Newer
Older
int<lower=1> D; // Dimensions of the features and coefficient vectors
int<lower=0> N_obs; // Number of observed observations (with T = 1)
int<lower=0> N_cens; // Number of censored observations (with T = 0)
int<lower=0> M; // Number of judges
real<lower=0> sigma_tau; // Prior for the variance parameters.
int<lower=1, upper=M> jj_obs[N_obs]; // judge_ID array
int<lower=1, upper=M> jj_cens[N_cens]; // judge_ID array
int<lower=0, upper=1> dec_obs[N_obs]; // Decisions for the observed observations
int<lower=0, upper=1> dec_cens[N_cens]; // Decisions for the censored observations
row_vector[D] X_obs[N_obs]; // Features of the observed observations
row_vector[D] X_cens[N_cens]; // Features of the censored observations
int<lower=0, upper=1> y_obs[N_obs]; // Outcomes of the observed observations
}
parameters {
// Latent variable
vector[N_obs] Z_obs;
vector[N_cens] Z_cens;
// Intercepts and their variance parameters.
real<lower=0> sigma_T;
real<lower=0> sigma_Y;
vector[M] alpha_T_raw;
// Temporary variables to compute the coefficients
vector[D] a_XT;
vector[D] a_XY;
real<lower=0> a_ZT; // Presume latent variable has a positive coefficient.
real<lower=0> a_ZY;
real<lower=0> tau_X; // RL 08DEC2019: Combine taus for X.
real<lower=0> tau_Z; // RL 24OCT2019: Combine taus for Z.
}
transformed parameters {
// Coefficients
vector[D] beta_XT;
vector[D] beta_XY;
real<lower=0> beta_ZT; // Presume latent variable has a positive coefficient.
real<lower=0> beta_ZY;
// Intercepts
vector[M] alpha_T;
real alpha_Y;
beta_XT = a_XT / sqrt(tau_X); // RL 08DEC2019: Combine taus for X.
beta_XY = a_XY / sqrt(tau_X);
beta_ZT = a_ZT / sqrt(tau_Z); // RL 24OCT2019: Combine taus for Z.
beta_ZY = a_ZY / sqrt(tau_Z);
// beta_XT = a_XT * tau_X; // RL 08DEC2019: Combine taus for X.
// beta_XY = a_XY * tau_X;
// beta_ZT = a_ZT * tau_Z; // RL 24OCT2019: Combine taus for Z.
// beta_ZY = a_ZY * tau_Z;
alpha_Y = sigma_Y * alpha_Y_raw;
}
model {
// Latent variable
Z_obs ~ normal(0, 1);
Z_cens ~ normal(0, 1);
sigma_T ~ normal(0, sigma_tau);
sigma_Y ~ normal(0, sigma_tau);
alpha_T_raw ~ normal(0, 1);
alpha_Y_raw ~ normal(0, 1);
// According to
// https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
// section "Prior for the regression coefficients in logistic regression
// (non-sparse case)" a good prior is Student's with parameters 3 < nu < 7,
// 0 and 1.
// Also, according to
// https://mc-stan.org/docs/2_19/stan-users-guide/reparameterization-section.html
// reparametrizing beta ~ student_t(nu, 0, 1) can be done by sampling
// a ~ N(0, 1) and tau ~ gamma(nu/2, nu/2) so then beta = a * tau^(-1/2).
// Reparametrizing is done to achieve better mixing.
a_XT ~ normal(0, 1);
a_XY ~ normal(0, 1);
a_ZT ~ normal(0, 1);
a_ZY ~ normal(0, 1);
tau_X ~ gamma(3, 3);
tau_Z ~ gamma(3, 3);
// tau_X ~ normal(0, 1);
// tau_Z ~ normal(0, 1);
// Compute the regressions for the observed observations
for(i in 1:N_obs){
dec_obs[i] ~ bernoulli_logit(alpha_T[jj_obs[i]] + X_obs[i] * beta_XT + beta_ZT * Z_obs[i]);
y_obs[i] ~ bernoulli_logit(alpha_Y + X_obs[i] * beta_XY + beta_ZY * Z_obs[i]);
}
// Compute the regression for the censored observations
for(i in 1:N_cens)
dec_cens[i] ~ bernoulli_logit(alpha_T[jj_cens[i]] + X_cens[i] * beta_XT + beta_ZT * Z_cens[i]);
}
generated quantities {
int<lower=0, upper=1> y_est[N_cens];
// Generate a draw from the posterior predictive for the outcome.
for(i in 1:N_cens){
y_est[i] = bernoulli_logit_rng(alpha_Y + X_cens[i] * beta_XY + beta_ZY * Z_cens[i]);
}
}