Skip to content
Snippets Groups Projects
stan_modelling_theoretic.py 40.7 KiB
Newer Older
Riku-Laine's avatar
Riku-Laine committed
'''
# Author: Riku Laine
# Date: 25JUL2019 (start)
# Project name: Potential outcomes in model evaluation
# Description: This script creates the figures and results used 
#              in synthetic data experiments.
#
# Parameters:
# -----------
# (1) figure_path : file name for saving the created figures.
# (2) N_sim : Size of simulated data set.
# (3) M_sim : Number of judges in simulated data, 
#             N_sim must be divisible by M_sim!
# (4) which : Which data + outcome analysis should be performed.
# (5) group_amount : How many groups if Jung-inspired model is used.
# (6) stan_code_file_name : Name of file containing the stan model code.
# (7) sigma_tau : Values of prior variance for the Jung-inspired model.
# 
# Modifications:
# --------------
# 26JUL2019 : RL - Changed add_epsilon default to True
#                - Corrected the data set used by the causal model (from 
#                  unlabeled to labeled)
#                - Corrections to which == 11, coefficients and prints.
#                - All plot, thinning off.
#                - Fix one decider with leniency 0.9
#
'''
# Refer to the `notes.tex` file for explanations about the modular framework.

# Imports

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as scs
import scipy.special as ssp
import scipy.integrate as si
import numpy.random as npr
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import pystan
import gc

plt.switch_backend('agg')

import sys

# figure storage name
figure_path = sys.argv[1]

# Size of simulated data set
N_sim = int(sys.argv[2])

# Number of judges in simulated data, N_sim must be divisible by M_sim!
M_sim = int(sys.argv[3])

# Which data + outcome generation should be performed.
which = int(sys.argv[4])

# How many groups if jung model is used
group_amount = int(sys.argv[5])

# Name of stan model code file
stan_code_file_name = sys.argv[6]

# Variance prior
sigma_tau = float(sys.argv[7])

# Settings

plt.rcParams.update({'font.size': 16})
plt.rcParams.update({'figure.figsize': (10, 6)})

print("These results have been obtained with the following settings:")

print("Number of observations in the simulated data:", N_sim)

print("Number of judges in the simulated data:", M_sim)

print("Number of groups:", group_amount)

print("Prior for the variances:", sigma_tau)

# Basic functions


def inv_logit(x):
    return 1.0 / (1.0 + np.exp(-1.0 * x))


def logit(x):
    return np.log(x) - np.log(1.0 - x)


def inverse_cumulative(x, mu, sigma):
    '''Compute the inverse of the cumulative distribution of logit-normal
    distribution at x with parameters mu and sigma (mean and st.dev.).'''

    return inv_logit(ssp.erfinv(2 * x - 1) * np.sqrt(2 * sigma**2) - mu)


# ## Data generation modules

def bernoulliDGWithoutUnobservables(N_total=50000):
    '''Generates data | Variables: X, Y | Outcome from Bernoulli'''

    df = pd.DataFrame()

    # Sample feature X from standard Gaussian distribution, N(0, 1).
    df = df.assign(X=npr.normal(size=N_total))

    # Calculate P(Y=0|X=x) = 1 / (1 + exp(-X)) = inv_logit(X)
    df = df.assign(probabilities_Y=inv_logit(df.X))

    # Draw Y ~ Bernoulli(1 - inv_logit(X))
    # Note: P(Y=1|X=x) = 1 - P(Y=0|X=x) = 1 - inv_logit(X)
    results = npr.binomial(n=1, p=1 - df.probabilities_Y, size=N_total)

    df = df.assign(result_Y=results)

    return df


def thresholdDGWithUnobservables(N_total=50000,
                                 beta_X=1.0,
                                 beta_Z=1.0,
                                 beta_W=0.2):
    '''Generates data | Variables: X, Z, W, Y | Outcome by threshold'''

    df = pd.DataFrame()

    # Sample the variables from standard Gaussian distributions.
    df = df.assign(X=npr.normal(size=N_total))
    df = df.assign(Z=npr.normal(size=N_total))
    df = df.assign(W=npr.normal(size=N_total))

    # Calculate P(Y=0|X, Z, W)
    probabilities_Y = inv_logit(beta_X * df.X + beta_Z * df.Z + beta_W * df.W)

    df = df.assign(probabilities_Y=probabilities_Y)

    # Result is 0 if P(Y = 0| X = x; Z = z; W = w) >= 0.5 , 1 otherwise
    df = df.assign(result_Y=np.where(df.probabilities_Y >= 0.5, 0, 1))

    return df


def bernoulliDGWithUnobservables(N_total=50000,
                                beta_X=1.0,
                                beta_Z=1.0,
                                beta_W=0.2):
    '''Generates data | Variables: X, Z, W, Y | Outcome from Bernoulli'''
    
    df = pd.DataFrame()

    # Sample feature X, Z and W from standard Gaussian distribution, N(0, 1).
    df = df.assign(X=npr.normal(size=N_total))
    df = df.assign(Z=npr.normal(size=N_total))
    df = df.assign(W=npr.normal(size=N_total))

    # Calculate P(Y=0|X=x) = 1 / (1 + exp(-X)) = inv_logit(X)
    probabilities_Y = inv_logit(beta_X * df.X + beta_Z * df.Z + beta_W * df.W)

    df = df.assign(probabilities_Y=probabilities_Y)

    # Draw Y from Bernoulli distribution
    results = npr.binomial(n=1, p=1 - df.probabilities_Y, size=N_total)

    df = df.assign(result_Y=results)

    return df


# ## Decider modules

def humanDeciderLakkaraju(df,
                          featureX_col,
                          featureZ_col=None,
                          nJudges_M=100,
                          beta_X=1,
                          beta_Z=1,
                          add_epsilon=True):
    '''Decider module | Non-independent batch decisions.'''

