Skip to content
Snippets Groups Projects
Commit 90ab2366 authored by Antti Hyttinen's avatar Antti Hyttinen
Browse files

...

parent 800d4768
No related branches found
No related tags found
No related merge requests found
......@@ -209,10 +209,7 @@ Formally, we obtain
\begin{equation}
\prob{\parameters | \dataset} = \frac{\prob{\dataset | \parameters} \prob{\parameters}}{\prob{\dataset}} .
\end{equation}
%
In practice, we use the MCMC functionality of Stan\footnote{\url{https://mc-stan.org/}} to obtain a sample \sample of this posterior distribution, where each element of \sample contains one instance of parameters \parameters.
%
Sample \sample can now be used to compute various probabilistic quantities of interest, including a (posterior) distribution of \unobservable for each entry in dataset \dataset.
\spara{Computing counterfactuals}
Having obtained a posterior probability distribution for parameters \parameters in parameter space \parameterSpace, we can now expand expression~(\ref{eq:counterfactual}) as follows.
......@@ -256,6 +253,12 @@ Having obtained outcome estimates for data entries with $\decision_\human = 0$ a
%
Our approach is summarized in Figure~\ref{fig:approach}.
\spara{Implementation}
%
In practice, we use the MCMC functionality of Stan\footnote{\url{https://mc-stan.org/}} to obtain a sample \sample of this posterior distribution, where each element of \sample contains one instance of parameters \parameters.
%
Sample \sample can now be used to compute various probabilistic quantities of interest, including a (posterior) distribution of \unobservable for each entry in dataset \dataset.
%Original by Michael and Riku
%\subsection{Model definition} \label{sec:model_definition}
%
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment