Skip to content
Snippets Groups Projects
Analysis_25JUN2019_modular.ipynb 49.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    {
     "cells": [
      {
       "cell_type": "markdown",
       "metadata": {
        "toc": true
       },
       "source": [
        "<h1>Table of Contents<span class=\"tocSkip\"></span></h1>\n",
        "<div class=\"toc\"><ul class=\"toc-item\"><li><span><a href=\"#Data-generation-modules\" data-toc-modified-id=\"Data-generation-modules-1\"><span class=\"toc-item-num\">1&nbsp;&nbsp;</span>Data generation modules</a></span></li><li><span><a href=\"#Decider-modules\" data-toc-modified-id=\"Decider-modules-2\"><span class=\"toc-item-num\">2&nbsp;&nbsp;</span>Decider modules</a></span></li><li><span><a href=\"#Evaluator-modules\" data-toc-modified-id=\"Evaluator-modules-3\"><span class=\"toc-item-num\">3&nbsp;&nbsp;</span>Evaluator modules</a></span><ul class=\"toc-item\"><li><span><a href=\"#Convenience-functions\" data-toc-modified-id=\"Convenience-functions-3.1\"><span class=\"toc-item-num\">3.1&nbsp;&nbsp;</span>Convenience functions</a></span></li><li><span><a href=\"#Contraction-algorithm\" data-toc-modified-id=\"Contraction-algorithm-3.2\"><span class=\"toc-item-num\">3.2&nbsp;&nbsp;</span>Contraction algorithm</a></span></li><li><span><a href=\"#Evaluators\" data-toc-modified-id=\"Evaluators-3.3\"><span class=\"toc-item-num\">3.3&nbsp;&nbsp;</span>Evaluators</a></span></li></ul></li><li><span><a href=\"#Performance-comparison\" data-toc-modified-id=\"Performance-comparison-4\"><span class=\"toc-item-num\">4&nbsp;&nbsp;</span>Performance comparison</a></span><ul class=\"toc-item\"><li><span><a href=\"#Without-unobservables-in-the-data\" data-toc-modified-id=\"Without-unobservables-in-the-data-4.1\"><span class=\"toc-item-num\">4.1&nbsp;&nbsp;</span>Without unobservables in the data</a></span></li><li><span><a href=\"#With-unobservables-in-the-data\" data-toc-modified-id=\"With-unobservables-in-the-data-4.2\"><span class=\"toc-item-num\">4.2&nbsp;&nbsp;</span>With unobservables in the data</a></span></li></ul></li></ul></div>"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "Refer to the `notes.tex` file for explanations about the modular framework."
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 36,
       "metadata": {},
       "outputs": [],
       "source": [
        "# Imports\n",
        "\n",
        "import numpy as np\n",
        "import pandas as pd\n",
        "from datetime import datetime\n",
        "import matplotlib.pyplot as plt\n",
        "import scipy.stats as scs\n",
        "import scipy.integrate as si\n",
        "import seaborn as sns\n",
        "import numpy.random as npr\n",
        "from sklearn.preprocessing import OneHotEncoder\n",
        "from sklearn.linear_model import LogisticRegression\n",
        "from sklearn.ensemble import RandomForestClassifier\n",
        "from sklearn.model_selection import train_test_split\n",
        "\n",
        "# Settings\n",
        "\n",
        "%matplotlib inline\n",
        "\n",
        "plt.rcParams.update({'font.size': 16})\n",
        "plt.rcParams.update({'figure.figsize': (10, 6)})\n",
        "\n",
        "# Suppress deprecation warnings.\n",
        "\n",
        "import warnings\n",
        "\n",
        "\n",
        "def fxn():\n",
        "    warnings.warn(\"deprecated\", DeprecationWarning)\n",
        "\n",
        "\n",
        "with warnings.catch_warnings():\n",
        "    warnings.simplefilter(\"ignore\")\n",
        "    fxn()"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "## Data generation modules"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 37,
       "metadata": {},
       "outputs": [],
       "source": [
        "def sigmoid(x):\n",
        "    '''Return value of sigmoid function (inverse of logit) at x.'''\n",
        "\n",
        "    return 1 / (1 + np.exp(-1 * x))\n",
        "\n",
        "\n",
