-SCC::V-98  \n",
       "0                0               0               0               1  \n",
       "1                0               1               0               0  \n",
       "\n",
       "[2 rows x 9693 columns]"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "other_wes_mut = pd.read_csv(\"./project_data/catalogs/WES/WES_Other.96.csv\")\n",
    "other_wes_mut.head(2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Cancer Types</th>\n",
       "      <th>Sample Names</th>\n",
       "      <th>Accuracy</th>\n",
       "      <th>SBS1</th>\n",
       "      <th>SBS2</th>\n",
       "      <th>SBS3</th>\n",
       "      <th>SBS4</th>\n",
       "      <th>SBS5</th>\n",
       "      <th>SBS6</th>\n",
       "      <th>SBS7a</th>\n",
       "      <th>...</th>\n",
       "      <th>SBS51</th>\n",
       "      <th>SBS52</th>\n",
       "      <th>SBS53</th>\n",
       "      <th>SBS54</th>\n",
       "      <th>SBS55</th>\n",
       "      <th>SBS56</th>\n",
       "      <th>SBS57</th>\n",
       "      <th>SBS58</th>\n",
       "      <th>SBS59</th>\n",
       "      <th>SBS60</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>ALL</td>\n",
       "      <td>TARGET-10-PAIXPH-03A-01D</td>\n",
       "      <td>0.529</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>ALL</td>\n",
       "      <td>TARGET-10-PAKHZT-03A-01R</td>\n",
       "      <td>0.696</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2 rows × 68 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "  Cancer Types              Sample Names  Accuracy  SBS1  SBS2  SBS3  SBS4  \\\n",
       "0          ALL  TARGET-10-PAIXPH-03A-01D     0.529     0     0     0     0   \n",
       "1          ALL  TARGET-10-PAKHZT-03A-01R     0.696     0     0     0     0   \n",
       "\n",
       "   SBS5  SBS6  SBS7a  ...  SBS51  SBS52  SBS53  SBS54  SBS55  SBS56  SBS57  \\\n",
       "0     0     0      0  ...      0      0      0      1      0      0      0   \n",
       "1     0     0      0  ...      0      0      0      1      0      0      0   \n",
       "\n",
       "   SBS58  SBS59  SBS60  \n",
       "0      0      0      0  \n",
       "1      0      0      0  \n",
       "\n",
       "[2 rows x 68 columns]"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "other_wes_act = pd.read_csv(\"./project_data/activities/WES/WES_Other.activities.csv\")\n",
    "other_wes_act.head(2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import pandas as pd\n",
    "import sklearn\n",
    "from sklearn.decomposition import PCA\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns\n",
    "import torch \n",
    "from sklearn.model_selection import cross_val_score\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.ensemble import RandomForestClassifier\n",
    "from sklearn.metrics import accuracy_score"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
jpronkko's avatar
jpronkko committed
   "metadata": {
    "collapsed": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'Myeloid-MPN', 'CNS-Oligo', 'Bone-Epith', 'Eso-AdenoCA', 'Stomach-AdenoCA', 'Bladder-TCC', 'Cervix-SCC', 'Breast-LobularCA', 'SoftTissue-Liposarc', 'CNS-PiloAstro', 'Head-SCC', 'Lung-AdenoCA', 'Liver-HCC', 'Kidney-RCC', 'Uterus-AdenoCA', 'Lymph-BNHL', 'Myeloid-AML', 'Prost-AdenoCA', 'CNS-Medullo', 'SoftTissue-Leiomyo', 'Kidney-ChRCC', 'Breast-DCIS', 'Bone-Benign', 'Myeloid-MDS', 'Lymph-CLL', 'Panc-Endocrine', 'Lung-SCC', 'Ovary-AdenoCA', 'Skin-Melanoma', 'Panc-AdenoCA', 'Breast-AdenoCA', 'Biliary-AdenoCA', 'Bone-Osteosarc', 'Thy-AdenoCA', 'ColoRect-AdenoCA', 'CNS-GBM', 'Cervix-AdenoCA'}\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAADiCAYAAADgZ9tQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABk3ElEQVR4nO2defxtU/3/ny/XLNdMMmcqKeKS8K1ESaOSEEUpKSV9S6UBDb6p9FOGiEyVTEmhMk8Jcc1zhFBCg0hUeP/+eK9zP/tz7jl7r733OZ9z7+e+n4/HfnzO3me/91qfs/de673Weg8yM4IgCIIgCILRMdeoKxAEQRAEQTCnEwpZEARBEATBiAmFLAiCIAiCYMSEQhYEQRAEQTBiQiELgiAIgiAYMXOPugJtWHLJJW3llVcedTWCIAiCIAgqufbaa/9iZkv1+m62VshWXnllpk+fPupqBEEQBEEQVCLpD/2+iyXLIAiCIAiCERMKWRAEQRAEwYgJhSwIgiAIgmDEhEIWBEEQBEEwYmZro/4gCIJRsfsV9RyKjtx42pBqEgTBZCBmyIIgCIIgCEZMKGRBEARBEAQjJhSyIAiCIAiCERMKWRAEQRAEwYgZmkImaX5JV0u6UdKtkr6Uji8u6XxJd6W/ixVk9pF0t6Q7JW05rLoFQRAEQRDMSgxzhuzfwGvNbB1gXeANkjYCPgtcaGarAxemfSStBWwPvAR4A/BdSVOGWL8gCIIgCIJZgqEpZOb8M+3OkzYD3gackI6fAGydPr8NONnM/m1m9wJ3AxsOq35BEARBEASzCkO1IZM0RdINwCPA+Wb2W2AZM3sIIP1dOp2+HPBAQfzBdKz7mrtJmi5p+qOPPjrM6gdBEARBEEwIQ1XIzOxZM1sXWB7YUNLaJaer1yV6XPMoM5tmZtOWWmqpAdU0CIIgCIJgdEyIl6WZPQZcgtuGPSxpWYD095F02oPACgWx5YE/TUT9giAIgiAIRskwvSyXkrRo+rwAsAVwB3AmsHM6bWfg5+nzmcD2kuaTtAqwOnD1sOoXBEEQBEEwqzDMXJbLAickT8m5gFPN7GxJVwKnStoVuB/YFsDMbpV0KnAb8Aywh5k9O8T6BUEQBMGkYvqeu9c6f9ohRw6pJkFdhqaQmdlNwMt7HP8rsHkfmQOAA4ZVpyAIgiAIglmRiNQfBEEQBEEwYkIhC4IgCIIgGDGhkAVBEARBEIyYUMiCIAiCIAhGTChkQRAEQRAEIyYUsiAIgiAIghETClkQBEEQBMGICYUsCIIgCIJgxIRCFgRBEARBMGJCIQuCIAiCIBgxoZAFQRAEQRCMmFDIgiAIgiAIRkwoZEEQBEEQBCNm7lFXIAiCIAgmG9P33L3W+dMOOXJINQlmF2KGLAiCIAiCYMSEQhYEQRAEQTBiQiELgiAIgiAYMaGQBUEQBEEQjJhQyIIgCIIgCEZMKGRBEARBEAQjJhSyIAiCIAiCERMKWRAEQRAEwYgZmkImaQVJF0u6XdKtkj6eji8u6XxJd6W/ixVk9pF0t6Q7JW05rLoFQRAEQRDMSgxzhuwZ4JNm9mJgI2APSWsBnwUuNLPVgQvTPum77YGXAG8AvitpyhDrFwRBEARBMEuQpZBJujDnWBEze8jMrkufnwBuB5YD3gackE47Adg6fX4bcLKZ/dvM7gXuBjbMqV8QBEEQBMHsTGkuS0nzAwsCS6alRaWvpgIvyC1E0srAy4HfAsuY2UPgSpukpdNpywFXFcQeTMeCIAiCIAgmNVXJxT8E7IUrX9cyppA9DhyeU4Ck5wGnA3uZ2eOS+p7a45j1uN5uwG4AK664Yk4VggK7XzG91vlHbjxtSDUJgiAIgqBD6ZKlmX3HzFYBPmVmLzSzVdK2jpkdVnVxSfPgytiJZvbTdPhhScum75cFHknHHwRWKIgvD/ypR52OMrNpZjZtqaWWqvwHgyAIgiAIZnWqZsgAMLNDJW0MrFyUMbMf9JORT4UdA9xuZv+v8NWZwM7AgenvzwvHfyzp/+EzcqsDV2f/J0EQBEEQBLMpWQqZpB8CqwI3AM+mwwb0VciATYD3ADdLuiEd+xyuiJ0qaVfgfmBbADO7VdKpwG24h+YeZvbsTFcNgiAIgiCYZGQpZMA0YC0zm8mmqx9mdjm97cIANu8jcwBwQG4ZQRAEQRAEk4HcOGS3AM8fZkWCIAiCIAjmVHJnyJYEbpN0NfDvzkEze+tQahUEQRAEQTAHkauQ7T/MSgRBEARBEMzJ5HpZXjrsigRBEARBEMyp5HpZPsFYkNZ5gXmAJ81s6rAqFgRBEARBMKeQO0O2cHFf0tZEnskgCIIgCIKBkOtlOQ4z+xnw2sFWJQiCIAiCYM4kd8nyHYXdufC4ZNkxyYIgCIIgCIL+5HpZvqXw+RngPuBtA69NEARBEATBHEiuDdn7hl2RIAiCIAiCOZUsGzJJy0s6Q9Ijkh6WdLqk5YdduSAIgiAIgjmBXKP+44AzgRcAywFnpWNBEARBEARBS3JtyJYys6ICdrykvYZQnyAYOLtfMb3W+UduPG1INQlmNabvuXut86cdcuSQahIEwZxO7gzZXyTtJGlK2nYC/jrMigVBEARBEMwp5Cpk7wfeBfwZeAh4JxCG/kEQBEEQBAMgd8nyK8DOZvZ3AEmLAwfhiloQBEEQBEHQgtwZspd1lDEAM/sb8PLhVCkIgiAIgmDOIlchm0vSYp2dNEOWO7sWBEEQBEEQlJCrVH0LuELST/CUSe8CDhharYIgCIIgCOYgciP1/0DSdDyhuIB3mNltQ61ZEARBEATBHEL2smNSwEIJC4IgCIIgGDC5NmRBEARBEATBkAjD/CAIgiDoQWT5CCaSoc2QSTo2JSO/pXBscUnnS7or/S16bu4j6W5Jd0raclj1CoIgCIIgmNUY5gzZ8cBhwA8Kxz4LXGhmB0r6bNr/jKS1gO2Bl+AJzC+QtIaZPTvE+gVBEMxxRP7OoB8xIzhahjZDZmaXAX/rOvw24IT0+QRg68Lxk83s32Z2L3A3sOGw6hYEQRAEQTArMdFG/cuY2UMA6e/S6fhywAOF8x5Mx2ZC0m6Spkua/uijjw61skEQBEEQBBPBrGLUrx7HrNeJZnYUcBTAtGnTep4TBMHEE8sdQRAEzZlohexhScua2UOSlgUeSccfBFYonLc88KcJrlsQBEFQQijdQTA8JnrJ8kxg5/R5Z+DnhePbS5pP0irA6sDVE1y3IAiCIAiCkTC0GTJJJwGvAZaU9CCwH3AgcKqkXYH7gW0BzOxWSafimQCeAfYID8tgdidmE4IgCIJchqaQmdkOfb7avM/5BxAJy4MgCII5nBjMzZlE6qQgCIIgCIIREwpZEARBEATBiJlVwl4EQRAEQRDUZrJkn4gZsiAIgiAIghETClkQBEEQBMGICYUsCIIgCIJgxIRCFgRBEARBMGLCqD8IghlMFuPYIAiC2Y1QyIIgGDmhCAbDIp6tYHYhliyDIAiCIAhGTMyQBUEQBEEQ1GTQs6+hkAVBEMxmRK7DIBgMs9K7FApZEASzNbNSgxoEQdCUUMiCWZ6608IQhrlBEATB7EUoZLMh4TUUBLM3McgIgqCbSaGQhYISBEEQBMHsTIS9CIIgCIIgGDGhkAVBEARBEIyYUMiCIAiCIAhGzKSwIWtDuMwHQRAEQTBq5niFLAjKmB0dRmKQEQTB7Ea0W6GQtWJ27KyDIAiCYNBEf9ieUMiCCSFGP0EQBEHQn1lOIZP0BuA7wBTg+2Z24IirNBRCQQmCYE4iZlCCoJxZystS0hTgcGArYC1gB0lrjbZWQRAEQRAEw2VWmyHbELjbzO4BkHQy8DbgtpHWKgBihDuRxG8dBGPEikIwJyAzG3UdZiDpncAbzOwDaf89wCvM7KOFc3YDdku7awJ3llxySeAvDasTsrO+7CjLDtmQndVkR1l2yIbsMGRHWfawZFcys6V6fmNms8wGbIvbjXX23wMc2uJ600N28srOrvUO2ZAdhuzsWu+QDdlZsexRyM5SNmTAg8AKhf3lgT+NqC5BEARBEAQTwqymkF0DrC5pFUnzAtsDZ464TkEQBEEQBENlljLqN7NnJH0UOBcPe3Gsmd3a4pJHheyklh1l2SEbsrOa7CjLDtmQHYbsKMuecNlZyqg/CIIgCIJgTmRWW7IMgiAIgiCY4wiFLAiCIAiCYMSEQhYEQRAEQTBi5giFTNI8o65DEAwKSRuMsOxlRiE7pzHKNkvSNi1kX9FC9gVNZUdFy/ch+qUJoGl7KWkTSYcPuj5lTFqFTM5rJX0fj29Wdu6WKUtA9/EdJb1uaJUcAJI2krRwYX/hpo1izgMo6YOSVk+fJek4SY9LuknSeg3LnV/Stk1ka5azvKQzJD0q6WFJp0taPlN2EUkHS5qetm9JWqRm+QtLel7Duq8l6cuS7gKOqDj3fyXt2uP4xyTt1aDsRSS9X9IFwHXDkpW0VK/ctZJeIql3ZOuxczaQtFWP42+VtP4Qy20s20Mmu81K5w+r3Tq4hexpLWSvKvtS0oJFJUbSmpI+IekdVReWtG/J9sU6lWz5PtS6xwWZnSTtm/ZXlLRhnXIL15qQtjaVNa+ktdOWrXxK2kPSooX9xSR9pGbZ2e1ll9y6kr4h6T7gq8AddcrtulZ9ha5NBN1ZcQNeAXwHuB/4J7AzsFiFzFXAUj2OPx+4MrPcNYCjgfOAizrbBMheT/KWTftzAdfV+L3WBb4B3AdcDHys4vxbgHnS53cD1wJLAFsAv65R7hQ8ifwPgIeBn1Sc/wTweGF7ovg3s8zzgffh4V7mBnYBzs+UPR34EvDCtO0H/DRT9qXpPv0hPZfXAmtnyK0EfBa4Mcn8BVg5Q+4WYN4ex+cDbsqs8wLAdsDPgQeAx4DXAHMNSxY4GXh1j+NbAj+ukL2k128DrFb1LrUst7Fs4dzabVaSa91u9bnuA7OiLHAZsHrhvv4NOBS4EPhahewne2xfTO/kPzPq1vh9aHOPk+wRwOHA7Wl/MeCaGr9rrba2ILc68BM8l/Q9nS1T9jXpt7003bd7gVdlyt7Q49j1GXJN28s1gH2B24HLgY8Bf2j4DK9Ljf50Jvkmhc6KG3AAcFd6OT+AKwn3Zsr27aTKvus670bgw3iC9PU72wTI9np4S+vc5gEslgf8GPh4Yb9SEQReBRyZGrXTgT8DC2bI/QzvgD4NrNjwGen1W810bAiyVwCbFfZfA1yRIXMr3ml0OqF7M8u7ucl3hXNOTPfnGOB1eIOeW3Yb2VtLvrulxf984xDLbSPbuM1K8q3brT6y98+KssV7DHwFODx9njfnuS7ILgx8AVcSvg4sXXF+m2e61T1O17gu/b2+cKz0mU7nNGprC/KXA5sDN+HKzv7AlzJlrwXWLOyvAVybKXsT4ycZppS9Z+mcNu3lc7jiuFrhWJbiWfjfBqLQzVKBYVuyG55o/AjgbDN7WlJukLX5Jc1tZs8UD6Zp1gUyr/GMmWVPjQ5Q9h5JezI2LfsRfCRTxh3Ar4G3mNndAJI+kVnec5KWBf6Ov6wHFL4r/a0kPYiPEI8A9jazJyTda2b/qirUzLZOS4TvAI6WND9wCnCymf0ts+5/kbQTcFLa3wH4a6bsU5I2NbPL0/+yCfBUpuxCZnZxZ8fMLpG0UIXMo3jqsGWApfBGPfd5RtIyZvZw97FM8bXx+3s7cIeZPVvjXWojW7asUbXkUfbsVf3WbcptI9umzYIW7Zakm+n9PAl/5spkzyqRXaJC9tAS2UXLZLvkXgt8E8DM/iPpuQpZJC0O/C+wI3ACsJ6Z/b1KjnbPdNt7DPBfSVNI/39aCi/9f9u0tQUWMLMLJcnM/gDsL+nX+OpAFfOY2Z2dHTP7XY1ly/OAUyUdif/PuwPnVMi0aS+3wbMCXSzpHHzWW5my0K4/HcdkUsieD7we72S/LeliYIFeDVYPfop38h81sycBUod5SPouh7PSOvcZwL87B8uUhdRANJItsHuq5xfwB/BCvBEoo80DuC8wHR+1nGkpk4KkV1OtCJ4ObI1P/T8r6efUUDLM7B/AcZJOSNc4FJgf+H+Zl3g/cBhuI2P4qOr9mbIfBk5ISqHw5ZJdMmXvSXYqP0z7O+Gj876Y2dtSWdsAX5K0GrCopA3N7OqK8r4J/ELSJxmzcVkfn0o/qKqyZraOpBfhS9IXSHoEWFjS883sz8OSBe6S9EYz+2XxoNw2rOrZukDSAcAXLA1bk+yXcBOAYZXbRrZNmwXt2q03Z1y/H2XPUNXzNb3hdwA3SToI+CO+ZHkeQNHeqB+SvokP5o4CXmpm/6yS6dDymW57j8Hv5xnA0ukZfyfe3pfRqq1NPC1pLvwZ/yj+uy+dKTtd0jGMtXk74rNmOewNfAhvc4Xf5++XCbRpL83sDOCM9O5sDXwCWEbSEcAZZnZeRX3bKnTjKjPpNryTfif+UD5MtR3I3MCB+JrztWl7NB2bJ7PMe3tspdOenXOayNrYVO6PWvxOC+EvytnAv/DR1Osz5Oamy/4hXet5GbLCR7dH4y/4E8C7MmU3xpWwG3DF6n9G8GxNBabWlFkMb1SvS9u3u3+/jGssjU+FX0GGnQ5uM3IpPgP4l/R5q4b/8zTgW/iIu3SptY0sPvX/O+D49L9+DJ/J+B2wRsazfBLw+/Tenw7cjTeOpc9Wy3Iby3Zdp1ablWRat1uD3oBThnjtBXAboe8A6xSObwy8p0L2OXxGu6ct6rCe6bb3uCD7ImAP4KPAizNlGre1SX4D4Hn4zNNxuJK/UabsfPhs5E9xZfITwHwZcnNRsdSfWX6t9rKH/OL4xEaWLXeSadSfFrdJnzpJ7oH4DjM7IePcBfCRF8DdZpa7JNUKSfOb2dNVx/rInotPlf6nZR0WxxuL7c3stSXnlXo0mVnujGJnaeUN+Ojx9Wa2ZMm59+GGtCfjMx7jRpdm1tfbqWSZpCO7Z0Zd/7fH4X/gdhE3lMhNAc41sy2qyuiSmx9Y2Mwe7Tq+DLC4md1e53qDQJJww9xLhyUraT58JmLtdOhWvOOqfBeS/AuBl3Rkzaxqlqp1uW3r3ON62W1WOr92uyXpCfovHZqZTc2tb9d17zezFUu+P7NM3szemlnOUun8R6vOHRYt34e693gKvhw3Y1XLzO6vUV52WzsIJL0Z+KWZVS4l95A9Edin5v/XuL2Uh8VY0sx+1XX8rcAfzSx3Zq8om9WfdjNplixTh/kPMzum66td8JmkMtmdcCPCHwI3F45/EHjSzH6cUX4vReUfuLHpIxXiVwDdISN6HevFfcBvUkP3ZOegmfVdxuv1AJrZ3yT9GZ8uLuMtJd8ZJUslqRFdysxuS2X+F1+uvRcf+ZZxX7r+lvgSQHFK2PCRYD+qlkJymJa2s9L+m4BrgN0lnWZm3+glZG5v8i9Ji5gvueZyCG430f17bgFsik/n90TSN/AZ1iO7jn8CeL6Zfaas4H7ywF74EkzfDqil7GrAMmZ2XNfx/5H0JzP7fYnslniD/BMKS4WSdgQeMbPzh1RuG9nGbVaSb9xumVkxVM71ZvbyqvIGxCtxI/OTgN9SY2knKUD74rNEcwFzSXoGONTMvlwhOz9u3rEabjR+rGUuGbZ8plvd43SNj+F2Ww8Dz5KUZuBlJTJt2trONaYBn8cN+ouKYN9yC2wPfEfS6cBxNQeQywK3Srqa8X1ambLeuL3ETTx26XH8NnyJu1ShatmfjqfJdOCsuNHC1R8PSbBwj+NTyfcM+QVuV9RZLvlrOnYXfabT8Zd5fdxY9OW4ArYe7oV3R2a5+/XaKmQuoWGIgJb3qHWIgBE+X+dSmOrHp/LPwZdRbquQPRVf3jgGbzgOAQ6pkOl7Tao9jm6jhzs+mcsBbeRbyp4NvKzH8WnAWRWyjUNAtCy3jWyr8CSDaLfS+dlhctL56/XZ1gceqpCdgs/UnJDq/1XgJZnlfgIPXbNK4dgL07v5iQrZU4Af4bZJPwO+U+P/bfNMDyIEzd3AEjXv0SDCsdwJvBVYBVfKVgJWqlGHqen3vgq4El8CnOl57SH36l5b1T0q+a6qvWzsoZ3OuYQB9aeTZoYMn2afadnOzP6dRlZlTDGzJ3rIPq58z5Dn8LX9h2HGVOkRePyZyxgzbiyyJa6ZL894w/QngM/lFGpmX8qsX5ElzOy+Hte6W1KVl1TPEV8axU0xs2+XiL/Uekzvm9m5kr5VVWlJK+Ej/79I2ggf+dxtZj+rkOvnFdYpP2eZZEWg+Hz9F2+cnpL07z4yHX6RtnHFVsiUPbNVAZ3NeiwVmNlzGe9CW/k2siub2U09ZKdLWrlCdkHrsXxlZn9WtUdrm3LbyLZps2Aw7VYTyt7V0kCaZvYsPpA5Jy317gBcIunLZnZoRbnvBV5nZn8pXO+eNFN4HuUBbdcys5cCJGPzKseYrmq3eh/a3GPwGcU6s+vQsq1NPGpmpUvMZaTn8HR80LoX8HZgb0mHlN3rXvXOoE172cZDG1r0p91MJoWsjav/PJIWsuSpVJBdGI9xk8PKXWU/ghv1/k3Sf3sJmNsPnCBpGzM7PbOccaSp6U/jdjPzF65dNs3a5gF8P72XUo/Cl/C+XSLbOESAPEr1zoBJOhmfir4EeJOk15jZXiXilZ6FGfwYuErurQS+dHtS6uxvq5Bd1My+Uzwg6eMVMo+oh4dQmh6vspv5l6TVzeyuLtnVyQvV0Ua+jez8Jd9VhZ9pE7qmVbktZNuGJ2ncbnWZWCzabXJhJbagZrZZZv36lT0fvuS/A7Ay+d7s8xSVsUJ9Hs1QQGe0wWb2TL4uBLR8n1reY/Al+Esk/YLxXvhl3uVtwrF02E+eUeDCrnIr75Wkt+B9xar4ZMSGZvaIpAXxFaG+ClkabB8KvBh/jqfgA/Eyu8Y27WUbD21or9DNYDIpZG1c/Y8BfiLpwx1NN41uD0/f5fBrSWczljpkG+Cy1GE/1ktA0k5m9iNgZfUwGq944TqciE/Hvxm3kdiZ4T6AbUZ8bUIEbI+/oAviy3/PN7N/SZob97osq3CTEVf3Nb4i6Zf4rJyA3c2sY5u2Y4X4zrhnWJFdehwrsjcei+d4xtzFp+GzBNtXlLcv8CtJX+2S3QcfqVbRRr6N7DWSPmhmRxcPytNAVRnWtgkB0abcNrKtwpPQrt0q2oJe2rVfZQtatF0rHq+0XZOHrFkb+BUeZPSWinoWKXNcqnJqWkfS451q4KEnHifPiaHNM932HoO3d/fjyknuBEGbtrbD+3DvznkYi3tW+mwU2BY42MwuKx5MbXZVqKHD8DbuNMbavNUrZNq0l5/Ew2rcLemGdGxdfILhAxWy0F6hm8Gk8rJMD9tnGfN2ugU40Lq8J3rIzY3/8PvgtkGGGxMeaJkBW5Mysg2wCf6SXw6cbiU/sKQPmdn3JO3X6/uc5UhJ15rZ+pJusmRsKelSM3t1icxC+AO4IWPKzLqkB9BKYvTIA0pu0WfEd0FnWaCP7Bq4zc0VjH9pXgm82cx+VyJ7nZmtlz5fbwUj5OJ3ZcgNWme6H2b2whKZqWnqffFe31t5nLkdcO+7TfHAgR2m4sGASz0vJS2Nu7oXvfcOs2onESStjTdSxXfhIDO7ub/UYOSbyqZn6Ay8cy0+H/MCb7eSmE/pHf4q/h7/IR1eETgW+Hz3zNkAy20sm+QbtVkF+d0Za7fA0/Jkt1tNkHQ97l34RNfxqcDFZtY3d6g8gGtnRq/4LlYqRpKeLciO+wqY38yGtkzb8n1odY+b0KatLVzj5rL2PLMeUxnvEFAZW1PSdDOb1tWnXWFmG1fINW4vk3xTD+3G/elM15pMCllTujr75+G/y0y2GbMikq4ys43k4S8OAf6E5ypbNUO29gMo6b3AnvioonvEd7hVuHGrYYgASfcAn8Ib328w5r0i4BuZ/29xPX9+fBS3uJntWyJztpm9uYcy1+lAypS5lXCD2K8x3rPpCdygN9fLa15gzVT+neYeU7WQtBjwWNkAoUR2KvBcnYaljaykzSg8H2aWPcpUjxAQkjYxs980KVc9lgQHXedBULfdSu9xP6x79qtLdkZHWee7UdJvQNUhR1EoXKvx+1AHSd82s73UxwbWKmxfm7a1Bfmj8VmuKpOMXrK74emtnmKs7qXtZUH2Mtwk5ft4uqeHgF3MbJ3Mshu3l/JQF69Ku5eY2dk1ZBspdOOuMdkUMknL44rJpvgNuRzPt/hgicy4GZea5V1uZptq5rg+2fF80o38DrBRusaVuNdQjoL0Znz2ZQV83X0qvhSQZYzZ5AFsM+JT87hcx5V9b2bvq3O9wnUvN7NNm8jWKGMh4ClzI+A18GWAX+U0FPIMCD/Aw34Iv887dy8FdMnsC5xqZnekRvlX+IjtGeDdZnZBZr3Xxu0/Op3ZX1LZlctMTWTl9iX/7fwuktYE3gjcZx5Nu6y8KXjQy+WAc8zslvRufA5PAVP6fktaDne3v8k8Fc/S+HLULmb2ghK51h19kzYryb0l1fcPaX9ffJb+D0n+3hLZXjY8wpculzOzvuYskm4HpnUrqnLbtWvM7EVl9e5xvU6E9Heb2ZtKzmv8W6eZuQcZi184LmxOpqLQ5n1o0i+tb2bXpjZgJizTFCPN4m6Yyr26xozR7bgN2L24DVmnT6tUuCXdBbzSetj8ZciuhIf4mBf3rF0E+K6ltEQVsrXby4Ls1/Df6cR0aAdgupntU6PujRU6YPKEvehsuFv0+/Bp0rlxW53zK2QexKMK99wmoM5XAe8p1Hkn4LcTUO7XcIPN96ftfOBrE1DumcAiI3g2ii7603Cbu6rE0/1c/NfDc+HllHstbvu2HO4xdQZwYg3ZWkl68ZFwZ7C1G+78MAW3wbu6xu9VOyl6G1ncG7mTGHg1PIzMoekZLX0u8Uj5F6Zn+iI8svgdwNYZdd0Lt7u8Ep/13RkPW3MwsGyF7L2MZdt4On3u7GclKG7SZiW5m0jJonEb0t/hs9UfwAc9ufdZqc25GbdHnSmMR9f5n8KV/JULx1bGPYn3zixzXlwJOxWPmH8cHuC6TOY53Jaq+Bt3tqqsKN8BbgS+C/xP5/2os7V8H5re47bZWN6FK+gn4IrKvcA7M2VX6rVlyp5DjUTmJddZrOp57Dq/bVLzuQr7U8gMTZLOb92ftvqxZsUNuCHnWNf3D+GGm/v12mqUPQV4AW67siKwYqbcTMoXcFWm7DfwWbF50sPwF2CnYT6AwGZ4rLVb0/YT4DU1fqcmcbmWBzYt7P9vumf7AqtllntxYTsfTymyZg2Z7i0rxgwpzhOeyuPT6fP1ufco51jX99cXPp8OfKi7Lpllz6Ss9jo2KFkK8YDw5Y7D0+d5KYkVlM65pfMs48vR/8QdP3Lqehu+dA1j4U2yUsT0+91ryt2Qc6zs98Rt5T5T5z7jisEHcK+346vehS7Z3fGOvpOa6w/AhzPkXpfq+kc8Lthb8BnQnDJbKVW44rkZ7hF+A952rlJDvs370Ogep/POpUcss9w6A0sX9pfKrXM6fx08EO9HKaSrypB7efqNv0dmG1+QvQTv0xbH+4lrgf+XKVu7vSye12kH0v7iubIF+cYKndnkikPW4S9yL6CT0v4OeKNRxkNWEem5Co2Pplz0SMmxp7hY0mfxYH6GJ4T9RWeK3sqXPV5vZp+W9HZ8pm9bXFn4UWbVF8VnIsCnhkuR9CbcC+bLaRM+W3Ss3MPtl2XyiV5xuar4JmNTyeABB4/CZ56+RLWnI9bAXb+JTA8k6ZV4HXdNx3LfvSZJev+dllcexjugTxW+WzCzXGiQFL2lrBU+vxa/55gvIValYPmPpVhRZva0pN9ZdeLnDk933jEzuz/JXpUpW8SqT+lJkzYL/Ll6Hp43b3NcUelQFo4DSXsAH8cHcW+wtOyZi3nU+iMb2Nyei5tYbGppSVVSmbdxscyPSxI+M/Ue4FBJ5wFHWMnybEHe8Lb2etzz7it44O6jSwXHaPM+NL3H0CAbS4G5bPwS5V+pjssFgDw0zwcZ86r8kaSjrDpeHLgidhE+61o3fdIi5o5UH8Cj/O8naaZYf31ok9T8a8D18gTwwpces5crE4tSoz/tZjIqZO/HFYaD8QbyinSsjJnCNUh6s9Vb//04PsLMfcmKbJf+fqjr+Pvx/6HMvqHjWfRG4CTzuGe55TZ5APfGl4FuLBy7QdJ0fHmpUiGzzPxtXazZdT/+ZWbfApD06z4ypO9nCinSVZ/Shq3gvfMS/H7chs/eZNli4M/GPsAZZnZrshm8OFP2w6nsPfF7dBnjO95+5f0EHw0fXOj43ohHR8/l/biy+9NC2bm2ek1kb5J0ED57shoe7BNJi2aU96JCoy1g1bSfY/eyvKRDCvtLF/ctI9dpS5q0WeAx/27Al/xutxSGRdLL8Vn/Mg7FYyVuiqfU6RzPthPCT/xnKvNsM3tzhsj6uDJ0QXLUOZnMFEKpvEZKVbJTexve1i6FP5frmdkDuWXT/n1oco/BHbX+hCtSC1ec2805coevjiK4HRltdGJX4BU2Fkbm6/iyfo5C9oyZlba7JcwtaVl8ufXzNWWbtJcAmNlJki7Bk6oLn3HOHdTBABS6SWfU3wRJi3fPQikzlELh/IvxKNJZnnODQtKBuC3GU7hB4qLA2Wb2ikz5ZRl7AH9b9QBKusP6GO2Wfdd13ur4w7sW44PZlnks3mZmaxX2Z9yz7u96yO6XPq6J/68dh4e3AJeZWd9YM5I2wYPCHo+PtDozgjsDO1qG916Pa86P28ucVnnyHITcQ/LjuHH9sR2lX9LGwKpW7vm3Utm1y2aAJO1cIdt3ANGl7P8v4zNu5M5iNCY5IyyNL0M9l44tiwdRvb9ErvHv1ed611tNx6j0bu2AOyLcgA9Yjio5v5dSdUqOUiXpSVxxOwlPRTSu47OMYKezK5KK4ZguswoHmYLczcAGlrwyU7t1jWWEwpDH5foDnvu3GFQ2x8llW+CLwG/M7MNpAPtNM9smp95tSO/TSowP1VHpEFCQr9WfziQ/2RQyeeT6D+JGpsUfNXc00rlOrQYmTZOuiS/FZUVTlvRpS0mpJW1b7KAl/Z+ZZaVPkoc0eNw8kfWCwNTcB6HuA6gU96zud13nXY4v7x6MK0Xvw5/F/UpkfovnBP1d1/EXAT8wsw0zyj0P2KazvJK8wk4zszeUyFyF28Zc33V8XeB7NRTfKXhS9B3wlFm/NrN3ZshtAuzPzPeo0ius6zq5MxhFmTXw5c6Vu8p+7TBlu66znpldV33mYJH0/Jx3SH1iCHawvFiCA2mz0rX2N7P968ol2SWBv1qDTkHSsU3qm2Tnwm3LtrcSb+k2SpU8YGi//8ty6t7yfWh8jyWdD2xrZo+l/cWAk81syyrZNqTBxs64ExL4wP94K0+P15HttZRrdduturRpL9MM4Ha4XfQMsyPLS63XuUY7hW4SKmRX4DYK1wLPdo5bRWoidYVjUI80DBXyPRvmsgZZ4+OfjZuRy52hk6cM+TBjrraXAkdaXkiF2g+gpMfwaeCZvsLtQhbLKLcTzHZG4EFJvzaz/ymReQNuGHoA4+OffQ53H88JuXEHbpj677Q/Hz6z0HdWr2z2rWpmLp3zKjwW0Jvw/HmbAC80s39V1bdQ508w8/Nca2m84QzGjcCRPcqutMloI9t1nboz1e8Avo7PGomxJbjK8DNtym1D0zarz7Vy242NgANxe5ev4DY3S+LLYu81s3Pqlt2U3MHCIJSqNrR8HxrfY0k3mNm6Xcey3ue274Ok9Rk/u1bH5KER8hAhh6ZyjcwwMEm2cXsp6U7co7MqN3E/+dYK3WS0IVvQzD5TVyjNLv1L0iJm9o86yliS/xL4tLplBJJMqM/nXvv9OAK3I+usk78nHctJ+bA1bptV5wF8W8l3ualAnk6j4rskfRS3GVq6TMDMzkmNy6dx+wBwz7p3WH76lR8CV0s6A3/R3467gpchSYuZ2d+7Di5OhXGspAdxL6Ej8HAAT0i6N1cZS/wjR9nMoElD+ow1j/jeRrZItkFk4hv4cvDtE1zumGB9Za5Rm9Wv+MzzDsMHM4vgxtdbmdlVacb5JDxsQXlBM89GVAZL7sNyOSeZ2S41r1tKg1njNs90m3v8rKQVLS1Bp+Xm3JmUtu/DDbg94typ7Bn1KKPHRMEl+IpCTpDW43AzkW3T/k7p2OsyZNu0l/fgfWkjhYxm/ek4JqNCdrZ65PDK5Gng5jRFXPRmqTTqlXvRHYOnMFlR0jp4uIGPlIhZn8+99vuxgY2PYHxRGsnlUPsBtB7BCBssK+2Fe/vtiY/OX4tPjVeVfQuem6wRZnaApF/hLvMA78sY8R0MnCfpU4yfmft6+q6M0/GXdDu8Uf059T3xLpb0TdxeprgUXvl7S1rakuNBZ/ZA0ppmdmdm2WdJ+gi+ZFHLDqSlbJHKJb8uHh6AMgb5nne9qKvMtWmzuqk0GUjMbWYdp4kvW/IqNQ8mnFvWMfSYjWhA41mXJkvxBbIUwQJtnuk29/jzwOWSOm3vq/D4gjk0fh80PnLAsySFm7zIAW0mCpYys+MK+8dL2iuz2o3bS9xb+QZJ3cnUc5162ip0k3LJ8gk8w/p/0lYnYn5PpcAyvAKTjdM7gTM7U8mSbjGztUtkOrnZhGeM78yciMzcbJKuw+0Lfp/2X4inTspZtjgdjzPT9AGcUYeJWt7pKvcoM8ttmDoym+LBR49Ldh3PswqXeXnE908z3svym2Z2VkZ5ndhHO+CesFNx76VfWkbqFbmzSDdmeXYrdwJfNLNT0/4ngV2rllkL8o3tQJrISip9hsoa1TR7CvBq4PnAzxj/TFcabaf34Vg8i0K2q34yd9jTzA5O+181sy/UkG/cZiX5Q3oc/gceZfznfWQGYS7xW8u0oRwWTZbiC7K17N5avg9t7/GSeCYX8BiVWRHw5SFFmr4Pd+NelrUjB0i6sWuioOexPrIX4E5UxRAh7zOzzTNk27SXjfv/JN+6P510Cllb5J5eK9aYRejI/dbMXlFsIHIfwDZI2hyfzr0Hf8lXwh/eyrAKbR/AwnWyGkX1yclWKDd7rT1dr6590X54hP41zWwNSS/Ajfo3qVNuU9I0/hvwBub1ZrbkkMtbFo/V9jSwDB4A9JM5iuAoKDSm8+P36Ub8mX4Z7rHUN8WVylNrWU7HK2kL3MFkI+A03ID5jsy6X2Jmr8k5d9BIOgpPx9VxCtoGt2NZAY9gv1cPmV6Dwc7UWOlgsKA4vwsPWZE9GyH33CtrA2rlwayrVM2uqGFKnj7vRe770DhyQMuJghXxJfVXpkO/wW3Iann+NqFp/59kW/enk04hSzMSO+IRmL8iaQU8/UmlTZg8N9xBeFTkVeSedF/OURQk/QR3eT8Mb9D3xPO9bV+z/rtZiet3H5n5cA9PAXfUWcNu8wAWrrG1mf0s47xXl33fazm04nrnWImHZI/zb8AjSF9XUJprJ0NuODM3L57GA+BOfMnoqQy5ZYD/A15gZltJWgvPEXdMZrl74LFwngN2sBphOuQeu/+LPx+7ycOVdMeDG4bsycABZnZz2l8b+JQN2IaopPxFcKX583iqq6Px9DV97V/kbv6L4KmHiuYOOUvLjdusJH8RruA/k/bnxmO4vQ7PcJA1I5pLn1mIDqWzERoLt7FH+lsM4Pkvaxmgu6Tc1opgy2e6Tb90IB5KoXGOxSaoQeSAgmzjiYI2tGkv2/T/hWu060+tQTqGWXnD16kPxwMlgufCuiZT9lq8Ub2+cKw0ZUvhvCXxF+ZhPODij4AlGtQ/O7VNOn9B4AvA0Wl/deDNmbJvwZWDe9P+uviSa47shTnHhnyvF4P89CmkPI6MpTJaiJqpLRreo9fgMXkuxT1U7wVelSn7K3wm4sa0P3eNZ/J83GlhUTwR/NXAQTXqfQq+VHtL2l+A/HQvbWRnOq9KFjde3r3H8U8AX6/xPy+Bx0Kbjser2w73+LqkQu7iHltuaq3GbVY6/04KuWFTG3ZH+nx9jeucXee5brPhMaYqj3V9fzOenqbnViG7Utq+kbaXpu1AYN/MOrd5ptv0S41T8uCDwAsLdX4Z8IVM2f16bTXu8XypvHWA+WrIvRCPX/Yo3pf+HPdMz5Ft01427v/TuY370xnXqHPy7LAx1tkWf9TcfGO/7SFbu8NuWf/ra57fppGo/QDiy0mL48tJi6XPi+PxdW7PLPdexhIEz9gqZPYFXpQ+z4d3eH9LL+wWmeV+Ck/pcQ8eE+hK4GMN7tE5Nc9vk/D2mh7PZO793bprf27cpiy33tN7lJ37LrWRPQn4Pq7IvhqfoTqpQuY2Cp1W4fhcnXcjo9yfpuvsQ1dS8c7/M4ytTZuVzt01vVPH4bY39+DG0wvhto6517k+99x0/hJ4KJrr0jP+HTIHobj3XjE37cZVzzWDUapqK4Ldz0DDZ7pNv3QTDXMs4oPADbvKzXofmmzAa9Pfd/TaMq9xFe4E0EnEvhM98j33kW3TXrbq/2mp0JlNzlyW/01GtgaQDLdzDXRvkfRuYEqajt4TT3HRF3n04u2Av+Na/d74Wv/vga9YpvFlgbfUPH9VM9tO0g4AZvZUmh7P4Rkz+0fX6VYh8yHcS/IFjEWuB0/fcnhmudMKn+fH3ZsXr5DZDvfIhDGPzKVw5eYE4IKqQs3sIEmvS3VdE2/Ez8+sc5EdJMnSG5fBPFaYwjaz3yV7shyelLQEY8/zRrjBdiXWtYxsvqT1ld5n9+Q/aQq+U/aq5HsQtZF9H+4y//G0fxk+w1CGWQ9DfDN7rsb7cJiZXdTn4tN6He/Qcmm5TZuFmR0j6Zd4xyvgc2b2p/T13rnXob6348n4velEUN8RHyBukSG7K57/dpG0/xgVqYQs2RBJ2sTG231+VtJv8Ny6VSwkaVMzuzxda2Nccc2hzTPd5h63ScmzoJld3fUKZNmEpTp2nJmKGVXKDORfjYdR6dWPGWN5MUuLtvFZOX4kD4+UQ+P2kgb9fxdN+tPxDEtTHtWGNwpn4om2D8CnELfNlF0wyVyDL1kcgBu4lsmcii9V/gwfjRyOG25/lcwlANzg+hjcuws8pdCumbJX4LNinRHYqqSluQzZY/CgpTfhS52H4kFlc2RrzyxVXO/yiu+vL3w+HQ8p0tmvtYRYs16DmJk7Nv3Wr0nb0XjS3BzZ9XCj1n+kv7/DgxdW/pbAE7jy2dmewDM65P7vr0vP9KPpGb8PeM2wZRvep2tw79nu46uTObvF2PL/UQXZ3OX/NksljduswjWWw2eZXtXZhvVbF8qcaZY397cunD+VwnJrpswN1JxdK5y7Pj67f1/absBzWg71mW57j/F0Ym/F40A+v4bcr/A+odM/vJPUz2TInocrzrfjitax1Fj+b/FcHQh8Fl91WQlXCr9IWo2pkK3dXhZka/f/XfKN+9PONumM+gHkwQ03x0cTF9pg4hL1K+sWM1s7GdI+aGbPL3yX6+b7K3y54fNmtk661vWWlzPs9bjx8Vr4C7QJ+V6WCybZ1+O/1bn4rN7TGbLb4kt3T0j6Av4ifNXyjJiLnjZz4TNmHy77reQpjD6A2+jdCaxvY0mzS3Noyl3Oez3ola7nkm4F1jYzk7QbblC7BWlmzvJSNs2HGzFvmsq8DPiuZTpfpOeh47Rxp+UFVxwIabS5USo7292+jaya5TrdCm8Av4rP3II/V/sAe1lG/CdJpyTZ96Z3egHgSuuKkt5H9hoz20DjvaxvyJFN5zZus9QiQrhaBHeVJ4Kfjg9KwTv7l1h5CrSdzOxHGp8DdAaWZzC+Pq4cjJtdy2l7CteYis/E5M6edOTavA+17rFahIEpXOOFuKf1xvgqzr3ATmZ2X4ZsJ6PKDMcnSZea2aszZNsY199b8nXlszmq9rJNfzrjGpNFIZNHTu+LlQTvU4twDBpMPJ+2jXnjRqIpnZdUHtfra7h3yucsIy5Rl5fWM/hI8yAr8UxJU8/H48uU3zazr6Tjb8RzXO5QIvszPBbPT/EccJWRpguyxXtyOnCemX0v7Q8t/prG4mr1xPLiCH0H/3+vrFl2m3hgg+hEauc6TXJr40t0ndh/t+DP1c1VZSb56WY2TQ1C10i6BF+6O9/M1kvP69fLOq82bVbXdRqnfFG7VDOd2FodJXAuxjxMew50JH3IzL6nBqnmelwrW6lqowi2fB/a9EuddrJ2GJge11oIt7F8oobMVWa2kaRzcVvBP+GhK1bNkG08ydCENu1lm/5/0EwmG7Jr8R9VwIr4aEC4h9n9wColsp2UP+/AO+4fpf0dcGWhjOXlgRlV+Ezaz40E3XjdW9KF5gHzftHjWD+ZQTyAncb7TcARZvZzSfvn1NnMNss5r0vmKjzWUvfxXwKlsx9mtnWyVXkHcLTc7u8UXFmp6vT+nTr6h4HNcMeADguWCaqdq33HBmNpfHTbsW3aDE9DkmOLcR3wRXlS5DOAU8xseobct9Lfnh0BPtM3DNkOC5jZhZJkbje0v6Rf40paX8wzOXTsC1FmgvACbWyEPokvSa0qt2daCp8xKqNNm1WkTYTwxqlmzGzhBjLfS3/rZmDoq1R1bHYqZtc6dmK160y7Z7rxPe60k/IwMLtZVxiYsgr3Uzwzf6sOX03t5ifx2eepuPKew5JmdqqkfVJ5z8hj35XV+bVmdlE/5apiENqmvWzT/w9UoZs0CpmZrQIg6Ujc1fSXaX8rKoxMLcW/kvQVM3tV4auzJF1WUXTRaLa7s8vp/MBj29RqzJNSsSCwpKTFYIZx/VTc4L6MVg9g4o+Svof/tl9Py3KluR0LdV8C71w3hRnJY79cNiqXVJYyyWy8EWivE/4BHCfpBMZCGcyPx44rYy/gJ/g9OdjGlknfSLURdNOULpjZ+1I5ZwNrmdlDaX9ZMp0nzAMSnpBG6dvg92lFM1u9Qq5xR9BGtkDtXKd9+CW+lJ7LfngOxxUknYgv/++SI2hm18rj7GUvlbRps7qonfKlMOvTJtUMkl6G2/rM6EsyZ2+bJJBurFS1UQRbvg+DuMcvKs7ymtkt8hhZZXR+ozXxGGZnpv234CYTldhYfLV/4IpNHZpMMjR2CGjTXrbs/2Ew/SkwiZYsOyite3cdm24VXlLpvNuBN5nZPWl/FTzFzYtr1qFJcNda696SPs6Yt+MfGVPIHsdjkh2WUeZlXQ9gz2N9ZBfEnRduNrO70oP/Ukv58Spkz8cbhc6DuyNuHNu3gZJ0aK/D+Mu7nJmVDi7k3lQ74HksL8dni35dVddRo670W0lRuclKUnL1uMaGuBK6NXCbmWV58qrHsnmvY0OQ3QA3JF4U9wqdiodvuCqn3oXrzFh6rCHT1O7tRnzW9RRL0clrlNm4zUrn7tzruJVECFeL4K6FaxyLzxJ1267lRIE/H08g3RlI7QTsaGY5CaQb01AR7Mi2eabb9Esn4UvBP0p13glP+dbXTKMgex6wTWepUtLCeHaSvgG1U1tbNuNTmQooKfyH4uYDt5AmGczspirZPtfbxsxOzzivcXvZtv9v05/OOH8SKmTnAr9m/MP7KjPbMkP2DbgB5D3p0Mq4N9+5NetQ27YoKQwrM36k+YMMuY+ZWS9lJafM1gqopKUZb3hdaZ81gA6oE/X6M3jcqAPKXnRJ9+GGvyfjI7Bxbt9lswFtZuYkXW5mm2pmp4JKZ4LCNQ7DPXZOStfYAbjLzD6WIft1fNT2e1xZOMPMHquSK8i36QgayxausZCZPVl9Zl/5j5jZd6vPHCezHGMG7gCYWeUoWR6Bfru0PYf/3qdmvg+N26xRIuk2a5gFoKVy00apaqwItnwf2vRL8+NhYDod+2W4mUiO89UdwDqW7AvTSsaNVu4E1VPB71Cm6HddZ9wkA/DWHKWqz7XuN7MVM85r01626v8H0p9OQoVscXzpofPwXgp8ycz+nik/H2O2SrXSEBWuUWtkLumHuGvyDYzZZlnmSKSNt2PjB1CeW+1b+AzdI7h9xB1m9pIM2dreWUlubnwJ6ZO47cbXLCNFhdzguvOgd+w5OpTOBrSdmRsEkt5OoTE2szMyZISHcDgid5anxzV6dQRZ3qEtZV+Ju5A/z8xWlLQO/lx+JEO2UYLwJNvYW7HrOqvjbvo7mtmUjPPbtln30mNGw/I8JWubDxRkjwG+ZWa35dSzS7ZNAuk2SlUbRbDNM93qHjdF0ufxcCxn4Pf37fhA4f9qXKPVwKhwnSylqo/sA2a2Qua5tdvLguy4/h9Y1MwezpRtP6FjQ44pMuoNVxT2rjinZ1RhakQX7rre8jXPvx3yUwB1yd6U/m6Kj8DeRmZU4yQ3H57aYp30eZlMuRvxSN3Xp/3NSPGbSmQ6cbGewDu8Z9L2HBXxsfCwEb/DA4SuNKJnSXjjfzM+A1IVD2x1PO3HLXgHslzL8hdK5f8i8/ysbAA1yt8UOHzYsriyvQINoovjdjkn4rOCB5JiyGXK3kmNFC895FfGYyZdi6ep+mTD61S2WV3nL1HYlsNNGb6cKXs+rjyukrYvABdkyr4Ktwu6E4+9dDP5EeRXxO2aOulxfpb7XtMgtVbhvAvSOzQlbTvRMOVby/ch+x7jM4Hnp/bvHjIym3TJr4cHWf448PIacq/EVyDuT/vr4Apo7f83yT/QQvb+BjK12suC3CJ4kOILgD/WlG3Un86Qb/oDzcobnlfyw/gI5vdU5O/D3XOPwz0V/44bcZ+OBwD9aWaZbYK7nkZXqpYa/+v16e/XgHcXj9W4Ru0HkLE0IjeSUtaQGZC24f/5HPBn+uSza3C9UuWx69y58Rhot+Oj+jUz5X6Np2haE3f+yHqWuq4xL277dSquzB4HvCVT9nBgg5a/+7rA13Hj1IupERC4qSy9U5hkpxJK5y8C7I4nB78CD50xT4XMr/BZuSa/029xr9Z9yMy71yVfq83KuF5poOXCeY2DuwJ348FKV2EsrdFKbeqdWW5jpYoWimCSb/M+NLrH+EzNVrhjywzlu8HvtiqucOcObhoPjPpcr1Spon+u0puBf2eW0ai9xIOrb4cPoB/ATVxeQ490bBnXaqzQTRovy2Ss+HY8Um7Hzf+FZrZ8lawNwKMN76iPwwPDgY9mTsGVtCqWBG6TdDXjPZ1ylkoaeTvK3fvfiv9e6+FeOVuT6YEDPCbpebjScaKkR8hMyZHKfytj08qX2JhHTz/WxJXeB7qOr4THx6lLrr3aHvjI8kLgDZbSt2SysJkdnT5/U1KdwJWvw5dxtsQb/h8CG3ae1Uw2A3ZPNnRPMma7VhZuA3mYjO1T+X/Fn2NZRriSNrIFHkg2lSZpXjyFSZ1AqUvgnfR7cE/YE/HZjJ3xRrYftb0VC+xsZnfk1jHVs3Gb1XWdXoGWcz0RL5a0PePNB35Rcn6R+83szOrTxhiEwTje2R2Gx6kzXOGudCRI178fb/eyafk+DOIeNw5Nkvqw7VL5L8MH7tl2nGb2gManAqoKXdEv1I/w9ruMxl7pbdpLuUf1q/DA6ofhdsZ3m9klNcpv25/6dZJGN9sj6Sl8meAL+OjQJN1jGXYUhWu08dBoHNxV7i4/E5bccStka3s7dj2AHUP3uy25aOcgDzT4FN4B7IiPCk60PNuTA3FX7BPToR3wkfpnS2TOxgPP3tR1fBqwn2V6DhbkzrEST6PCec/hI+lH6W2n01e5SQa1OzBms3Yi/sIqyZY5EzyHK7u72FiojbrP