Skip to content
Snippets Groups Projects
Commit 3d4b6ef1 authored by Antti Hyttinen's avatar Antti Hyttinen
Browse files

Something.

parent 2b7adc30
No related branches found
No related tags found
No related merge requests found
......@@ -177,7 +177,7 @@ This model was used as decision-maker \machine and these same features were used
\begin{figure}
%\centering
\includegraphics[width=\linewidth]{./img/sl_absolute_errors}
\caption{Results using different decision-makers and settings. }
\caption{Results using different decision-makers and settings. Here $\max(\leniencyValue)=0.9$.}
\label{fig:results_compas}
\end{figure}
......@@ -204,7 +204,7 @@ Decision-maker \human random & 0.01522 & 0.00137 \\
Decision-maker \machine random & 0.03005 & 0.00327 \\
Lakkaraju's decision-maker \human \cite{lakkaraju2017selective} & 0.01187 & 0.00288 \\ \bottomrule
\end{tabular}
\caption{Comparison of mean absolute error w.r.t true evaluation between contraction and the counterfactual-based method we have presented. The table shows that our method can perform welll despite violations of the assumptions (eg. having decision-maker \human giving random and non-informative decisions). }
\caption{Comparison of mean absolute error w.r.t true evaluation between contraction and the counterfactual-based method we have presented. The table shows that our method can perform welll despite violations of the assumptions (eg. having decision-maker \human giving random and non-informative decisions). Here $\max(\leniencyValue)=0.9$.}
\label{tab:}
\end{table}
......
......@@ -96,13 +96,58 @@ In the abduction step we update the distribution of the disturbance terms $P(\ep
Action step involves intervening on $T$ and setting $T=1$.
Finally in the prediction step we estimate $Y$ by taking account the observations:
\begin{eqnarray*}
E(Y)&=& \int f(T=1,X=x,Z=\epsilon_z,\epsilon_Y) \\
&& P(Z=\epsilon_Z|R=\epsilon_R, T=0, X=x)
P(\epsilon_Y) d\epsilon_Z d\epsilon_Y
E(Y)%&=& %\int f(T=1,x,Z=\epsilon_z,\epsilon_Y) \\
%&& P(Z=\epsilon_Z|R=\epsilon_R, T=0, x)
% P(\epsilon_Y) d\epsilon_Z d\epsilon_Y \\
&=& \int f(T=1,x,z,\epsilon_Y) P(z|R=\epsilon_R, T=0, x)
P(\epsilon_Y) dz d\epsilon_Y\\
&=& \int P(Y=1|T=1,x,z) P(z|R=r, T=0, x) dz \\
\end{eqnarray*}
Taking into account that we need to learn parameters from the data we integrate this expression over the posterior of the parameters. Note that since $Z$ is unobserved, it is not straightforwardly clear that we can estimate parameters associated to it. However, since $Z$ is not observed we can assume it has zero mean and unit variance. Furthermore we can assume positivity of parameters, since $Z$ increases risk of failure and induces $T=0$ decisions.
\subsection{Model definition}
To make inference we obviously have to learn the parametric model from the data instead of fixed functions of the previous section. We can define the model as a probabilistic due to the simplification of the counterfactual expression in the previous section.
We assume feature vectors $\obsFeaturesValue$ and $\unobservableValue$ representing risk can be consensed to unidimension risk values, for example by ... . Furthermore we assume their distribution as Gaussian. Since $Z$ is unobserved we can assume its variance to be 1.
\begin{eqnarray*}
\unobservable &\sim& N(0,1), \quad \obsFeatures \sim N(0,\sigma_\obsFeatures^2)
\end{eqnarray*}
\acomment{Where is the variance of X???}
%
Note that index $j$ refers to decision maker $\human_j$ and \invlogit is the standard logistic function.
\noindent
\hrulefill
\begin{align}
\decision \sim \nonumber \\
\prob{\decision = 0~|~\leniency_j = \leniencyValue, \obsFeatures = \obsFeaturesValue, \unobservable = \unobservableValue} & = \invlogit(\alpha_j + \gamma_\obsFeaturesValue\obsFeaturesValue + \gamma_\unobservableValue \unobservableValue + \epsilon_\decisionValue), \label{eq:judgemodel} \\
\text{where}~ \alpha_{j} & \approx \logit(\leniencyValue_j) \label{eq:leniencymodel}\\
\prob{\outcome=0~|~\decision, \obsFeatures=\obsFeaturesValue, \unobservable=\unobservableValue} & =
\begin{cases}
0,~\text{if}~\decision = 0\\
\invlogit(\alpha_\outcomeValue + \beta_\obsFeaturesValue \obsFeaturesValue + \beta_\unobservableValue \unobservableValue + \epsilon_\outcomeValue),~\text{o/w} \label{eq:defendantmodel}
\end{cases}
\end{align}
\hrulefill
\acomment{Unable to complete this!}
This gives us parameters:
$\parameters = \{ \alpha_\outcomeValue, \alpha_j, \beta_\obsFeaturesValue, \beta_\unobservableValue, \gamma_\obsFeaturesValue, \gamma_\unobservableValue\}$. \acomment{Where are the variance parameters?} Our estimate is simply integrating over the posterior of these variables.
\begin{eqnarray*}
E(Y)
&=& \int P(Y=1|T=1,x,z) P(z|R=r, T=0, x) P(\theta|D) dz d\theta \\
\end{eqnarray*}
We use prior distributions given in Appendix for all parameters to ensure their identifiability.
\subsection{Implementation}
Stan allows us to directly sample from the posterior both of the parameters and the unobservable features.
\subsection{Our approach}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment