Newer
Older
%% This BibTeX bibliography file was created using BibDesk.
%% http://bibdesk.sourceforge.net/
%% Created for Laine, Riku P at 2019-08-02 09:38:23 +0300
%% Saved with string encoding Unicode (UTF-8)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
@inproceedings{Bareinboim2014:selectionbias,
title = {Recovering from Selection Bias in Causal and Statistical Inference},
author = {Bareinboim, E. and Tian, J. and Pearl, J.},
booktitle = {Proceedings of the 28th AAAI Conference on Neural Information Processing Systems},
year = {2014}
}
@inproceedings{Shpitser2015,
title = {Missing Data as a Causal and Probabilistic Problem},
author = {Shpitser, I. and Mohan, K. and Pearl, J.},
editor = {Marina Meila and Tom Heskes},
booktitle = {Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence},
publisher = {AUAI Press},
pages = {802--811},
year = {2015}
}
@inproceedings{Mohan2013,
author = {K. Mohan and J. Pearl and J. Tian},
title = {Graphical models for inference with missing data},
booktitle = {Advances in Neural Information Systems},
volume = {26},
pages = {1277--1285},
year = {2013}
}
@incollection{smr1999,
author={Peter Spirtes and Christopher Meek and Thomas Richardson},
title={An Algorithm for Causal Inference in the Presence of Latent Variables and Selection Bias},
booktitle={Computation, Causation \& Discovery},
editor = {Clark Glymour and Gregory F. Cooper},
year = {1999},
pages = {211--252},
publisher = { AAAI / MIT Press}
}
@article{holland1986statistics,
title={Statistics and causal inference},
author={Holland, Paul W},
journal={Journal of the American statistical Association},
volume={81},
number={396},
pages={945--960},
year={1986},
publisher={Taylor \& Francis}
}
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
@inproceedings{kallus2018confounding,
title={Confounding-robust policy improvement},
author={Kallus, Nathan and Zhou, Angela},
booktitle={Advances in neural information processing systems},
pages={9269--9279},
year={2018}
}
@inproceedings{DBLP:conf/icml/ThomasB16,
author = {Philip S. Thomas and
Emma Brunskill},
editor = {Maria{-}Florina Balcan and
Kilian Q. Weinberger},
title = {Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning},
booktitle = {Proceedings of the 33nd International Conference on Machine Learning,
{ICML} 2016, New York City, NY, USA, June 19-24, 2016},
series = {{JMLR} Workshop and Conference Proceedings},
volume = {48},
pages = {2139--2148},
publisher = {JMLR.org},
year = {2016},
OPTurl = {http://proceedings.mlr.press/v48/thomasa16.html},
OPTtimestamp = {Wed, 29 May 2019 08:41:46 +0200},
OPTbiburl = {https://dblp.org/rec/bib/conf/icml/ThomasB16},
OPTbibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{chouldechova2017fair,
title={Fair prediction with disparate impact: A study of bias in recidivism prediction instruments},
author={Chouldechova, Alexandra},
journal={Big data},
volume={5},
number={2},
pages={153--163},
year={2017},
publisher={Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA}
}
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
@article{mccandless2017comparison,
title={A comparison of Bayesian and Monte Carlo sensitivity analysis for unmeasured confounding},
author={McCandless, Lawrence C and Gustafson, Paul},
journal={Statistics in medicine},
volume={36},
number={18},
pages={2887--2901},
year={2017},
publisher={Wiley Online Library}
}
@article{kleinberg2018human,
title={Human decisions and machine predictions},
author={Kleinberg, Jon and Lakkaraju, Himabindu and Leskovec, Jure and Ludwig, Jens and Mullainathan, Sendhil},
journal={The quarterly journal of economics},
volume={133},
number={1},
pages={237--293},
year={2018},
publisher={Oxford University Press}
}
@inproceedings{corbett2017algorithmic,
title={Algorithmic decision making and the cost of fairness},
author={Corbett-Davies, Sam and Pierson, Emma and Feller, Avi and Goel, Sharad and Huq, Aziz},
booktitle={Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},
pages={797--806},
year={2017}
}
@inproceedings{coston2020counterfactual,
title={Counterfactual risk assessments, evaluation, and fairness},
author={Coston, Amanda and Mishler, Alan and Kennedy, Edward H and Chouldechova, Alexandra},
booktitle={Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency},
pages={582--593},
year={2020}
}
@inproceedings{madras2019fairness,
title={Fairness through causal awareness: Learning causal latent-variable models for biased data},
author={Madras, David and Creager, Elliot and Pitassi, Toniann and Zemel, Richard},
booktitle={Proceedings of the Conference on Fairness, Accountability, and Transparency},
pages={349--358},
year={2019}
}
@article{murder,
OPTISSN = {09641998, 1467985X},
OPTURL = {http://www.jstor.org/stable/30136747},
author = {Richard Berk and Lawrence Sherman and Geoffrey Barnes and Ellen Kurtz and Lindsay Ahlman},
journal = {Journal of the Royal Statistical Society. Series A (Statistics in Society)},
number = {1},
pages = {191--211},
publisher = {[Wiley, Royal Statistical Society]},
title = {Forecasting Murder within a Population of Probationers and Parolees: A High Stakes Application of Statistical Learning},
volume = {172},
year = {2009}
}
@book{little2019statistical,
title={Statistical analysis with missing data},
author={Little, Roderick JA and Rubin, Donald B},
volume={793},
year={2019},
publisher={John Wiley \& Sons}
}
@article{bang2005doubly,
title={Doubly robust estimation in missing data and causal inference models},
author={Bang, Heejung and Robins, James M},
journal={Biometrics},
volume={61},
number={4},
pages={962--973},
year={2005},
publisher={Wiley Online Library}
}
@inproceedings{DBLP:conf/icml/DudikLL11,
author = {Miroslav Dud{\'{\i}}k and
John Langford and
Lihong Li},
editor = {Lise Getoor and
Tobias Scheffer},
title = {Doubly Robust Policy Evaluation and Learning},
booktitle = {Proceedings of the 28th International Conference on Machine Learning,
{ICML} 2011, Bellevue, Washington, USA, June 28 - July 2, 2011},
pages = {1097--1104},
publisher = {Omnipress},
year = {2011},
OPTurl = {https://icml.cc/2011/papers/554\_icmlpaper.pdf},
OPTtimestamp = {Wed, 03 Apr 2019 17:43:35 +0200},
OPTbiburl = {https://dblp.org/rec/bib/conf/icml/DudikLL11},
OPTbibsource = {dblp computer science bibliography, https://dblp.org}
@inproceedings{Jung2,
author = {Jung, Jongbin and Shroff, Ravi and Feller, Avi and Goel, Sharad},
title = {Bayesian Sensitivity Analysis for Offline Policy Evaluation},
year = {2020},
isbn = {9781450371100},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
OPTurl = {https://doi.org/10.1145/3375627.3375822},
OPTdoi = {10.1145/3375627.3375822},
booktitle = {Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society},
pages = {64?70},
numpages = {7},
OPTkeywords = {pretrial risk assessment, offline policy evaluation, sensitivity to unmeasured confounding},
OPTlocation = {New York, NY, USA},
OPTseries = {AIES}
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
@inproceedings{DBLP:conf/icml/JohanssonSS16,
author = {Fredrik D. Johansson and
Uri Shalit and
David A. Sontag},
editor = {Maria{-}Florina Balcan and
Kilian Q. Weinberger},
title = {Learning Representations for Counterfactual Inference},
booktitle = {Proceedings of the 33nd International Conference on Machine Learning,
{ICML} 2016, New York City, NY, USA, June 19-24, 2016},
series = {{JMLR} Workshop and Conference Proceedings},
volume = {48},
pages = {3020--3029},
publisher = {JMLR.org},
year = {2016},
url = {http://proceedings.mlr.press/v48/johansson16.html},
timestamp = {Fri, 15 Nov 2019 17:16:09 +0100},
biburl = {https://dblp.org/rec/bib/conf/icml/JohanssonSS16},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/jmlr/BottouPCCCPRSS13,
author = {L{\'{e}}on Bottou and
Jonas Peters and
Joaquin Qui{\~{n}}onero Candela and
Denis Xavier Charles and
Max Chickering and
Elon Portugaly and
Dipankar Ray and
Patrice Y. Simard and
Ed Snelson},
title = {Counterfactual reasoning and learning systems: the example of computational
advertising},
journal = {J. Mach. Learn. Res.},
volume = {14},
number = {1},
pages = {3207--3260},
year = {2013},
url = {http://dl.acm.org/citation.cfm?id=2567766},
timestamp = {Wed, 10 Jul 2019 15:27:56 +0200},
biburl = {https://dblp.org/rec/bib/journals/jmlr/BottouPCCCPRSS13},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{DBLP:conf/icml/NabiMS19,
author = {Razieh Nabi and
Daniel Malinsky and
Ilya Shpitser},
OPTaddress = { {ICML} 2019, 9-15 June 2019, Long Beach, California, {USA}},
OPTeditor = {Kamalika Chaudhuri and
Ruslan Salakhutdinov},
title = {Learning Optimal Fair Policies},
booktitle = {Proceedings of the 36th International Conference on Machine Learning},
series = {Proceedings of Machine Learning Research},
volume = {97},
pages = {4674--4682},
publisher = {{PMLR}},
year = {2019},
OPTurl = {http://proceedings.mlr.press/v97/nabi19a.html},
OPTtimestamp = {Tue, 11 Jun 2019 15:37:38 +0200},
OPTbiburl = {https://dblp.org/rec/bib/conf/icml/NabiMS19},
OPTbibsource = {dblp computer science bibliography, https://dblp.org}
@article{rosenbaum1983central,
title={The central role of the propensity score in observational studies for causal effects},
author={Rosenbaum, Paul R and Rubin, Donald B},
journal={Biometrika},
volume={70},
number={1},
pages={41--55},
year={1983},
publisher={Oxford University Press}
}
@article{austin2011introduction,
title={An introduction to propensity score methods for reducing the effects of confounding in observational studies},
author={Austin, Peter C},
journal={Multivariate behavioral research},
volume={46},
number={3},
pages={399--424},
year={2011},
publisher={Taylor \& Francis}
}
@book{pearl2000,
author = {J.~Pearl},
title = {Causality: Models, Reasoning, and Inference},
publisher = {Cambridge University Press},
year = {2000}
}
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
@article{pearl1995empirical,
title={Causal diagrams for empirical research},
author={Pearl, Judea},
journal={Biometrika},
volume={82},
number={4},
pages={669--688},
year={1995},
publisher={Oxford University Press}
}
@article{brennan2009evaluating,
title={Evaluating the predictive validity of the COMPAS risk and needs assessment system},
author={Brennan, Tim and Dieterich, William and Ehret, Beate},
journal={Criminal Justice and Behavior},
volume={36},
number={1},
pages={21--40},
year={2009},
publisher={Sage Publications Sage CA: Los Angeles, CA}
}
@article{hernan2004structural,
title={A structural approach to selection bias},
author={Hern{\'a}n, Miguel A and Hern{\'a}ndez-D{\'\i}az, Sonia and Robins, James M},
journal={Epidemiology},
volume={15},
number={5},
pages={615--625},
year={2004},
publisher={LWW}
}
@inproceedings{DBLP:conf/icml/Kusner0LS19,
author = {Matt J. Kusner and
Chris Russell and
Joshua R. Loftus and
Ricardo Silva},
title = {Making Decisions that Reduce Discriminatory Impacts},
booktitle = {{ICML}},
series = {Proceedings of Machine Learning Research},
volume = {97},
pages = {3591--3600},
publisher = {{PMLR}},
year = {2019}
}
Author = {Tolan, Song\"{u}l and Miron, Marius and G\'{o}mez, Emilia and Castillo, Carlos},
Booktitle = {Proceedings of the Seventeenth International Conference on Artificial Intelligence and Law},
OPTDate-Added = {2019-08-02 06:37:23 +0000},
OPTDate-Modified = {2019-08-02 06:38:23 +0000},
OPTDoi = {10.1145/3322640.3326705},
OPTIsbn = {978-1-4503-6754-7},
OPTKeywords = {algorithmic bias, algorithmic fairness, criminal recidivism, machine learning, risk assessment},
OPTLocation = {Montreal, QC, Canada},
OPTNumpages = {10},
Title = {Why Machine Learning May Lead to Unfairness: Evidence from Risk Assessment for Juvenile Justice in Catalonia},
Year = {2019}
}
@article{pearl2010introduction,
Author = {Pearl, Judea},
Journal = {The international journal of biostatistics},
Number = {2},
Publisher = {De Gruyter},
Title = {An introduction to causal inference},
Volume = {6},
Year = {2010}}
@book{bookofwhy,
title={The book of why: the new science of cause and effect},
author={Pearl, Judea and Mackenzie, Dana},
year={2018},
publisher={Basic Books},
address = {New York, USA}
}
OPTAcmid = {3098066},
OPTAddress = {New York, NY, USA},
Author = {Lakkaraju, Himabindu and Kleinberg, Jon and Leskovec, Jure and Ludwig, Jens and Mullainathan, Sendhil},
Booktitle = {Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},
OPTDoi = {10.1145/3097983.3098066},
OPTIsbn = {978-1-4503-4887-4},
OPTKeywords = {evaluating machine learning algorithms, selective labels, unmeasured confounders, unobservables},
OPTLocation = {Halifax, NS, Canada},
Numpages = {10},
Pages = {275--284},
Publisher = {ACM},
Series = {KDD '17},
Title = {The Selective Labels Problem: Evaluating Algorithmic Predictions in the Presence of Unobservables},
OPTBdsk-Url-1 = {http://doi.acm.org/10.1145/3097983.3098066},
OPTBdsk-Url-2 = {http://dx.doi.org/10.1145/3097983.3098066}}
@article{jung2018algorithmic,
Author = {Jung, Jongbin and Shroff, Ravi and Feller, Avi and Goel, Sharad},
Date-Added = {2019-08-02 06:37:23 +0000},
Date-Modified = {2019-08-02 06:37:23 +0000},
Journal = {arXiv preprint arXiv:1805.01868},
Title = {Algorithmic decision making in the presence of unmeasured confounding},
Year = {2018}}
@article{dearteaga2018learning,
Author = {De-Arteaga, Maria and Dubrawski, Artur and Chouldechova, Alexandra},
Date-Added = {2019-08-02 06:37:23 +0000},
Date-Modified = {2019-08-02 06:37:23 +0000},
Journal = {arXiv preprint arXiv:1807.00905},
Title = {Learning under selective labels in the presence of expert consistency},
Year = {2018}}
Riku-Laine
committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
@article{ohagan1979outlier,
title={On outlier rejection phenomena in Bayes inference},
author={O'Hagan, Anthony},
journal={Journal of the Royal Statistical Society: Series B (Methodological)},
volume={41},
number={3},
pages={358--367},
year={1979},
publisher={Wiley Online Library}
}
@inproceedings{bareinboim2012controlling,
title={Controlling selection bias in causal inference},
author={Bareinboim, Elias and Pearl, Judea},
booktitle={Artificial Intelligence and Statistics},
pages={100--108},
year={2012}
}
@misc{kleinberg2016inherent,
title={Inherent Trade-Offs in the Fair Determination of Risk Scores},
author={Jon Kleinberg and Sendhil Mullainathan and Manish Raghavan},
year={2016},
eprint={1609.05807},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@article{angwin2016machine,
title={Machine Bias},
url={https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing},
journal={ProPublica},
Riku-Laine
committed
author={Julia Angwin and Jeff Larson and Surya Mattu and Lauren Kirchner}
}
@article{mccandless2007bayesian,
title={Bayesian sensitivity analysis for unmeasured confounding in observational studies},
author={McCandless, Lawrence C and Gustafson, Paul and Levy, Adrian},
journal={Statistics in medicine},
volume={26},
number={11},
pages={2331--2347},
year={2007},
publisher={Wiley Online Library}
}