Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
# Author: Riku Laine
# Date: 26JUL2019
# Project name: Potential outcomes in model evaluation
# Description: This script creates the figures and results used
# in empirical data experiments.
#
# Parameters:
# -----------
# (1) figure_path : file name for saving the created figures.
# (2) nIter : Number of train test splits to perform on the data.
# (3) group_amount : How many groups if Jung-inspired model is used.
# (4) stan_code_file_name : Name of file containing the stan model code.
# (5) sigma_tau : Values of prior variance for the Jung-inspired model.
# (6) data_path : File of compas data.
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as scs
import scipy.special as ssp
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import pystan
plt.switch_backend('agg')
import sys
# figure storage name
figure_path = sys.argv[1]
# Iterations
nIter = int(sys.argv[2])
# How many groups if jung model is used
group_amount = int(sys.argv[3])
# Name of stan model code file
stan_code_file_name = sys.argv[4]
# Variance prior
sigma_tau = float(sys.argv[5])
# figure storage name
data_path = sys.argv[6]
# Prefix for the figures and log files
print("These results have been obtained with the following settings:")
print("Number of train test splits :", nIter)
print("Number of groups:", group_amount)
print("Prior for the variances:", sigma_tau)
save_name = "sl_compas"
def inv_logit(x):
return 1.0 / (1.0 + np.exp(-1.0 * x))
def logit(x):
return np.log(x) - np.log(1.0 - x)
def inverse_cumulative(x, mu, sigma):
'''Compute the inverse of the cumulative distribution of logit-normal
distribution at x with parameters mu and sigma (mean and st.dev.).'''
return inv_logit(ssp.erfinv(2 * x - 1) * np.sqrt(2 * sigma**2) - mu)
##########################
# ## Evaluator modules
# ### Convenience functions
def fitPredictiveModel(x_train, y_train, x_test, class_value, model_type=None):
'''
Fit a predictive model (default logistic regression) with given training
instances and return probabilities for test instances to obtain a given
class label.
Arguments:
----------
x_train -- x values of training instances
y_train -- y values of training instances
x_test -- x values of test instances
class_value -- class label for which the probabilities are counted for.
model_type -- type of model to be fitted.
Returns:
--------
(1) Trained predictive model
(2) Probabilities for given test inputs for given class.
'''
if model_type is None or model_type in ["logistic_regression", "lr"]:
# Instantiate the model (using the default parameters)
logreg = LogisticRegression(solver='lbfgs')
# Check shape and fit the model.
if x_train.ndim == 1:
logreg = logreg.fit(x_train.values.reshape(-1, 1), y_train)
else:
logreg = logreg.fit(x_train, y_train)
label_probs_logreg = getProbabilityForClass(x_test, logreg,
class_value)
return logreg, label_probs_logreg
elif model_type in ["random_forest", "rf"]:
# Instantiate the model
forest = RandomForestClassifier(n_estimators=100, max_depth=3)
# Check shape and fit the model.
if x_train.ndim == 1:
forest = forest.fit(x_train.values.reshape(-1, 1), y_train)
else:
forest = forest.fit(x_train, y_train)
label_probs_forest = getProbabilityForClass(x_test, forest,
class_value)
return forest, label_probs_forest
elif model_type == "fully_random":
label_probs = np.ones_like(x_test) / 2
model_object = lambda x: 0.5
return model_object, label_probs
else:
raise ValueError("Invalid model_type!", model_type)
def getProbabilityForClass(x, model, class_value):
'''
Function (wrapper) for obtaining the probability of a class given x and a
predictive model.
Arguments:
-----------
x -- individual features, an array of shape (observations, features)
model -- a trained sklearn model. Predicts probabilities for given x.
Should accept input of shape (observations, features)
class_value -- the resulting class to predict (usually 0 or 1).
Returns:
--------
(1) The probabilities of given class label for each x.
'''
if x.ndim == 1:
# if x is vector, transform to column matrix.
f_values = model.predict_proba(np.array(x).reshape(-1, 1))
else:
f_values = model.predict_proba(x)
# Get correct column of predicted class, remove extra dimensions and return.
return f_values[:, model.classes_ == class_value].flatten()
# ### Contraction algorithm
#
# Below is an implementation of Lakkaraju's team's algorithm presented in
# [their paper](https://helka.finna.fi/PrimoRecord/pci.acm3098066). Relevant
# parameters to be passed to the function are presented in the description.
def contraction(df, judgeIDJ_col, decisionT_col, resultY_col, modelProbS_col,
accRateR_col, r):
'''
This is an implementation of the algorithm presented by Lakkaraju
et al. in their paper "The Selective Labels Problem: Evaluating
Algorithmic Predictions in the Presence of Unobservables" (2017).
Arguments:
----------
df -- The (Pandas) data frame containing the data, judge decisions,
judge IDs, results and probability scores.
judgeIDJ_col -- String, the name of the column containing the judges' IDs
in df.
decisionT_col -- String, the name of the column containing the judges' decisions
resultY_col -- String, the name of the column containing the realization
modelProbS_col -- String, the name of the column containing the probability
scores from the black-box model B.
accRateR_col -- String, the name of the column containing the judges'
acceptance rates
r -- Float between 0 and 1, the given acceptance rate.
Returns:
--------
(1) The estimated failure rate at acceptance rate r.
'''
# Get ID of the most lenient judge.
most_lenient_ID_q = df[judgeIDJ_col].loc[df[accRateR_col].idxmax()]
# Subset. "D_q is the set of all observations judged by q."
D_q = df[df[judgeIDJ_col] == most_lenient_ID_q].copy()
# All observations of R_q have observed outcome labels.
# "R_q is the set of observations in D_q with observed outcome labels."
R_q = D_q[D_q[decisionT_col] == 1].copy()
# Sort observations in R_q in descending order of confidence scores S and
# assign to R_sort_q.
# "Observations deemed as high risk by B are at the top of this list"
R_sort_q = R_q.sort_values(by=modelProbS_col, ascending=False)
number_to_remove = int(
round((1.0 - r) * D_q.shape[0] - (D_q.shape[0] - R_q.shape[0])))
# "R_B is the list of observations assigned to t = 1 by B"
R_B = R_sort_q[number_to_remove:R_sort_q.shape[0]]
return np.sum(R_B[resultY_col] == 0) / D_q.shape[0]
# ### Evaluators
def contractionEvaluator(df, featureX_col, judgeIDJ_col, decisionT_col,
resultY_col, accRateR_col, r):
train, test = train_test_split(df, test_size=0.5)
B_model, predictions = fitPredictiveModel(
train.loc[train[decisionT_col] == 1, featureX_col],
train.loc[train[decisionT_col] == 1, resultY_col], test[featureX_col],
0)
test = test.assign(B_prob_0_model=predictions)
# Invoke the original contraction.
FR = contraction(test,
judgeIDJ_col=judgeIDJ_col,
decisionT_col=decisionT_col,
resultY_col=resultY_col,
modelProbS_col="B_prob_0_model",
accRateR_col=accRateR_col,
r=r)
return FR
def trueEvaluationEvaluator(df, featureX_col, decisionT_col, resultY_col, r,
fit_model=True):
train, test = train_test_split(df, test_size=0.5)
if fit_model:
B_model, predictions = fitPredictiveModel(train[featureX_col],
train[resultY_col],
test[featureX_col], 0)
test = test.assign(B_prob_0_model=predictions)
test.sort_values(by='B_prob_0_model', inplace=True, ascending=True)
to_release = int(round(test.shape[0] * r))
return np.sum(test[resultY_col][0:to_release] == 0) / test.shape[0]
def labeledOutcomesEvaluator(df,
featureX_col,
decisionT_col,
resultY_col,
r,
adjusted=False,
fit_model=True):
train, test = train_test_split(df, test_size=0.5)
if fit_model:
B_model, predictions = fitPredictiveModel(
train.loc[train[decisionT_col] == 1, featureX_col],
train.loc[train[decisionT_col] == 1, resultY_col], test[featureX_col],
0)
test = test.assign(B_prob_0_model=predictions)
test_observed = test.loc[test[decisionT_col] == 1, :]
test_observed = test_observed.sort_values(by='B_prob_0_model',
inplace=False,
ascending=True)
to_release = int(round(test_observed.shape[0] * r))
if adjusted:
return np.mean(test_observed[resultY_col][0:to_release] == 0)
return np.sum(
test_observed[resultY_col][0:to_release] == 0) / test.shape[0]
def humanEvaluationEvaluator(df, judgeIDJ_col, decisionT_col, resultY_col,
accRateR_col, r):
# Get judges with correct leniency as list
is_correct_leniency = df[accRateR_col].round(1) == r
# No judges with correct leniency
if np.sum(is_correct_leniency) == 0:
return np.nan
correct_leniency_list = df.loc[is_correct_leniency, judgeIDJ_col]
# Released are the people they judged and released, T = 1
released = df[df[judgeIDJ_col].isin(correct_leniency_list)
& (df[decisionT_col] == 1)]
# Get their failure rate, aka ratio of reoffenders to number of people judged in total
return np.sum(released[resultY_col] == 0) / correct_leniency_list.shape[0]
###################
# Read in the data
compas_raw = pd.read_csv(data_path)
# Select columns
compas = compas_raw[[
'age', 'c_charge_degree', 'race', 'age_cat', 'score_text', 'sex',
'priors_count', 'days_b_screening_arrest', 'decile_score', 'is_recid',
'two_year_recid', 'c_jail_in', 'c_jail_out'
]]
# Subset values, see reasons in ProPublica methodology.
compas = compas.query('days_b_screening_arrest <= 30 and \
days_b_screening_arrest >= -30 and \
is_recid != -1 and \
c_charge_degree != "O"')
# Drop row if score_text is na
compas = compas[compas.score_text.notnull()]
# Recode recidivism values to fit earlier notation
# So here result_Y = 1 - is_recid (inverted binary coding).
compas['result_Y'] = np.where(compas['is_recid'] == 1, 0, 1)
# Convert string values to dummies, drop first so full rank
compas_dummy = pd.get_dummies(
compas,
columns=['c_charge_degree', 'race', 'age_cat', 'sex'],
drop_first=True)
compas_dummy.drop(columns=[
'age', 'days_b_screening_arrest', 'c_jail_in', 'c_jail_out',
'two_year_recid', 'score_text', 'is_recid'
],
inplace=True)
# Shuffle rows for random judge assignment
compas_shuffled = compas_dummy.sample(frac=1)
nJudges_M = 9
# Assign judges as evenly as possible
judge_ID = pd.qcut(np.arange(len(compas_shuffled)), nJudges_M, labels=False)
# Assign fixed leniencies from 0.1 to 0.9
judge_leniency = np.arange(1, 10) / 10
judge_leniency = judge_leniency[judge_ID]
compas_shuffled = compas_shuffled.assign(judge_ID=judge_ID,
judge_leniency=judge_leniency)
# Sort by judges then probabilities in decreasing order
# Most dangerous for each judge are at the top.
compas_shuffled.sort_values(by=["judge_ID", "decile_score"],
ascending=False,
inplace=True)