    # Assert that every judge will have the same number of subjects.
    assert df.shape[0] % nJudges_M == 0, "Can't assign subjets evenly!"

    # Compute the number of subjects allocated for each judge.
    nSubjects_N = int(df.shape[0] / nJudges_M)

    # Assign judge IDs as running numbering from 0 to nJudges_M - 1
    df = df.assign(judgeID_J=np.repeat(range(0, nJudges_M), nSubjects_N))

    # Sample acceptance rates uniformly from a closed interval
    # from 0.1 to 0.9 and round to tenth decimal place.
    # 26JUL2019: Fix one leniency to 0.9 so that contraction can compute all
    #            values.
    acceptance_rates = np.append(npr.uniform(.1, .9, nJudges_M - 1), 0.9)
Riku-Laine's avatar
Riku-Laine committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
    acceptance_rates = np.round(acceptance_rates, 10)

    # Replicate the rates so they can be attached to the corresponding judge ID.
    df = df.assign(acceptanceRate_R=np.repeat(acceptance_rates, nSubjects_N))

    if add_epsilon:
        epsilon = np.sqrt(0.1) * npr.normal(size=df.shape[0])
    else:
        epsilon = 0
    
    if featureZ_col is None:
        probabilities_T = inv_logit(beta_X * df[featureX_col] + epsilon)
    else:
        probabilities_T = inv_logit(beta_X * df[featureX_col] +
                                    beta_Z * df[featureZ_col] + epsilon)


    df = df.assign(probabilities_T=probabilities_T)

    # Sort by judges then probabilities in decreasing order
    # Most dangerous for each judge are at the top.
    df.sort_values(by=["judgeID_J", "probabilities_T"],
                   ascending=False,
                   inplace=True)

    # Iterate over the data. Subject will be given a negative decision
    # if they are in the top (1-r)*100% of the individuals the judge will judge.
    # I.e. if their within-judge-index is under 1 - acceptance threshold times
    # the number of subjects assigned to each judge they will receive a
    # negative decision.
    df.reset_index(drop=True, inplace=True)

    df['decision_T'] = np.where((df.index.values % nSubjects_N) <
                                ((1 - df['acceptanceRate_R']) * nSubjects_N),
                                0, 1)

    df_labeled = df.copy()

    # Hide unobserved
    df_labeled.loc[df.decision_T == 0, 'result_Y'] = np.nan

    return df_labeled, df


def bernoulliDecider(df,
                    featureX_col,
                    featureZ_col=None,
                    nJudges_M=100,
                    beta_X=1,
                    beta_Z=1,
                    add_epsilon=True):
    '''Use X and Z to make a decision with probability 
    P(T=0|X, Z)=inv_logit(beta_X*X+beta_Z*Z).'''

    # Assert that every judge will have the same number of subjects.
    assert df.shape[0] % nJudges_M == 0, "Can't assign subjets evenly!"

    # Compute the number of subjects allocated for each judge.
    nSubjects_N = int(df.shape[0] / nJudges_M)

    # Assign judge IDs as running numbering from 0 to nJudges_M - 1
    df = df.assign(judgeID_J=np.repeat(range(0, nJudges_M), nSubjects_N))

    if add_epsilon:
        epsilon = np.sqrt(0.1) * npr.normal(size=df.shape[0])
    else:
        epsilon = 0
    
    if featureZ_col is None:
        probabilities_T = inv_logit(beta_X * df[featureX_col] + epsilon)
    else:
        probabilities_T = inv_logit(beta_X * df[featureX_col] +
                                    beta_Z * df[featureZ_col] + epsilon)

    df = df.assign(probabilities_T=probabilities_T)

    # Draw T from Bernoulli distribution
    decisions = npr.binomial(n=1, p=1 - df.probabilities_T, size=df.shape[0])

    df = df.assign(decision_T=decisions)

    # Calculate the acceptance rates.
    acceptance_rates = df.groupby('judgeID_J').mean().decision_T.values

    # Replicate the rates so they can be attached to the corresponding judge ID.
    df = df.assign(acceptanceRate_R=np.repeat(acceptance_rates, nSubjects_N))

    df_labeled = df.copy()

    df_labeled.loc[df.decision_T == 0, 'result_Y'] = np.nan

    return df_labeled, df


def quantileDecider(df,
                    featureX_col,
                    featureZ_col=None,
                    nJudges_M=100,
                    beta_X=1,
                    beta_Z=1,
                    add_epsilon=True):
    '''Assign decisions by the value of inverse cumulative distribution function
    of the logit-normal distribution at leniency r.'''
    
    # Assert that every judge will have the same number of subjects.
    assert df.shape[0] % nJudges_M == 0, "Can't assign subjets evenly!"

    # Compute the number of subjects allocated for each judge.
    nSubjects_N = int(df.shape[0] / nJudges_M)

    # Assign judge IDs as running numbering from 0 to nJudges_M - 1
    df = df.assign(judgeID_J=np.repeat(range(0, nJudges_M), nSubjects_N))

    # Sample acceptance rates uniformly from a closed interval
    # from 0.1 to 0.9 and round to tenth decimal place.
    # 26JUL2019: Fix one leniency to 0.9 so that contraction can compute all
    #            values.
    acceptance_rates = np.append(npr.uniform(.1, .9, nJudges_M - 1), 0.9)
    acceptance_rates = np.round(acceptance_rates, 10)

    # Replicate the rates so they can be attached to the corresponding judge ID.
    df = df.assign(acceptanceRate_R=np.repeat(acceptance_rates, nSubjects_N))

    if add_epsilon:
        epsilon = np.sqrt(0.1) * npr.normal(size=df.shape[0])
    else:
        epsilon = 0
    
    if featureZ_col is None:
        probabilities_T = inv_logit(beta_X * df[featureX_col] + epsilon)

        # Compute the bounds straight from the inverse cumulative.
        # Assuming X is N(0, 1) so Var(bX*X)=bX**2*Var(X)=bX**2.
        df = df.assign(bounds=inverse_cumulative(
            x=df.acceptanceRate_R, mu=0, sigma=np.sqrt(beta_X**2)))
    else:
        probabilities_T = inv_logit(beta_X * df[featureX_col] +
                                    beta_Z * df[featureZ_col] + epsilon)

        # Compute the bounds straight from the inverse cumulative.
        # Assuming X and Z are i.i.d standard Gaussians with variance 1.
        # Thus Var(bx*X+bZ*Z)= bX**2*Var(X)+bZ**2*Var(Z).
        df = df.assign(bounds=inverse_cumulative(
            x=df.acceptanceRate_R, mu=0, sigma=np.sqrt(beta_X**2 + beta_Z**2)))

    df = df.assign(probabilities_T=probabilities_T)

    # Assign negative decision if the predicted probability (probabilities_T) is
    # over the judge's threshold (bounds).
    df = df.assign(decision_T=np.where(df.probabilities_T >= df.bounds, 0, 1))

    df_labeled = df.copy()

    df_labeled.loc[df.decision_T == 0, 'result_Y'] = np.nan

    return df_labeled, df


def randomDecider(df, nJudges_M=100, use_acceptance_rates=False):
    '''Doesn't use any information about X and Z to make decisions.
    
    If use_acceptance_rates is False (default) then all decisions are positive
    with probabiltiy 0.5. If True, probabilities will be sampled from 
    U(0.1, 0.9) and rounded to tenth decimal place.'''

    # Assert that every judge will have the same number of subjects.
    assert df.shape[0] % nJudges_M == 0, "Can't assign subjets evenly!"

    # Compute the number of subjects allocated for each judge.
    nSubjects_N = int(df.shape[0] / nJudges_M)

    # Assign judge IDs as running numbering from 0 to nJudges_M - 1
    df = df.assign(judgeID_J=np.repeat(range(0, nJudges_M), nSubjects_N))

    if use_acceptance_rates:
        # Sample acceptance rates uniformly from a closed interval
        # from 0.1 to 0.9 and round to tenth decimal place.
        acceptance_rates = np.round(npr.uniform(.1, .9, nJudges_M), 10)
    else:
        # No real leniency here -> set to 0.5.
        acceptance_rates = np.ones(nJudges_M) * 0.5

    # Replicate the rates so they can be attached to the corresponding judge ID.
    df = df.assign(acceptanceRate_R=np.repeat(acceptance_rates, nSubjects_N))

    df = df.assign(
        decision_T=npr.binomial(n=1, p=df.acceptanceRate_R, size=df.shape[0]))

    df_labeled = df.copy()

    df_labeled.loc[df.decision_T == 0, 'result_Y'] = np.nan

    return df_labeled, df


def biasDecider(df,
                featureX_col,
                featureZ_col=None,
                nJudges_M=100,
                beta_X=1,
                beta_Z=1,
                add_epsilon=True):
    '''
    Biased decider: If X > 1, then X <- X * 0.75. People with high X, 
    get more positive decisions as they should.
    
    '''

    # If X > 1, then X <- X * 0.75. People with high X, get more positive
    # decisions as they should
    df = df.assign(biased_X=np.where(df[featureX_col] > 1, df[featureX_col] *
                                     0.75, df[featureX_col]))

    # If -2 < X -1, then X <- X + 0.5. People with X in [-2, 1], get less
    # positive decisions as they should
    df.biased_X = np.where((df.biased_X > -2) & (df.biased_X < -1) == 1,
                           df.biased_X + 0.5, df.biased_X)

    # Assert that every judge will have the same number of subjects.
    assert df.shape[0] % nJudges_M == 0, "Can't assign subjets evenly!"

    # Use quantile decider, but judge by the biased X.
    df_labeled, df = humanDeciderLakkaraju(df,
                                     featureX_col='biased_X',
                                     featureZ_col=featureZ_col,
                                     nJudges_M=nJudges_M,
                                     beta_X=beta_X,
                                     beta_Z=beta_Z,
                                     add_epsilon=add_epsilon)

    return df_labeled, df


# ## Evaluator modules

# ### Convenience functions

def fitPredictiveModel(x_train, y_train, x_test, class_value, model_type=None):
    '''
    Fit a predictive model (default logistic regression) with given training 
    instances and return probabilities for test instances to obtain a given 
    class label.
    
    Arguments:
    ----------
    
    x_train -- x values of training instances
    y_train -- y values of training instances
    x_test -- x values of test instances
    class_value -- class label for which the probabilities are counted for.
    model_type -- type of model to be fitted.
    
    Returns:
    --------
    (1) Trained predictive model
    (2) Probabilities for given test inputs for given class.
    '''

    if model_type is None or model_type in ["logistic_regression", "lr"]:
        # Instantiate the model (using the default parameters)
        logreg = LogisticRegression(solver='lbfgs')

        # Check shape and fit the model.
        if x_train.ndim == 1:
            logreg = logreg.fit(x_train.values.reshape(-1, 1), y_train)
        else:
            logreg = logreg.fit(x_train, y_train)

        label_probs_logreg = getProbabilityForClass(x_test, logreg,
                                                    class_value)

        return logreg, label_probs_logreg

    elif model_type in ["random_forest", "rf"]:
        # Instantiate the model
        forest = RandomForestClassifier(n_estimators=100, max_depth=3)

        # Check shape and fit the model.
        if x_train.ndim == 1:
            forest = forest.fit(x_train.values.reshape(-1, 1), y_train)
        else:
            forest = forest.fit(x_train, y_train)

        label_probs_forest = getProbabilityForClass(x_test, forest,
                                                    class_value)

        return forest, label_probs_forest

    elif model_type == "fully_random":

        label_probs = np.ones_like(x_test) / 2

        model_object = lambda x: 0.5

        return model_object, label_probs
    else:
        raise ValueError("Invalid model_type!", model_type)


def getProbabilityForClass(x, model, class_value):
    '''
    Function (wrapper) for obtaining the probability of a class given x and a 
    predictive model.

    Arguments:
    -----------
    x -- individual features, an array of shape (observations, features)
    model -- a trained sklearn model. Predicts probabilities for given x. 
        Should accept input of shape (observations, features)
    class_value -- the resulting class to predict (usually 0 or 1).

    Returns:
    --------
    (1) The probabilities of given class label for each x.
    '''
    if x.ndim == 1:
        # if x is vector, transform to column matrix.
        f_values = model.predict_proba(np.array(x).reshape(-1, 1))
    else:
        f_values = model.predict_proba(x)

    # Get correct column of predicted class, remove extra dimensions and return.
    return f_values[:, model.classes_ == class_value].flatten()


def cdf(x_0, model, class_value):
    '''
    Cumulative distribution function as described above. Integral is 
    approximated using Simpson's rule for efficiency.
    
    Arguments:
    ----------
    
    x_0 -- private features of an instance for which the value of cdf is to be
        calculated.
    model -- a trained sklearn model. Predicts probabilities for given x. 
        Should accept input of shape (observations, features)
    class_value -- the resulting class to predict (usually 0 or 1).

    '''

    def prediction(x):
        return getProbabilityForClass(
            np.array([x]).reshape(-1, 1), model, class_value)

    prediction_x_0 = prediction(x_0)

    x_values = np.linspace(-15, 15, 40000)

    x_preds = prediction(x_values)

    y_values = scs.norm.pdf(x_values)

    results = np.zeros(x_0.shape[0])

    for i in range(x_0.shape[0]):

        y_copy = y_values.copy()

        y_copy[x_preds > prediction_x_0[i]] = 0

        results[i] = si.simps(y_copy, x=x_values)

    return results


def bailIndicator(r, y_model, x_train, x_test):
    '''
    Indicator function for whether a judge will bail or jail a suspect.
    Rationale explained above.

    Algorithm:
    ----------

    (1) Calculate recidivism probabilities from training set with a trained 
        model and assign them to predictions_train.

    (2) Calculate recidivism probabilities from test set with the trained 
        model and assign them to predictions_test.

    (3) Construct a quantile function of the probabilities in
        in predictions_train.

    (4)
    For pred in predictions_test:

        if pred belongs to a percentile (computed from step (3)) lower than r
            return True
        else
            return False

    Arguments:
    ----------

    r -- float, acceptance rate, between 0 and 1
    y_model -- a trained sklearn predictive model to predict the outcome
    x_train -- private features of the training instances
    x_test -- private features of the test instances

    Returns:
    --------
    (1) Boolean list indicating a bail decision (bail = True) for each 
        instance in x_test.
    '''

    predictions_train = getProbabilityForClass(x_train, y_model, 0)

    predictions_test = getProbabilityForClass(x_test, y_model, 0)

    return [
        scs.percentileofscore(predictions_train, pred, kind='weak') < r
        for pred in predictions_test
    ]


# ### Contraction algorithm
# 
# Below is an implementation of Lakkaraju's team's algorithm presented in 
# [their paper](https://helka.finna.fi/PrimoRecord/pci.acm3098066). Relevant
# parameters to be passed to the function are presented in the description.

def contraction(df, judgeIDJ_col, decisionT_col, resultY_col, modelProbS_col,
                accRateR_col, r):
    '''
    This is an implementation of the algorithm presented by Lakkaraju
    et al. in their paper "The Selective Labels Problem: Evaluating 
    Algorithmic Predictions in the Presence of Unobservables" (2017).

    Arguments:
    ----------
    df -- The (Pandas) data frame containing the data, judge decisions,
        judge IDs, results and probability scores.
    judgeIDJ_col -- String, the name of the column containing the judges' IDs
        in df.
    decisionT_col -- String, the name of the column containing the judges' decisions
    resultY_col -- String, the name of the column containing the realization
    modelProbS_col -- String, the name of the column containing the probability
        scores from the black-box model B.
    accRateR_col -- String, the name of the column containing the judges' 
        acceptance rates
    r -- Float between 0 and 1, the given acceptance rate.

    Returns:
    --------
    (1) The estimated failure rate at acceptance rate r.
    '''
    # Get ID of the most lenient judge.
    most_lenient_ID_q = df[judgeIDJ_col].loc[df[accRateR_col].idxmax()]

    # Subset. "D_q is the set of all observations judged by q."
    D_q = df[df[judgeIDJ_col] == most_lenient_ID_q].copy()

    # All observations of R_q have observed outcome labels.
    # "R_q is the set of observations in D_q with observed outcome labels."
    R_q = D_q[D_q[decisionT_col] == 1].copy()

    # Sort observations in R_q in descending order of confidence scores S and
    # assign to R_sort_q.
    # "Observations deemed as high risk by B are at the top of this list"
    R_sort_q = R_q.sort_values(by=modelProbS_col, ascending=False)

    number_to_remove = int(
        round((1.0 - r) * D_q.shape[0] - (D_q.shape[0] - R_q.shape[0])))

    # "R_B is the list of observations assigned to t = 1 by B"
    R_B = R_sort_q[number_to_remove:R_sort_q.shape[0]]

    return np.sum(R_B[resultY_col] == 0) / D_q.shape[0]


# ### Evaluators

def contractionEvaluator(df, featureX_col, judgeIDJ_col, decisionT_col,
                         resultY_col, accRateR_col, r):

    train, test = train_test_split(df, test_size=0.5)

    B_model, predictions = fitPredictiveModel(
        train.loc[train[decisionT_col] == 1, featureX_col],
        train.loc[train[decisionT_col] == 1, resultY_col], test[featureX_col],
        0)

    test = test.assign(B_prob_0_model=predictions)

    # Invoke the original contraction.
    FR = contraction(test,
                     judgeIDJ_col=judgeIDJ_col,
                     decisionT_col=decisionT_col,
                     resultY_col=resultY_col,
                     modelProbS_col="B_prob_0_model",
                     accRateR_col=accRateR_col,
                     r=r)

    return FR


def trueEvaluationEvaluator(df, featureX_col, decisionT_col, resultY_col, r):

    train, test = train_test_split(df, test_size=0.5)

    B_model, predictions = fitPredictiveModel(train[featureX_col],
                                              train[resultY_col],
                                              test[featureX_col], 0)

    test = test.assign(B_prob_0_model=predictions)

    test.sort_values(by='B_prob_0_model', inplace=True, ascending=True)

    to_release = int(round(test.shape[0] * r))

    return np.sum(test[resultY_col][0:to_release] == 0) / test.shape[0]


def labeledOutcomesEvaluator(df,
                             featureX_col,
                             decisionT_col,
                             resultY_col,
                             r,
                             adjusted=False):

    train, test = train_test_split(df, test_size=0.5)

    B_model, predictions = fitPredictiveModel(
        train.loc[train[decisionT_col] == 1, featureX_col],
        train.loc[train[decisionT_col] == 1, resultY_col], test[featureX_col],
        0)

    test = test.assign(B_prob_0_model=predictions)

    test_observed = test.loc[test[decisionT_col] == 1, :]

    test_observed = test_observed.sort_values(by='B_prob_0_model',
                                              inplace=False,
                                              ascending=True)

    to_release = int(round(test_observed.shape[0] * r))

    if adjusted:
        return np.mean(test_observed[resultY_col][0:to_release] == 0)

    return np.sum(
        test_observed[resultY_col][0:to_release] == 0) / test.shape[0]


def humanEvaluationEvaluator(df, judgeIDJ_col, decisionT_col, resultY_col,
                             accRateR_col, r):

    # Get judges with correct leniency as list
    is_correct_leniency = df[accRateR_col].round(1) == r

    # No judges with correct leniency
    if np.sum(is_correct_leniency) == 0:
        return np.nan

    correct_leniency_list = df.loc[is_correct_leniency, judgeIDJ_col]

    # Released are the people they judged and released, T = 1
    released = df[df[judgeIDJ_col].isin(correct_leniency_list)
                  & (df[decisionT_col] == 1)]

    # Get their failure rate, aka ratio of reoffenders to number of people judged in total
    return np.sum(released[resultY_col] == 0) / correct_leniency_list.shape[0]


def causalEvaluator(df, featureX_col, decisionT_col, resultY_col, r):

    train, test = train_test_split(df, test_size=0.5)

    B_model, predictions = fitPredictiveModel(
        train.loc[train[decisionT_col] == 1, featureX_col],
        train.loc[train[decisionT_col] == 1, resultY_col], test[featureX_col],
        0)

    test = test.assign(B_prob_0_model=predictions)

    released = cdf(test[featureX_col], B_model, 0) < r

    return np.mean(test.B_prob_0_model * released)


def monteCarloEvaluator(df,
                        featureX_col,
                        decisionT_col,
                        resultY_col,
                        accRateR_col,
                        r,
                        mu_X=0,
                        mu_Z=0,
                        beta_X=1,
                        beta_Z=1,
                        sigma_X=1,
                        sigma_Z=1):

    # Train the models and assign the predicted probabilities.
    train, test = train_test_split(df, test_size=0.5)

    B_model, predictions = fitPredictiveModel(
        train.loc[train[decisionT_col] == 1, featureX_col],
        train.loc[train[decisionT_col] == 1, resultY_col], test[featureX_col],
        0)

    test = test.assign(B_prob_0_model=predictions)

    # Compute the predicted/assumed decision bounds for all the judges.
    q_r = inverse_cumulative(x=test[accRateR_col],
                             mu=mu_X + mu_Z,
                             sigma=np.sqrt((beta_X * sigma_X)**2 +
                                           (beta_Z * sigma_Z)**2))

    test = test.assign(bounds=logit(q_r) - test[featureX_col])

    # Compute the expectation of Z when it is known to come from truncated
    # Gaussian.
    alphabeta = (test.bounds - mu_Z) / (sigma_Z)

    Z_ = scs.norm.sf(alphabeta, loc=mu_Z, scale=sigma_Z)  # 1 - cdf(ab)

    # E(Z | Z > a). Expectation of Z if negative decision.
    exp_lower_trunc = mu_Z + (sigma_Z * scs.norm.pdf(alphabeta)) / Z_

    # E(Z | Z < b). Expectation of Z if positive decision.
    exp_upper_trunc = mu_Z - (
        sigma_Z * scs.norm.pdf(alphabeta)) / scs.norm.cdf(alphabeta)

    exp_Z = (1 - test[decisionT_col]
             ) * exp_lower_trunc + test[decisionT_col] * exp_upper_trunc

    # Attach the predicted probability for Y=0 to data.
    test = test.assign(predicted_Y=inv_logit(test[featureX_col] + exp_Z))

    # Predictions drawn from binomial. (Should fix this.)
    predictions = npr.binomial(n=1, p=1 - test.predicted_Y, size=test.shape[0])

    test[resultY_col] = np.where(test[decisionT_col] == 0, predictions,
                                 test[resultY_col])

    test.sort_values(by='B_prob_0_model', inplace=True, ascending=True)

    to_release = int(round(test.shape[0] * r))

    return np.sum(test[resultY_col][0:to_release] == 0) / test.shape[0]


# ## Performance comparison
# 
# Below we try to replicate the results obtained by Lakkaraju and compare 
# their model's performance to the one of ours.

def drawDiagnostics(title, save_name, save, f_rates, titles):
    
    cols = 2
    rows = np.ceil(len(f_rates) / cols)
    
    plt.figure(figsize=(16, 4.5*rows+1))

    ax = plt.subplot(rows, cols, 1)
    x_ax = np.arange(1, 9, 1) / 10

    plt.boxplot(f_rates[0], labels=x_ax)

    plt.title(titles[0])
    plt.xlabel('Acceptance rate')
    plt.ylabel('Failure rate')
    plt.grid()

    for i in range(len(f_rates)):
        plt.subplot(rows, cols, i + 1, sharey=ax)

        plt.boxplot(f_rates[i], labels=x_ax)

        plt.title(titles[i])
        plt.xlabel('Acceptance rate')
        plt.ylabel('Failure rate')
        plt.grid()

    plt.tight_layout()
    plt.subplots_adjust(top=0.89)
    plt.suptitle(title, y=0.96, weight='bold')

    if save:
        plt.savefig(save_name + '_diagnostic_plot')

    plt.show()


def perfComp(dgModule, deciderModule, title, save_name, save=True, nIter=50):
    failure_rates = np.zeros((8, 7))
    failure_sems = np.zeros((8, 7))

    f_rate_true = np.zeros((nIter, 8))
    f_rate_label = np.zeros((nIter, 8))
    f_rate_label_adj = np.zeros((nIter, 8))
    f_rate_human = np.zeros((nIter, 8))
    f_rate_cont = np.zeros((nIter, 8))
    f_rate_caus = np.zeros((nIter, 8))

    # Create data
    df = dgModule()

    # Decicions
    df_labeled, df_unlabeled = deciderModule(df)

    # Split data
    train, test = train_test_split(df_labeled, test_size=0.5)

    # Train model
    B_model, predictions = fitPredictiveModel(
        train.loc[train['decision_T'] == 1, 'X'],
        train.loc[train['decision_T'] == 1, 'result_Y'], test['X'], 0)

    test = test.assign(B_prob_0_model=predictions)

    test.sort_values(by='B_prob_0_model', inplace=True, ascending=True)

    kk_array = pd.qcut(test['B_prob_0_model'], group_amount, labels=False)

    # Find observed values
    observed = test['decision_T'] == 1

    # Assign data to the model
    dat = dict(D=1,
               N_obs=np.sum(observed),
               N_cens=np.sum(~observed),
               K=group_amount,
               sigma_tau=sigma_tau,
               M=len(set(df_unlabeled['judgeID_J'])),
               jj_obs=test.loc[observed, 'judgeID_J']+1,
               jj_cens=test.loc[~observed, 'judgeID_J']+1,
               kk_obs=kk_array[observed]+1,
               kk_cens=kk_array[~observed]+1,
               dec_obs=test.loc[observed, 'decision_T'],
               dec_cens=test.loc[~observed, 'decision_T'],
               X_obs=test.loc[observed, 'B_prob_0_model'].values.reshape(-1,1),
               X_cens=test.loc[~observed, 'B_prob_0_model'].values.reshape(-1,1),
               y_obs=test.loc[observed, 'result_Y'].astype(int))

    fit = sm.sampling(data=dat, chains=5, iter=4000, control = dict(adapt_delta=0.9))

    pars = fit.extract()

    plt.figure(figsize=(15,30))

    fit.plot();

    if save:
        plt.savefig(save_name + '_stan_diagnostic_plot')
    
    plt.show()
    plt.close('all')

    if save:
        print(fit,  file=open(save_name + '_stan_fit_diagnostics.txt', 'w'))

    # Bayes
    
    # Alusta matriisi, rivillä yksi otos posteriorista
    # sarakkeet havaintoja
    y_imp = np.ones((pars['y_est'].shape[0], test.shape[0]))
    
    # Täydennetään havaitsemattomat estimoiduilla
    y_imp[:, ~observed] = 1-pars['y_est']
    
    # Täydennetään havaitut havaituilla
    y_imp[:, observed] = 1-test.loc[observed, 'result_Y']

    Rs = np.arange(.1, .9, .1)
    
    to_release_list = np.round(test.shape[0] * Rs).astype(int)
    
    f_rate_bayes = np.full((pars['y_est'].shape[0], 8), np.nan)
    
    for i in range(len(to_release_list)):
        est_failure_rates = np.sum(y_imp[:, 0:to_release_list[i]], axis=1) / test.shape[0]
        
        f_rate_bayes[:, i] = est_failure_rates
        
        failure_rates[i, 6] = np.mean(est_failure_rates)    
            
    for i in range(nIter):
        
        print(" [", i, "] ", sep='', end="")

        for r in np.arange(1, 9):

            print(".", end="")

            # True evaluation

            f_rate_true[i, r - 1] = trueEvaluationEvaluator(
                df_unlabeled, 'X', 'decision_T', 'result_Y', r / 10)

            # Labeled outcomes only

            f_rate_label[i, r - 1] = labeledOutcomesEvaluator(
                df_labeled, 'X', 'decision_T', 'result_Y', r / 10)

            # Adjusted labeled outcomes

            f_rate_label_adj[i, r - 1] = labeledOutcomesEvaluator(
                df_labeled,
                'X',
                'decision_T',
                'result_Y',
                r / 10,
                adjusted=True)

            # Human evaluation

            f_rate_human[i, r - 1] = humanEvaluationEvaluator(
                df_labeled, 'judgeID_J', 'decision_T', 'result_Y',
                'acceptanceRate_R', r / 10)

            # Contraction

            f_rate_cont[i, r - 1] = contractionEvaluator(
                df_labeled, 'X', 'judgeID_J', 'decision_T', 'result_Y',
                'acceptanceRate_R', r / 10)

            # Causal model - analytic solution

            f_rate_caus[i, r - 1] = monteCarloEvaluator(
                df_labeled, 'X', 'decision_T', 'result_Y', 'acceptanceRate_R',
                r / 10)

    failure_rates[:, 0] = np.mean(f_rate_true, axis=0)
    failure_rates[:, 1] = np.mean(f_rate_label, axis=0)
    failure_rates[:, 2] = np.mean(f_rate_label_adj, axis=0)
    failure_rates[:, 3] = np.mean(f_rate_human, axis=0)
    failure_rates[:, 4] = np.mean(f_rate_cont, axis=0)
    failure_rates[:, 5] = np.mean(f_rate_caus, axis=0)
    #failure_rates[:, 6] = f_rate_bayes

    failure_sems[:, 0] = scs.sem(f_rate_true, axis=0)
    failure_sems[:, 1] = scs.sem(f_rate_label, axis=0)
    failure_sems[:, 2] = scs.sem(f_rate_label_adj, axis=0)
    failure_sems[:, 3] = scs.sem(f_rate_human, axis=0)
    failure_sems[:, 4] = scs.sem(f_rate_cont, axis=0)
    failure_sems[:, 5] = scs.sem(f_rate_caus, axis=0)
    failure_sems[:, 6] = scs.sem(f_rate_bayes, axis=0, nan_policy='omit')

    x_ax = np.arange(0.1, 0.9, 0.1)

    labels = [
        'True Evaluation', 'Labeled outcomes', 'Labeled outcomes, adj.',
        'Human evaluation', 'Contraction', 'Analytic solution', 'Potential outcomes'
    ]
    colours = ['g', 'magenta', 'darkviolet', 'r', 'b', 'k', 'c']

    for i in range(failure_rates.shape[1]):
        plt.errorbar(x_ax,
                     failure_rates[:, i],
                     label=labels[i],
                     c=colours[i],
                     yerr=failure_sems[:, i])

    plt.title('Failure rate vs. Acceptance rate')
    plt.xlabel('Acceptance rate')
    plt.ylabel('Failure rate')
    plt.legend()
    plt.grid()
    
    if save: 
        plt.savefig(save_name + '_all')
    
    plt.show()

    print("\nFailure rates:")
    print(np.array2string(failure_rates, formatter={'float_kind':lambda x: "%.5f" % x}))
    
    print("\nMean absolute errors:")
    for i in range(1, failure_rates.shape[1]):
        print(
            labels[i].ljust(len(max(labels, key=len))),
            np.round(
                np.mean(np.abs(failure_rates[:, 0] - failure_rates[:, i])), 5))

    drawDiagnostics(title=title,
                    save_name=save_name,
                    save=save,
                    f_rates=[
                        f_rate_true, f_rate_label, f_rate_label_adj,
                        f_rate_human, f_rate_cont, f_rate_caus, f_rate_bayes
                    ],
                    titles=labels)


sm = pystan.StanModel(file=stan_code_file_name)

if which == 1:
    print("Without unobservables (Bernoulli + independent decisions)")

    dg = lambda: bernoulliDGWithoutUnobservables(N_total=N_sim)

    decider = lambda x: quantileDecider(
        x, featureX_col="X", featureZ_col=None, nJudges_M=M_sim, beta_X=1, beta_Z=1)

    perfComp(
        dg, lambda x: decider(x),
        "Fluctuation of failure rate estimates across iterations\n" +
        "Bernoulli + independent decisions, without unobservables",
        figure_path + "sl_bernoulli_independent_without_Z"
    )

gc.collect()
plt.close('all')

print("With unobservables in the data")

if which == 2:
    print("\nBernoulli + independent decisions")

    dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)

    decider = lambda x: quantileDecider(
        x, featureX_col="X", featureZ_col="Z", nJudges_M=M_sim, beta_X=1, beta_Z=1, add_epsilon=True)

    perfComp(
        dg, lambda x: decider(x),
        "Fluctuation of failure rate estimates across iterations \n" +
        "Bernoulli + independent decisions, with unobservables",
        figure_path + "sl_bernoulli_independent_with_Z",
    )

gc.collect()
plt.close('all')

if which == 3:
    print("\nThreshold rule + independent decisions")

    dg = lambda: thresholdDGWithUnobservables(N_total=N_sim)

    decider = lambda x: quantileDecider(
        x, featureX_col="X", featureZ_col="Z", nJudges_M=M_sim, beta_X=1, beta_Z=1, add_epsilon=True)

    perfComp(
        dg, lambda x: decider(x),
        "Fluctuation of failure rate estimates across iterations \n" +
        "Threshold rule + independent decisions, with unobservables",
        figure_path + "sl_threshold_independent_with_Z",
    )

gc.collect()
plt.close('all')

if which == 4:
    print("\nBernoulli + non-independent (batch) decisions")

    dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)

    decider = lambda x: humanDeciderLakkaraju(
        x, featureX_col="X", featureZ_col="Z", nJudges_M=M_sim, beta_X=1, beta_Z=1, add_epsilon=True)

    perfComp(
        dg, lambda x: decider(x),
        "Fluctuation of failure rate estimates across iterations \n" +
        "Bernoulli + non-independent decisions, with unobservables",
        figure_path + "sl_bernoulli_batch_with_Z",
    )

gc.collect()
plt.close('all')

if which == 5:
    print("\nThreshold rule + non-independent (batch) decisions")

    dg = lambda: thresholdDGWithUnobservables(N_total=N_sim)

    decider = lambda x: humanDeciderLakkaraju(
        x, featureX_col="X", featureZ_col="Z", nJudges_M=M_sim, beta_X=1, beta_Z=1, add_epsilon=True)

    perfComp(
        dg, lambda x: decider(x),
        "Fluctuation of failure rate estimates across iterations \n" +
        "Threshold rule + non-independent decisions, with unobservables",
        figure_path + "sl_threshold_batch_with_Z",
    )

gc.collect()
plt.close('all')

if which == 6:
    print("\nRandom decider")

    dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)

    decider = lambda x: randomDecider(
        x, nJudges_M=M_sim, use_acceptance_rates=True)

    perfComp(
        dg, lambda x: decider(x),
        "Bernoulli + random decider with leniency and unobservables",
        figure_path + "sl_random_decider_with_Z",
    )

gc.collect()
plt.close('all')

if which == 7:
    print("\nBiased decider")

    dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)

    decider = lambda x: biasDecider(x, 'X', 'Z', add_epsilon=True)

    perfComp(
        dg, lambda x: decider(x),
        "Bernoulli + biased decider with leniency and unobservables",
        figure_path + "sl_biased_decider_with_Z",
    )


if which == 8:
    print("\nBad judge")

    dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)

    decider = lambda x: quantileDecider(x, 'X', 'Z', beta_X=0.2, add_epsilon=True, nJudges_M=M_sim)

    perfComp(
        dg, lambda x: decider(x),
        "Bernoulli + 'bad' decider with leniency and unobservables",
        figure_path + "sl_bad_decider_with_Z"
    )

gc.collect()
plt.close('all')

if which == 9:
    print("\nBernoulli + Bernoulli")

    dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)

    decider = lambda x: bernoulliDecider(x, 'X', 'Z', nJudges_M=M_sim)

    perfComp(
        dg, lambda x: decider(x),
        "Bernoulli + Bernoulli",
        figure_path + "sl_bernoulli_bernoulli_with_Z",
    )
    
if which == 10:
    print("\nBeta_Z = 3, Threshold + batch")

    dg = lambda: thresholdDGWithUnobservables(N_total=N_sim, beta_Z=3.0)

    decider = lambda x: humanDeciderLakkaraju(
        x, featureX_col="X", featureZ_col="Z", nJudges_M=M_sim, beta_X=1, beta_Z=3, add_epsilon=True)

    perfComp(
        dg, lambda x: decider(x),
        "Beta_Z = 3, threshold + batch",
        figure_path + "sl_threshold_batch_beta_Z_3_with_Z",
    )
    
if which == 11:
    print("\nBeta_Z = 5, Threshold + batch")

    dg = lambda: thresholdDGWithUnobservables(N_total=N_sim, beta_Z=5.0)

    decider = lambda x: humanDeciderLakkaraju(
        x, featureX_col="X", featureZ_col="Z", nJudges_M=M_sim, beta_X=1, beta_Z=5, add_epsilon=True)

    perfComp(
        dg, lambda x: decider(x),
        "Beta_Z = 5, threshold + batch",
        figure_path + "sl_threshold_batch_beta_Z_5_with_Z",
    )