80q9jlcplYWydzWzu+uU3Ua2cI0l8UTVW+C/1Xm40XbOs/VT3Abkh8DxncFV+q7UcaSfMbOVeyu2CTjaus1K17m4sPsMHo39IDP7XYZs7eCuBdnv4p6wZzFegS0LwtnzNy7IZhmM16WNItjyfRhEv3QgPhOYHZpE0gfxtmd5XNk+Ffh5zTb+J3hYoMNwz+M9gWlmtn2JTM82p1DnOgNaJL05Y7Deqr2Ue0gL+AHuJf1AnXs0iP60w6SZIQM+h49ijgB+LE+DUpdL5N4wHQ+N7XFtO4c2SaAvlaea2CAdutrMHsks9xW4Yf2ykpY3T5n0UIXM2vjS7O24If6zkmpp5mb2ZHr5VjezE5JiWGnAnHgjsK4lo2t5bLDr8fxl/Vi5WxlL9ZguaeU6dU/kJghvMzP3EOPjnP25sG9AWWiB9fHn7wJJ9+Aveu7v6wWY/UGeSWF1MztOniz4eRmi26SyL5Z0Tipb5SIDke3U+y+4kt+ExgnCGyoDZbGxqp6tQbRZ9JqpkbQXPktfJdskUGqHBXAF4fXFS1IeL2rcb1zHYLzl7FpuTMhetHmmB3GPO9lPis9vVftxOHAlbsYyHaBuG48v+X8Ht0t8EFc49igT6KVw5SpVffgykCPbuL00zyTwInywfEFa7VlY+YGlW/enHSbNDFkHee6uHfCbszru2XJGzmgxyb8Dj1UFNTw01CLuiqR3Ad/EIworlb+3mf2kRGY5vOF7GjciFj5VugDwdjP7Y0WZnQdwO3wG6EX4zFpWZPM0AtsNT/a6qtyz7EjL85K6CY879re0vzi+bFk223S3ma1W97v0/b64Z9EdaUn3HNzo8hm8wbqgRHagM3NNkOcb3AHvGG7An+fKOHfy9DTTcJu3NSS9AI9BtElmuQvh0+474I3/CansnFhztWUHsZyVBgb/C6xoZrul53LNsg6hZJmlU27pEm/Jdfcys29nnNeqzepzzWyPNjUP7rq4ZaZ36iFb25N2kLNrdRTBogzN34eB3+OK8pYEtk1lLoPPkO1imZ6KA65L4xRzahZLsFF7WZCfluS3xfNTb5wh06o/nYE1NNCbHTbgpXiC099PUHlzAy/BlbJSA+IuuRuBpQv7S1FhxIzbIuzS4/h78anpOvWehoewuB+4IlPmBtyA8vrCsZszZXcA/oDb3Z2AL7FsXyFzEvDBHsd3xaeZy2RvZWzwsRs+6zkFeDEVjgiUGLHm/r9dMtnOBD1k58JtJI6rcY/UdY9qO0AkucWBDwEXDUsWt/HqbPd17e+cWdYpuKfjLWl/ASo88BgzSP9G2l6atgOBfVvcryaeYQNps8j0aMNDhExP7+FxaTs2U/Yu3CHpjZ33q0b9WhuMAws1+F0G4jnY8n3Iusd4zt7O5493fXd8jfKWxzMKXIvP4vxfxfmHlG0N/t/r68oUZDdsIVurveySXS+1na9uIFu7P50h2/SfnR02YP+a528EXAP8E/gPbsBYGo6hS35jXEt+b2fLlLu5a3+u7mM9ZO5s8l2JTK0HkC5POFwZze7sgWVxI8i34ekmXlFx/jK48e4l6WH/Fh7L50rg+RWy1xc+n46PxDv711XI3t3kuxKZ0vIqZM+uef7VxTLx5bWmClkbRbK2bNNGnDHv3+I9z/LQBH6Tc6xGXWq7+ddts0quk6UM4pkbmpYh4HX4YOn3uJKxRqZsY09aWihVDMhzsOX7kHWPi21Fd7vRtB3BTTD2qzjnP7jH8GdTP1Z7YNR1vVpKFZ4S8It4xhnwGcU3Nyi3Vns5iN+3IN9IocvKPTgbU8ubBjde3AEf+S2AhzrIioIvD+56EO7NtUHasjz5gHMknStpF0m74F5OpQmz6bM+LndEqGVrlPi+OZWOBIlLJX0OWEDu4XIabtybhZk9ZGZnmtnPzad1T6s4/2HzqeMv4bMn9+GBFV9p1dPC/5a0drKh2gy3hehQmiAcuCYtz45D0q74iLMuubaBvchNVt/hVLkH7qLpf7gAOLpCph+5z/KgZK1hWW0ShC+UbO5IshszZiPWhCb/Q3abJekJSY/32J6gOp9thyslNYq2n9qL880j1X8A77CvkXRpWpIsY5wnraRPke9J+2185uOvqR43MuaxnVPvbnvQUs/BPrR5H3Lvsfp8bkRaOrzTqvN5LosHON0S91SeB8/DeYLlR+lfUNIXJR1tZldLWl1Srhflcfg723mGHgS+milbpG57WaTt7123PwUml1F/L2r/qGZ2t6QpZvYsnoz6ikzRaXjIjNqNsJntnWzXNsXrfJRV266dJeloYC9LthDJxuFgqpW5XtT9rT6DN8I341P3vwS+36DcWuWbOy1cXPPae9E8QfhewBmSdmRMAZuGL9e+vWY9IN+ZoBdVdQVA0mp4QMKDkrL8OD4y/hXNng1op0i2ka3LfjRMEI4vfx8raZG0/xgV4RQ0c1qsGV/hg7q6ZL+H1s4gv8MJuFL2Z7wTzAqNAnSHF3kY+Bge42tdfIBV5mVW22C8iNUMx1CgVUiVAm2e6dx7PJekxfAVk87njmyTQXduG/tX4EjgyGSrvANwq6TPWEmquC6Ow9vLolJ1GnkG+qua2XaSdkj1eUpdNzuTrPayD1VKaxXNFLo203Kz4gasXfhcK6gbHjNkXtz99RvAJ8ifRm8c3LXrOkuSYY+Bj1oOAv6CP/jT8dAMBwHzNih36xrnzkWLAIF9rlnb3maCn6vN8A7nY8BrM2X2JUWKx6M2X4wHG34E2CLzGkv3OFYamBZv9GbKIoArkmfV+J+3zTk2wN+4k8nhcdzhovP5CeqZDiwBvAmPa7Rkg3pMBRYZ0XNWOxBly/IaB3fFvTi/SCEzCT5ABPhMheziLer8E9w85LrUXn8KODlTdkk8/MzD6T38EZlBVtPz1Pr+5F4DXwW4B7ex7d6yI/UXrvfVmuevhzub3YA7YKxVQ7aN6cAV+GCmY2qxKkMMOl6sMz4oWGwA19q6idxk9LK8HH9Jjwd+bPWSKa+Ev6Tz4MrYIrhtwt0ZshfjI8Ps4K7y0BgH4p30V/DYSUviCs97zeycjHIXAFbDNfK7zexfVTIF2Qutyyuy17E+sicC+1hG8uSCzFn0n014rZm1WR4qK7dxgvCW5d6KDxBM0m74SHMLPEDkCWa2YcY17gS+aGanpv1P4vGQ+i4zqSueXtd3N5vZSzPrP5N3VK7HlMYSQG+Kx7jKTgDdFtVMEK4WscQGgaRDehz+B96p/XzIZV9kJblcK2RnmunN9e6UdBfe0R+L5+LN7ojULk5dG8/QH+EzPqfjhuJ1ghWfkOr4WNpfDM8DmhXQtimSvm5mn6k61vX9l3Dl83Y8fMQ5ZpYd9Dtd4wpgc9wGc71kOnBSZpv3Ojxu21r4vd0Ed2C7JEN2E2B/xt7/zoxvTjyy1fCMHtvhytlxwHm5z2Yq+wbzkFA74Qrtd6xG7LVJp5ABJFf39+Nuq1fjL8/5Qy7z1b2OW8kasqTpeJyaRfA1+63M7KrkQnuS1Xf33c3ywiHMj9tOXYxHLu9Mr07FUz9VZqeXdBFuJ3c1Y4EkqxTQnr9RQbbWensuGlGCcI0PEnw6/nJ/L+3nKjYde46ncceG2/Ecif8skWkcIiSdsxXuOfcu3Guxw1R8lJzTqDZOAN0GNUgQLulDZvY9eZiQbszMvjyEqhbLPwp3k+/YUW6D138FfCZkryGWXTu4a8X1spJApyWoLfB2ekP8OTve8oLZtlGqGiuCSX4qKRE6Prg8Dm+rn6iQu767Pe91LKP8/c1s/xrn9xpU3WTlIYaew2fmnkqHOr9RneXsxkpVkl8Cd7ITcJV5bMIcuTvwyZRrKSxj5yjrhWvMhSukR+BtyLG4YlX6zMnDOa2DZ0T4QZJ7h5mV9nvjrjEZFTIASVPwmDGH4MsewuNJzdTQaEBxiFQzuKsKkfwl3V5UhBq+rLmd/Mdx26gXAH9kTCF7HPdsOSzjGrUV0D7XWc9KIk4PmtQR7IjbwN0GHGAZseIalnUVbmf3MJ6AeX0bs1+7w8xelHmdPfAcic8BO5jZbyrOPwl3xz+66/iuwOvNbLsK+XXw2d4v48uuHZ4ALjazv2fUecazXXZs0KQZxZeZWa4hP/KAyj1n7iS9xcyynVWakAY3r+/MQkiaG+/EXod7Wzcyus8s+7geh63pzE3uDFmXzGb40uFCeAigz5rZlSXnt5lda6wIFq6xJD7A2AsfIK2Gh4Po6wAmjwb/ms67I4+9eGnubHXhOrlt/IeBjwAvxD1gOyyMz1rtVCK7Utm1c2d8WihVPR00yma5C7K/NbNXVJ1XIv8yXNl+I3AuY2nX3lPVdnXujTzu5R/N7Jjc+zUDG/K67ERvuHZ6MG7fcDiwXjr+AuAPfWRWKtsyy30XHlvrBFw7vhcPDFsmM1C3ZuonFc9OjFtxnSy7t6rfYMjPRaME4S3L3AhPDPxXfNmxc/yN+Kg65xrnp+dpUTy+3dVUJCWmRYiQrutMBaYU9qcAC2bKNk4A3fI3r50gHFeWV+5x/H1MQAzDVP4ihf1F8Ijftd/pBmXXtuVivK1fcXsCeCbzGkvgOWKn417l70jv6DTg3grZxuE2uq6zGT4gfSy9H6+sOP+tePzHm4C9Sfad+GpDz76lIPve1PZ8JW134J183TpnPQ/pGVo5/UbF/qyR7R41w07gXq8zbZmyZxW28/Hl+6oYhuul7UDc7u2VhWPrZZZ7LZ6z+N3AfF3f/TRD/lJ84Pw7PJTTFGrGqqx9Y2b1DTfMfw+wQI/vsl8AaioZNAvu+myxIetq2P7b4H9fvub52+IJsMGnl39a9fDiSsYl6dyX41kJ/ozb3r2hQZ2vn4BnYo/0khxBpoI9q2x0GYfindYXM2VrOyJ0yV9FQbnB0y7lBg5eEfe4ezRtP5uI3x6377kb+B6ZwSxxBfkuPMVU59g+uAdxrXeqYZ13xQdwx+GDhXvwwcNCwDeHXHbj4K4ty53JIaDwXalDQNe5dZWqNorgCfRRKoDNM+r6EuCj6X3MNpDvukZdR7VVScoFbp6yJ7Bog3JrDZxpoFSVXGsFKgawuPlNvy2rXDzpe5tn+vl4lpD/SfsrkhmLtLNNqiXLtEz5AzOrlQdvQMb144yl0zr0jVZzSrouaZn0/4AXmNlW8phCrzSzYzJkbzKzl8ljL30N99D8nJVM+Q7B7m1rM/tZHZm6qEWC8JbljsSZYFCMatmxDWqQIDzJbY4rcVvjytAG+KxA5fLsIEi2ghvisz9Xm1lVntRBldt6Ca9pudaw89HM4TaOoRBuw0qSOkv6Hd6+H2ddy9TysA5f7yM3BTjXzLZoUufCNZZhvLNJpVNUG4cASTfgyubK+BLcmfjqwBtr1v36um17l/wKwDfMY9bVlRUe0HrYfel8uP3myoy/R0O1IS0yqeKQmSf1XELSvGb2nxqihzGmZFxEl5KBxzWq4hyNJSYHNyxuGvOpDsfjI+vPp/3f4Y1qpULGmNHjm4AjzOznkvavkJnbUu42SV82s6sAzPNEZlVYBU/OjjKmTO/OhrRJEN6GDXocm+FMwJjB+8wnSZeb2aaaOc5Vx7B26kBr2psnizZ+ktZnzNC3FEnfwIM5PsVY7tC9zOxHw6osNE4QjpldKA/KfAm+3Lu5mT09wKpVMRc+YJgbWE3SapZhM9OWpBSdD5xfsOXaI3XkpbZcTZB0ZuFzr/rkBE29En93tu5SqqZLOrJCds1+imA/ZSx996ykf0laxMz+kVHHcUj6GB4j72G83RX+XucMBl9mhWgBZvZ3SbnK0XNm9ow8zuW3zexQSdfXqz3gsSbb8CBuclGJxue0nQtXtG/MlP0/XPF7LO0vhjtBfSFD/Of4TN615AeTLpZdbKvnxaM1/NPMFsm9xqRSyBJ/AH6TXvyi91+Z63prJcOaBXcdBEua2amS9kn1eEZSbpDEP8ojuW8BfD2NEKqyNzxX+NzdOZeOeDXm3bmkxgc5nEp+ZPEmHIzP/I0zRpVH7j8YV5AGjpl9rFBW0ZngKuCACtlN099BBP9syl7AaZI6Suuy+EAjh9eb2aclvR1vjLfFlw+GopC1ccwpNKTC48VtDjyS7tnQlV/18QzFzS+GSo/ZpjrBXZvwSnxgdBKexqhJAM3aStWAFMGngZvlHsTFvqUy6T2+TLqm1fD2KzCXpMVsvENAbt/9X3mA1fcy1s7Nk1uwPIjuysDcaYICM/tBhlxjpQpfTu7wDL7yUurIVGArM/tcZycpr2/ETXKqWN7M3pBZzkx0t9WStsZnnbOZjArZn9I2F+5RkkNjJWPcie7B+dPkhdPkxWvCk6lRdWtXX37NHcG9C3gDbiT+WFo22btCZh1JHa/VBdJn0v78FbIfYsy781rGe3cenlnnJqxsPTwpzWy6pJWHWG7HY24X4JN4B/ROM7uzhvx38KCXA52pyMHMrkmN8Jr4vbrDzP6bKd5p9DsODH/LHdw0pJOWpRPtvTP7uCNQGptvxEov+DLpmlbDM3SAzDTbJGkvM/t2xmxTE56PG+TvgBtP/wJ/Pm6tEmypVA1CEfxF2prwAPntcjffAq6Q9JO0vy0VA7oC78OzIhxgZvdKWoXMQZE8HeCquEdrZ5BvuJNRFY2VquIsdxq4V4ZRKTBF0nydd0kep3O+TNkrJL3UzG6uUV5fzOxnkj5bR2ZS2ZA1Jc0oPQkz0p10GnAB85tZ3xHFIOzP2iBpPTwA59q4gf1SeKefHcpB0tIUlKkcu4Y2SPqYlbiID6G8VnG5WpS7Bz4yvhA4sHuGLvMaO+OzJ2vgHl6nmNn0cqnBIGlB3Eh1JTP7oDy+35pmVpn+RNKBuKLxFD5KXBRP9tvYJT0HSb8xs02qjs1KSPoVngGhb2y5IZbdOLjrAMqeD1fMvgl8uapNkPQoJUqVlcd8nMKYIvgyaiiCg0DSMfjA5heMj/eWFXRY0ktwBwbh3sq31Sh7Xrz9ALgzd1Al6XYapgPsus5iwAq5fZKkS3CP1rlxZfBRPERIz8DNXbKfTrLH4crj+/E8nN8okbkFn5SZG09kfg8104il67yjsDsXbrv3ajOryus6do3JppClZahP4x4tRSWjUTTqjPIGauTesA5zMzaLUeeFeys++noBbvS+Ij4L8pJh1TWVuy0eP+gJSV/AXZO/akOKR6aWcblalDswZ4K0TLENsD2wopmtPqh6lpR5Cj6T+V4zWzuNNq+0TKP+1BA/nuxvFsI9eqsSwbci2T591MwuT/sb49k21h1muW2QBw1eB1fci511zlLYMOqTFdy1xfXnw+1Wd8CXw84EjjWzP1bIDUSpqqsIFuRWx52f1mJ835ITBX6/XsetOtF3R76pQ8BrcO/Q+/D+YQVgZ8uL6XUasKeZPZRTxy7ZS2iuVF1vZi+X9AFckdtPFcFsu+S3ws0OhAfjPrfi/L/jS6o9yR1Ia3xMv2fw3/xoq4hHWmQyLlmeiBu1vxmfqt0ZfxiGRWv7swGwIWOeIetJylrnx2f0NgIuSC/AZnhDNWy+aGanyb07t8S9O48AhjV7sheDTRCeyyCdCVbDo7mvjAe0nQhqJ/mV9OnCaHQLMzstyT4p6fP44GWY1E4QPgtwZtpmFYY2Spd7DK6Nx4v7kpndkl0ps2dxB5FzCkrVJandrVSqeiiCh+Dhe3I5DjfMPxifrXofmUufuYpXL9TOIeBb+KDzznStNfAZxvUzZJcEbpOUnQ6wwCJm9nhSqo7rKFUZcuD2asviJjWfrzq5GzP7Ff585XJvk9WLIklhvsnMDm5zncmokC1hHiH342kK+1JJQ0nJkxiI/VlTWq7z/9fM/ippLklzmdnFcgPjYdPEu7MxZvYwsHFSODuePr8ws4uGVWaitTNBuh/vwANgngJ8xWrkZ23Jf9KsWMc+cVWqvY+2BzoK2T6MpQMCt1ccqkJmZtfido5T8RWApnY7E4Y19Axtg2b23p3xFW62MSzeg5uHrAHsWdDvsxwomipVbRTBAguYe+MqvdP7S/o1rixVld9m5aaNQ8A8VrBZNbPfSco16t+/QXkd2ihVX8ZDdFxubsf6QjxeXiXJhOhQ4MX4gHsK8GTFc7W0+uSxhbxl5bQK8Fa8XW/MZFTIOst1D0l6Ez4TsfwQy2tj5D4IptF8nf8xSc8Dfg2cKOkRfKp12DTx7myNmXUCBU4UrZwJ0mzUP/G4cllpRwbMfviMxAryZPKb4A4KZajP5177A0N9EoR3OvxcW51RIOleei9pVy6FNcVG5MhgZo3f85ZKVStFMPG0PL7kXZI+igekXTqz/DYrN20cAq5N9mtFJ5drS86fQZlNXgaNlao0q35aYf8e3Fwjh8PwQeFpeN/4Xnx1oYwpeNDrtu3TFZIOw+9z0Qs32xRnMtqQvRlXMFbANeWp+Ms7Ky0JDIyW6/wL4bN6c+Ev6iLAiQ1HYnXKXRCfLbnZzO5KI6mXdpZ+JwsagDOBpGvNLGd5YSioKx8dsFDZ9L4KudvUlcete3/A9RxpgvA2pN+4w/y4F93iZrZvH5E5kmST2enoJjw2n6QN8PRHi+LmHlPxTApXZchea2brF22hJF1qGYmn1cIhIA1292AsHNNluE1l35lujTgGolrEMJQ03cymdf3OV5jZxiUyA2mXJPUa7FvmLCgwCWfIbMwD7B/4Ov9kp/E6f7LrWQlPGXNCUpSmDK+qM8r9Fx4eZGlJHW+uO4Zd7gi4RtIHrbczQdYoFbhK0gZmds3gq9cfSa/Eg9deZma/kCfdPQT4H8rd0Ec1Y/wL6G2rI2koceYGRY8B0LclXc74xO5zPG1m1wbEM+aesP/E7cfq0Gbl5v60zZu2LNJs3rVmtjaQPUNsA4iB2Eapol0Mw3/JvUpvSHV4CE9BVlrdjOtWYmat9Y1JM0PWMSbW+IB0M7AReSwNG0k9R1g5082SPgjsho/GV5V7ER1pw4uY3yl3JN6dE408rdUZwH/o4UxgGR6Hkm7DR8f3MRaaxWxI6Z5Smd/El1ZuwKf7zwY+gqfo+p5NbAT7LCTdCWxpZvd1HX8f8AUzW3UkFctAHrqmQ8dd/sNmts6IqhT0IM2ALIsvh51sNbw7R7Vyk0wN9rEGoYwk7WpdKfgkHWhmlbG1lFKsJaVqa+ATwMU5z7SkW83sJZKOBk43s3Mk3ZgpuxLep8yTylwEnxG8u0RmcTP7W9W1M8punMaww2SaIbs9/Z2QGE2zCmZ2aXoQOml6rrZ8N9s9cA/N36Zr3SWPSTZsRuXdOaEMyJlgq8HXrJI3AS83s6floSv+hKdvybIBGRGfwNP/vLFTT3n2incDlctCI+Zbhc/P4InGtx1RXYI+mNlmkp6PG6oflRxHTjGzr/aTkWcn2R0f2CwHHFN3JqWlQ8CywK1pBaVo15TjKflOSU+b2YmpHt8lf5a7TWDosyTdgc+ufST9/1mDwII5xVNAlmfrIJSxxPE0T2MITKIZsjkVSe/C4+lcgs+e/A+wt5n9pEwuyf7WzF6hsbgvcwPXDXP2JZXbWee/Ee/4n5N0tZnVSjMxpyAPD7K6mR2XGqfnmdm9QyxvnN2aZvGE4h004gThg0QpWv6o6xH0RtJLcSVpOzPru4woj+X3X3x2bCvgD2b28ZplnYd37J+i4BBgZp/JkG2zgrIAKUYcXve/mdlemXVuFRha42MYLghMzVxReDM+4F8Jn3CasNy/kq4xsw1USMRet+2cNAqZpLMoz2WXMyKY7UhKzes6s2Kpw74gc3r3G3icpvfiOew+AtxmZrVjv9RB0gX4y3ogsAQ+xbxBmeHlnEoyUp+Gu72vIekFwGk2xMjzkh5jLI9iR8mfEUhyVn6XkvL6MzxB+LtmxeXVHDRB0fKDfCS9GM+a8U48Nd4pwE/KViQk3WxmL02f58ZXMGoZkDdxCOiambsZn5nL8qCXB6HusDCedHuGTWPujFJdpUrSa83sIo2PeD8D89SEVWXejYcJutkmWLmRB8PdBjjfzNaTh+D4etl96mYyLVkeNOoKjIi5uhqEv5IfQuIz+EzCzXieyV8C3x9s9XryNnzktBdj3p2zrBfciHk78HLgOgAz+5OkYYcseFvX/iz/bmnECcKHwIRFlQ6yOR63p/wwcE2msj8ja4qZPVNj2a7XNeo4BJzA+Jm5tfB4Zjlcy9i71Pn7xrQB9A3H0kup6vqfy5SqVwEX0Ts+o1XIdngAuGWilbHE/+IziqtK+g2exrCW6cGkUchypmAnKedIOhePvgw+gvtllVDywLkpeeAcXXX+ILEReXfOpvzHzExSJzhrlcdQa4rvkhrmwZto2niEzaJMjqWLSUCa2fo/PAD32/EZmOXlqXI+X/FOdLyOYbzncZ2BwlflmSc+yZhDwCcqZNYqzMwdA1ydUU6H7YAHLIVSkufT3QZ3LNq/QraNUjUvgJnV9WAt8mngl/Jg8LVzhrbkVtxedUYaQ2rG15w0CpmkU83sXZJupmXewNkJM9s7jUY6cWaOMrMzMuSek3SjpBWbeOC0oejdiTdyywFH4rMawXhOlQfRXTT9bu9nghRo9ciDJ2lny8iDF1Sj0UXLD+rxTXzpbhUzewIgGfQflLa+M09m1nig2dIhoM3M3JF40G4kvQrP3/kxPN/jUfiSbT/aKFWDyORxAB6WZH5qhAgZEFem5egZ3reSrsNzNWcxmWzIljWzh9LMy0xYy1xVswOSlgT+mjtdK+ki3PC5iQdOY+QJoDcEflswfpxhaxGApNWAZczsN5JeB7we76gfx4P3/n4C6nAt8G7ryoNnIwxUGwQTjaS7gDW621V5/sI7zGz1IZXb2CFA0rOMtekdBf9fZMzMqRBiQtLhuAPB/mm/1EhdLYKsJnvo19BnuT7Hdq3jMNak/KYkz9vl8DhpOxa+moqHkXpR7rUmzQxZZ3q1qHjVVVBmJ5LB4IHA33Cvkh/iQWLnkvReMzsn4zKNE9625N9m9p/OqC0tCUy6e9SSb5NGi2Z2PnA+gKRp6buJCHbaJg9eEEwWrFcfkozVh9luNV52bDMzB0yRNHdyAtgcX83oUKUzTEnG/E2Uqhfh9mu9ZI0S27UCF0h6vU1s1pct8ZRyyzPe3vYJas74TRqFbEAKyuzEYfjNXgRfs9/KzK6S9CLcnqzy/+2yFZpI5fVSSZ/D7Sleh3t3njUB5c5OtMqDOSCmq2EevCCYRNyW+pAfFA9K2onhZhgZhENAE07C2+i/4M5Xv4YZs/ZVOTXbKFW3dVZMWrAH8GlJ/2Hs9xu2U8+SuLNHJ0uQ4XlKL7ea4Ykm05LldMYUlKPoUlAGcKNnKYpTx5JuN7MXF767vuz/LVNegaErr8nz7QOMLcOdC3x/Ms5kNkUDyIM5gDrUzoMXBJMNScvhxuhPMeaBuAG+DPh2M/vjkMptvOw4gLI3woPKnmdmT6Zja+AxEPsmy67qeyrKbCw7StQ7f+7i+MzZ/mZ2cva1Jksf2EZBmR1RiyTOo1Reu7w7gz5IOgm4yHrnwXy9mW03mpoFwZyJpNfi0fIF3GpmF464SrMcLRWyXczseEnbmtlpXd/NdKzkOm/FvT0BLrGx/NYTijye2wV1bOomk0LWWEGZHSmMnoojJ9L+/GbW19Zn1MqrWuRXm1PQAPJgtii7p6dyh8nqsRwEQTsGoVT16q9z+3B5hoANgBPToR3wBOuV+TeHQd3+dNLYkDEW76UY64W0n5t/a7ahpdHmc4XPT3VfusV1c2mTX22OwAaTB7Mpb56AMoIgmGSY2fHp4z54EvYivY7NQNJWePDZ5SQdUvhqKp7jNYc3Auua2XPpmicA1wMTrpClGdVaadsmjULWUkGZ0xi18joq787ZDjO7GLh4gssseio3TVwfBMEcRkul6m/AdOCtjHceeoLqQLhFFk3XAjfLGSp9VhQWxzMqvLfOtSaNQhbkM2rldYTenUENNHPi+kMlZSWuD4JgjqSNUnWEeQ7ILc3shIblfw24XtLFeJv1KtoHm62ie0XB8D7tyV4nlzFpbMiCWZ9Re3cG9VCLxPVBEMx5dGy9JP3YzN5dU/YWfAC4L7B39/eWkVw8XWdZfFZfePDxodnbDpqYIQsmktax04IJpU3i+iAI5jzmlee+fIUKCcY7VChVu+OxDhdl5sDXWcnFJV1oZpvjSb67j83yhEIWTCRzdyIoS/qymV0FYGZ3TGDQwyCfRonrgyCYY2msVJnZ5cDlKf3RMXUKlef9XBBYsitTwFTgBXWuNUpCIQsmklF7dwYZaCyPZnfi+isZcycPgiAYRxulqsAPJe3JWCyxS/GckP8tkfkQsBeufHXbrh3esB4TTtiQBRNGm9hpwcQh6Wzgc92pm1Iezf3MbCLyaAZBMJsiaV58tqyOUtWR/T4wD9Ax7H8P8KyZfaBEZgPgQeCdZnZoWjbdBrgPj5ZfmZh8ViAUsiAIxiHpln6ZFCTdbCnhcRAEQS+aKFUF2Ru7HYd6Hev6/jpgCzP7m6RXAScDHwPWBV5sZu9s9p9MLLFkGQRBN2Wx6BaYsFoEQTC7skGXAnVR8trO4VlJq5rZ7wEkvRB4tkJmSmEWbDvgKDM7HThd0g11Kj5KwmMqCIJurpH0we6DKY/mtT3OD4IgKPKspFU7O5lKVYe9gYslXSLpEtwj/5MVMlMkdSaYNk8yHWabiafZpqJBEEwYewFnSNqRHnk0R1WpIAhmGzpK1T1pf2XgfWUCyQ7sATO7UNLquKH+FsB5QNXs2knApZL+gjuM/TpdczXgH03/iYkmbMiCIOhJVx7NWycoj2YQBLMpBaXqz5LmY0yp+jPw2TLj+rZ2YCnw+LLAeZ0o+ZLWAJ5nZte1/++GTyhkQRAEQRC0po1SVTTcl3Q48KiZ7Z/2bzCzdYdc/ZETNmRBEARBEAyCnsb1ZvZFYLUq2clgB9aGOeKfDIIgCIJg6EyRNLeZPYMrVbsVvqvSNyaFHVgbQiELgiAIgmAQNFaqzOwASRcyZgfWsaeaC1/2nPSEDVkQBEEQBANhMhjXj4pQyIIgCIIgCEZMGPUHQRAEQRCMmFDIgiAIgiAIRkwoZEEQBEEQBCMmFLIgCIIgCIIR8/8BpQ48g44QQR8AAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 720x144 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "n_mut_types, n_samples = PCAWG_wgs_mut.shape\n",
    "#print(PCAWG_wgs_mut.head())\n",
    "\n",
    "mutations_wgs  = PCAWG_wgs_mut.copy()\n",
    "mutations_wgs['mut_tri'] = mutations_wgs.apply(lambda a: '{}_{}'.format(a['Mutation type'], a['Trinucleotide']), axis=1)\n",
    "mutations_wgs = mutations_wgs.set_index('mut_tri').drop(['Mutation type', 'Trinucleotide'], axis=1)\n",
    "mutations_wgs = mutations_wgs.T\n",
    "mutations_wgs[:5]\n",
    "\n",
    "tumor_types_wgs = [a.split(':')[0] for a in mutations_wgs.index]\n",
    "print(set(tumor_types_wgs))\n",
    "\n",
    "plt.figure(figsize=(10, 2))\n",
    "sns.countplot(x=tumor_types_wgs, palette=sns.hls_palette(2))\n",
    "plt.xticks(rotation=90);\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "target Biliary-AdenoCA\n",
      "(1946, 96) (834, 96)\n"
     ]
    }
   ],
   "source": [
    "target_type = tumor_types_wgs[0]\n",
    "print(\"target\", target_type)\n",
    "\n",
    "wgs_labels = [1 if tumor_type == target_type else 0 for tumor_type in tumor_types_wgs]\n",
    "X_train, X_test, y_train, y_test = train_test_split(mutations_wgs, wgs_labels, test_size = 0.3, random_state=1)\n",
    "\n",
    "print(X_train.shape, X_test.shape)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.9904076738609112"
      ]
     },
     "execution_count": 35,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model = RandomForestClassifier(n_estimators=100, random_state=0)\n",
    "model.fit(X_train, y_train)\n",
    "y_model = model.predict(X_test)\n",
    "accuracy_score(y_test, y_model)"
   ]
jpronkko's avatar
jpronkko committed
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.5"
jpronkko's avatar
jpronkko committed
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": false,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {},
   "toc_section_display": true,
   "toc_window_display": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}