# Iterate over the data. Subject will be given a negative decision
# if they are in the top (1-r)*100% of the individuals the judge will judge.
# I.e. if their within-judge-index is under 1 - acceptance threshold times
# the number of subjects assigned to each judge they will receive a
# negative decision.
compas_shuffled.reset_index(drop=True, inplace=True)
subjects_allocated = compas_shuffled.judge_ID.value_counts()
compas_shuffled['judge_index'] = compas_shuffled.groupby('judge_ID').cumcount()
compas_shuffled['decision_T'] = np.where(
compas_shuffled['judge_index'] < (1 - compas_shuffled['judge_leniency']) *
subjects_allocated[compas_shuffled['judge_ID']].values, 0, 1)
compas_labeled = compas_shuffled.copy()
compas_unlabeled = compas_shuffled.copy()
# Hide unobserved
compas_labeled.loc[compas_labeled.decision_T == 0, 'result_Y'] = np.nan
# Choose feature_columns
feature_cols = ~compas_labeled.columns.isin(
['result_Y', 'decile_score', 'judge_ID', 'judge_leniency', 'judge_index', 'decision_T'])
feature_cols = compas_labeled.columns[feature_cols]
####### Draw figures ###########
failure_rates = np.zeros((8, 6))
failure_sems = np.zeros((8, 6))
f_rate_true = np.zeros((nIter, 8))
f_rate_label = np.zeros((nIter, 8))
f_rate_label_adj = np.zeros((nIter, 8))
f_rate_human = np.zeros((nIter, 8))
f_rate_cont = np.zeros((nIter, 8))
f_rate_caus = np.zeros((nIter, 8))
# Split data
train, test = train_test_split(compas_labeled, test_size=0.5)
# Train a logistic regression model
B_model, predictions = fitPredictiveModel(
train.loc[train['decision_T'] == 1, feature_cols],
train.loc[train['decision_T'] == 1, 'result_Y'], test[feature_cols], 0)
test = test.assign(B_prob_0_model=predictions)
test.sort_values(by='B_prob_0_model', inplace=True, ascending=True)
kk_array = pd.qcut(test['B_prob_0_model'], group_amount, labels=False)
# Find observed values
observed = test['decision_T'] == 1
# Assign data to the model
dat = dict(D=1,
N_obs=np.sum(observed),
N_cens=np.sum(~observed),
K=group_amount,
sigma_tau=sigma_tau,
M=len(set(compas_labeled['judge_ID'])),
jj_obs=test.loc[observed, 'judge_ID']+1,
jj_cens=test.loc[~observed, 'judge_ID']+1,
kk_obs=kk_array[observed]+1,
kk_cens=kk_array[~observed]+1,
dec_obs=test.loc[observed, 'decision_T'],
dec_cens=test.loc[~observed, 'decision_T'],
X_obs=test.loc[observed, 'B_prob_0_model'].values.reshape(-1,1),
X_cens=test.loc[~observed, 'B_prob_0_model'].values.reshape(-1,1),
y_obs=test.loc[observed, 'result_Y'].astype(int))
sm = pystan.StanModel(file=stan_code_file_name)
fit = sm.sampling(data=dat, chains=5, iter=4000, control = dict(adapt_delta=0.9))
pars = fit.extract()
print(fit, file=open(save_name + '_stan_fit_diagnostics.txt', 'w'))
plt.figure(figsize=(15,30))
fit.plot();
plt.savefig(save_name + '_stan_diagnostic_plot')
plt.show()
plt.close('all')
# Bayes
# Alusta matriisi, rivillä yksi otos posteriorista
# sarakkeet havaintoja
y_imp = np.ones((pars['y_est'].shape[0], test.shape[0]))
# Täydennetään havaitsemattomat estimoiduilla
y_imp[:, ~observed] = 1-pars['y_est']
# Täydennetään havaitut havaituilla
y_imp[:, observed] = 1-test.loc[observed, 'result_Y']
Rs = np.arange(.1, .9, .1)
to_release_list = np.round(test.shape[0] * Rs).astype(int)
f_rate_bayes = np.full((pars['y_est'].shape[0], 8), np.nan)
for i in range(len(to_release_list)):
est_failure_rates = np.sum(y_imp[:, 0:to_release_list[i]], axis=1) / test.shape[0]
f_rate_bayes[:, i] = est_failure_rates
failure_rates[i, 5] = np.mean(est_failure_rates)
for i in range(nIter):
print(" [", i, "] ", sep='', end="")
for r in np.arange(1, 9):
print(".", end="")
# True evaluation
f_rate_true[i, r - 1] = trueEvaluationEvaluator(
compas_unlabeled, feature_cols, 'decision_T', 'result_Y', r / 10)
# Labeled outcomes only
f_rate_label[i, r - 1] = labeledOutcomesEvaluator(
compas_labeled, feature_cols, 'decision_T', 'result_Y', r / 10)
# Adjusted labeled outcomes
f_rate_label_adj[i, r - 1] = labeledOutcomesEvaluator(
compas_labeled,
feature_cols,
'decision_T',
'result_Y',
r / 10,
adjusted=True)
# Human evaluation
f_rate_human[i, r - 1] = humanEvaluationEvaluator(
compas_labeled, 'judge_ID', 'decision_T', 'result_Y',
'judge_leniency', r / 10)
# Contraction
f_rate_cont[i, r - 1] = contractionEvaluator(
compas_labeled, feature_cols, 'judge_ID', 'decision_T', 'result_Y',
'judge_leniency', r / 10)
failure_rates[:, 0] = np.mean(f_rate_true, axis=0)
failure_rates[:, 1] = np.mean(f_rate_label, axis=0)
failure_rates[:, 2] = np.mean(f_rate_label_adj, axis=0)
failure_rates[:, 3] = np.mean(f_rate_human, axis=0)
failure_rates[:, 4] = np.mean(f_rate_cont, axis=0)
failure_sems[:, 0] = scs.sem(f_rate_true, axis=0)
failure_sems[:, 1] = scs.sem(f_rate_label, axis=0)
failure_sems[:, 2] = scs.sem(f_rate_label_adj, axis=0)
failure_sems[:, 3] = scs.sem(f_rate_human, axis=0)
failure_sems[:, 4] = scs.sem(f_rate_cont, axis=0)
failure_sems[:, 5] = scs.sem(f_rate_bayes, axis=0, nan_policy='omit')
x_ax = np.arange(0.1, 0.9, 0.1)
labels = [
'True Evaluation', 'Labeled outcomes', 'Labeled outcomes, adj.',
'Human evaluation', 'Contraction', 'Potential outcomes'
]
colours = ['g', 'magenta', 'darkviolet', 'r', 'b', 'c']
for i in range(failure_rates.shape[1]):
plt.errorbar(x_ax,
failure_rates[:, i],
label=labels[i],
c=colours[i],
yerr=failure_sems[:, i])
plt.title('Failure rate vs. Acceptance rate')
plt.xlabel('Acceptance rate')
plt.ylabel('Failure rate')
plt.legend()
plt.grid()
plt.savefig(save_name + '_all')
plt.show()
print("\nFailure rates:")
print(np.array2string(failure_rates, formatter={'float_kind':lambda x: "%.5f" % x}))
print("\nMean absolute errors:")
for i in range(1, failure_rates.shape[1]):
print(
labels[i].ljust(len(max(labels, key=len))),
np.round(
np.mean(np.abs(failure_rates[:, 0] - failure_rates[:, i])), 5))
# Draw diagnostic figures
f_rates= [f_rate_true, f_rate_label, f_rate_label_adj, f_rate_human,
f_rate_cont, f_rate_bayes]
cols = 2
rows = np.ceil(len(f_rates) / cols)
plt.figure(figsize=(16, 4.5*rows+1))
ax = plt.subplot(rows, cols, 1)
x_ax = np.arange(1, 9, 1) / 10
plt.boxplot(f_rates[0], labels=x_ax)
plt.title(labels[0])
plt.xlabel('Acceptance rate')
plt.ylabel('Failure rate')
plt.grid()
for i in range(len(f_rates)):
plt.subplot(rows, cols, i + 1, sharey=ax)
plt.boxplot(f_rates[i], labels=x_ax)
plt.title(labels[i])
plt.xlabel('Acceptance rate')
plt.ylabel('Failure rate')
plt.grid()
plt.tight_layout()
plt.subplots_adjust(top=0.89)
title = "COMPAS data set\nFluctuation of failure rate estimates per method"
plt.suptitle(title, y=0.96, weight='bold')
plt.savefig(save_name + '_diagnostic_plot')
plt.show()