Skip to content
Snippets Groups Projects
Analysis_25JUN2019_modular.ipynb 186 KiB
Newer Older
  • Learn to ignore specific revisions
  •     "\n",
        "        # Create data\n",
        "        df = coinFlipDGWithUnobservables()\n",
        "\n",
        "        # Decider\n",
    
        "        df_labeled = quantileDecider(df,\n",
    
        "                                     featureX_col=\"X\",\n",
        "                                     featureZ_col=\"Z\",\n",
        "                                     nJudges_M=100,\n",
        "                                     beta_X=1,\n",
        "                                     beta_Z=1,\n",
        "                                     hide_unobserved=True)\n",
        "\n",
    
        "        df_unlabeled = quantileDecider(df,\n",
    
        "                                       featureX_col=\"X\",\n",
        "                                       featureZ_col=\"Z\",\n",
        "                                       nJudges_M=100,\n",
        "                                       beta_X=1,\n",
        "                                       beta_Z=1,\n",
        "                                       hide_unobserved=False)\n",
        "\n",
        "        # True evaluation\n",
        "\n",
        "        f_rate_true[i] = trueEvaluationEvaluator(df_unlabeled, 'X',\n",
        "                                                 'decision_T', 'result_Y',\n",
        "                                                 r / 10)\n",
        "\n",
        "        # Labeled outcomes only\n",
        "\n",
        "        f_rate_label[i] = labeledOutcomesEvaluator(df_labeled, 'X',\n",
        "                                                   'decision_T', 'result_Y',\n",
        "                                                   r / 10)\n",
        "\n",
        "        # Human evaluation\n",
        "\n",
        "        f_rate_human[i] = humanEvaluationEvaluator(df_labeled, 'judgeID_J',\n",
        "                                                   'decision_T', 'result_Y',\n",
        "                                                   'acceptanceRate_R', r / 10)\n",
        "\n",
        "        # Contraction\n",
        "\n",
        "        f_rate_cont[i] = contractionEvaluator(df_labeled, 'X', 'judgeID_J',\n",
        "                                              'decision_T', 'result_Y',\n",
        "                                              'acceptanceRate_R', r / 10)\n",
        "\n",
        "        # Causal model - empirical performance\n",
        "\n",
    
        "        #f_rate_caus[i] = causalEvaluator(df_labeled, 'X', 'decision_T',\n",
        "        #                                 'result_Y', r / 10)\n",
        "\n",
        "        f_rate_caus[i] = monteCarloEvaluator(df_labeled, 'X', 'decision_T',\n",
        "                                             'result_Y', 'acceptanceRate_R',\n",
        "                                             r / 10, N_sim=int(1e5))\n",
    
        "\n",
        "    failure_rates[r - 1, 0] = np.mean(f_rate_true)\n",
        "    failure_rates[r - 1, 1] = np.mean(f_rate_label)\n",
        "    failure_rates[r - 1, 2] = np.mean(f_rate_human)\n",
        "    failure_rates[r - 1, 3] = np.mean(f_rate_cont)\n",
        "    failure_rates[r - 1, 4] = np.mean(f_rate_caus)\n",
        "\n",
        "    failure_sems[r - 1, 0] = scs.sem(f_rate_true)\n",
        "    failure_sems[r - 1, 1] = scs.sem(f_rate_label)\n",
        "    failure_sems[r - 1, 2] = scs.sem(f_rate_human)\n",
        "    failure_sems[r - 1, 3] = scs.sem(f_rate_cont)\n",
        "    failure_sems[r - 1, 4] = scs.sem(f_rate_caus)\n",
        "\n",
        "x_ax = np.arange(0.1, 0.9, 0.1)\n",
        "\n",
        "plt.errorbar(x_ax,\n",
        "             failure_rates[:, 0],\n",
        "             label='True Evaluation',\n",
        "             c='green',\n",
        "             yerr=failure_sems[:, 0])\n",
        "plt.errorbar(x_ax,\n",
        "             failure_rates[:, 1],\n",
        "             label='Labeled outcomes',\n",
        "             c='magenta',\n",
        "             yerr=failure_sems[:, 1])\n",
        "plt.errorbar(x_ax,\n",
        "             failure_rates[:, 2],\n",
        "             label='Human evaluation',\n",
        "             c='red',\n",
        "             yerr=failure_sems[:, 2])\n",
        "plt.errorbar(x_ax,\n",
        "             failure_rates[:, 3],\n",
    
        "             label='Contraction',\n",
    
        "             c='blue',\n",
        "             yerr=failure_sems[:, 3])\n",
        "plt.errorbar(x_ax,\n",
        "             failure_rates[:, 4],\n",
    
        "             label='Monte Carlo',\n",
    
        "             c='black',\n",
        "             yerr=failure_sems[:, 4])\n",
        "\n",
    
        "plt.title('Failure rate vs. Acceptance rate with Z (modular)')\n",
    
        "plt.xlabel('Acceptance rate')\n",
        "plt.ylabel('Failure rate')\n",
        "plt.legend()\n",
        "plt.grid()\n",
        "plt.show()\n",
        "\n",
        "print(failure_rates)\n",
        "print(\"\\nMean absolute errors:\")\n",
        "for i in range(1, failure_rates.shape[1]):\n",
        "    print(np.mean(np.abs(failure_rates[:, 0] - failure_rates[:, i])))"
       ]
      },
    
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "## Bayesian sampling"
       ]
      },
    
      {
       "cell_type": "code",
    
       "execution_count": 27,
    
       "metadata": {
    
        "scrolled": false
    
       },
       "outputs": [],
       "source": [
    
        "# import pystan\n",
        "\n",
        "# code = \"\"\"\n",
        "# functions{\n",
        "#   // below taken from https://discourse.mc-stan.org/t/quantile-function-in-stan/3642/13\n",
        "#   // as Stan doesn't have a quantile function nor supports real-to-int conversion.\n",
        "#   int ub(real x) {\n",
        "#     int ub = 1;\n",
        "#     while (ub < x) ub *= 2;\n",
        "#     return ub;\n",
        "#   }\n",
        "\n",
        "#   int closest(real x, int a, int b) {\n",
        "#     return fabs(x - a) < fabs(x - b) ? a : b;\n",
        "#   }\n",
        "\n",
        "#   // L <= x <= U\n",
        "#   int to_int_bsearch(real x, int L, int U);\n",
        "\n",
        "#   int to_int_bsearch(real x, int L, int U) {\n",
        "#     int mid = (L + U) / 2;\n",
        "#     if (L == U) return L;\n",
        "#     if (L + 1 == U) return closest(x, L, U);\n",
        "#     return x <= mid? to_int_bsearch(x, L, mid) : to_int_bsearch(x, mid, U);\n",
        "#   }\n",
        "\n",
        "#   int to_int(real x);\n",
        "\n",
        "#   int to_int(real x) {\n",
        "#     if (fabs(x) >= 2^31) reject(\"to_int arugment must be < 2^31, found x = \", x);\n",
        "#     if (x < 0) return -to_int(-x);\n",
        "#     return to_int_bsearch(x, 0, ub(x));\n",
        "#   }\n",
        "# }\n",
        "\n",
        "# data {\n",
        "#   int<lower=0> N;\n",
        "#   int<lower=0> N_quantiles;\n",
        "#   real<lower=0, upper=1> r[N];\n",
        "#   int<lower=0, upper=1> decision[N];\n",
        "#   real X[N];\n",
        "#   real<lower=0, upper=1> quantiles[N_quantiles];\n",
        "# }\n",
        "\n",
        "# parameters {\n",
        "#   real Z[N];\n",
        "#   real<lower=0, upper=1> p;\n",
        "# }\n",
        "\n",
        "# model {\n",
        "#   Z ~ normal(0, 1);\n",
    
        "#   for(i in 1:N){\n",
        "#     if (inv_logit(X[i] + Z[i]) <= quantiles[to_int(r[i]*N_quantiles)])\n",
        "#       decision ~ bernoulli(p);\n",
        "#     else\n",
        "#       decision ~ bernoulli(1-p);\n",
        "#   }\n",
        "# }\n",
        "# \"\"\"\n",
        "# # Create data\n",
        "# df = coinFlipDGWithUnobservables(N_total=500)\n",
        "\n",
        "# # Decider\n",
        "# df = quantileDecider(df, featureX_col=\"X\", featureZ_col=\"Z\", nJudges_M=10,\n",
        "#                              beta_X=1, beta_Z=1, hide_unobserved=True)\n",
        "\n",
        "# N_sim = int(1e8)\n",
        "\n",
        "# quants = inv_logit(npr.normal(size=N_sim) + npr.normal(size=N_sim))\n",
        "\n",
        "# dat = dict(N = df.shape[0],\n",
        "#            N_quantiles = 100001,\n",
        "#            r = df.acceptanceRate_R,\n",
        "#            decision = df.decision_T,\n",
        "#            X = df.X,\n",
        "#            quantiles = np.quantile(quants, np.linspace(0, 1, 100001)))\n",
        "\n",
        "# sm = pystan.StanModel(model_code=code)\n",
        "# fit = sm.sampling(data=dat, iter=4000, chains=4)"
    
       ]
      }
     ],
     "metadata": {
      "kernelspec": {
       "display_name": "Python 3",
       "language": "python",
       "name": "python3"
      },
      "language_info": {
       "codemirror_mode": {
        "name": "ipython",
        "version": 3
       },
       "file_extension": ".py",
       "mimetype": "text/x-python",
       "name": "python",
       "nbconvert_exporter": "python",
       "pygments_lexer": "ipython3",
       "version": "3.7.3"
      },
      "toc": {
       "base_numbering": 1,
       "nav_menu": {},
       "number_sections": true,
       "sideBar": true,
       "skip_h1_title": true,
       "title_cell": "Table of Contents",
       "title_sidebar": "Contents",
       "toc_cell": true,
       "toc_position": {
        "height": "1084px",
        "left": "228px",
        "top": "111.133px",
        "width": "300.7px"
       },
       "toc_section_display": true,
       "toc_window_display": true
      },
      "varInspector": {
       "cols": {
        "lenName": 16,
        "lenType": 16,
        "lenVar": 40
       },
       "kernels_config": {
        "python": {
         "delete_cmd_postfix": "",
         "delete_cmd_prefix": "del ",
         "library": "var_list.py",
         "varRefreshCmd": "print(var_dic_list())"
        },
        "r": {
         "delete_cmd_postfix": ") ",
         "delete_cmd_prefix": "rm(",
         "library": "var_list.r",
         "varRefreshCmd": "cat(var_dic_list()) "
        }
       },
       "position": {
        "height": "352.85px",
        "left": "1070px",
        "right": "20px",
        "top": "120px",
        "width": "350px"
       },
       "types_to_exclude": [
        "module",
        "function",
        "builtin_function_or_method",
        "instance",
        "_Feature"
       ],
       "window_display": false
      }
     },
     "nbformat": 4,
     "nbformat_minor": 2
    }