        "def coinFlipDGWithoutUnobservables(N_total=50000):\n",
        "\n",
        "    df = pd.DataFrame()\n",
        "\n",
        "    # Sample feature X from standard Gaussian distribution, N(0, 1).\n",
        "    df = df.assign(X=npr.normal(size=N_total))\n",
        "\n",
        "    # Calculate P(Y=0|X=x) = 1 / (1 + exp(-X)) = sigmoid(X)\n",
        "    df = df.assign(probabilities_Y=sigmoid(df.X))\n",
        "\n",
        "    # Draw Y ~ Bernoulli(1 - sigmoid(X))\n",
        "    # Note: P(Y=1|X=x) = 1 - P(Y=0|X=x) = 1 - sigmoid(X)\n",
        "    results = npr.binomial(n=1, p=1 - df.probabilities_Y, size=N_total)\n",
        "\n",
        "    df = df.assign(result_Y=results)\n",
        "\n",
        "    return df\n",
        "\n",
        "\n",
        "def thresholdDGWithUnobservables(N_total=50000):\n",
        "\n",
        "    df = pd.DataFrame()\n",
        "\n",
        "    # Sample the variables from standard Gaussian distributions.\n",
        "    df = df.assign(X=npr.normal(size=N_total))\n",
        "    df = df.assign(Z=npr.normal(size=N_total))\n",
        "    df = df.assign(W=npr.normal(size=N_total))\n",
        "\n",
        "    # Calculate P(Y=0|X, Z, W)\n",
        "    probabilities_Y = sigmoid(beta_X * df.X + beta_Z * df.Z + beta_W * df.W)\n",
        "\n",
        "    df = df.assign(probabilities_Y=probabilities_Y)\n",
        "\n",
        "    # Result is 0 if P(Y = 0| X = x; Z = z; W = w) >= 0.5 , 1 otherwise\n",
        "    df = df.assign(result_Y=np.where(df.probabilities_Y >= 0.5, 0, 1))\n",
        "\n",
        "    return df\n",
        "\n",
        "\n",
        "def coinFlipDGWithUnobservables(N_total=50000,\n",
        "                                beta_X=1.0,\n",
        "                                beta_Z=1.0,\n",
        "                                beta_W=0.2):\n",
        "\n",
        "    df = pd.DataFrame()\n",
        "\n",
        "    # Sample feature X, Z and W from standard Gaussian distribution, N(0, 1).\n",
        "    df = df.assign(X=npr.normal(size=N_total))\n",
        "    df = df.assign(Z=npr.normal(size=N_total))\n",
        "    df = df.assign(W=npr.normal(size=N_total))\n",
        "\n",
        "    # Calculate P(Y=0|X=x) = 1 / (1 + exp(-X)) = sigmoid(X)\n",
        "    probabilities_Y = sigmoid(beta_X * df.X + beta_Z * df.Z + beta_W * df.W)\n",
        "\n",
        "    df = df.assign(probabilities_Y=probabilities_Y)\n",
        "\n",
        "    # Draw Y from Bernoulli distribution\n",
        "    results = npr.binomial(n=1,\n",
        "                           p=1 - df.probabilities_Y,\n",
        "                           size=N_total)\n",
        "\n",
        "    df = df.assign(result_Y=results)\n",
        "\n",
        "    return df"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "## Decider modules"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 38,
       "metadata": {},
       "outputs": [],
       "source": [
        "def humanDeciderLakkaraju(df,\n",
        "                          result_Y,\n",
        "                          featureX_col,\n",
        "                          featureZ_col,\n",
        "                          nJudges_M=100,\n",
        "                          beta_X=1,\n",
        "                          beta_Z=1,\n",
        "                          hide_unobserved=True):\n",
        "\n",
        "    # Assert that every judge will have the same number of subjects.\n",
        "    assert df.shape[0] % nJudges_M == 0, \"Can't assign subjets evenly!\"\n",
        "\n",
        "    # Compute the number of subjects allocated for each judge.\n",
        "    nSubjects_N = int(df.shape[0] / nJudges_M)\n",
        "\n",
        "    # Assign judge IDs as running numbering from 0 to nJudges_M - 1\n",
        "    df = df.assign(judgeID_J=np.repeat(range(0, nJudges_M), nSubjects_N))\n",
        "\n",
        "    # Sample acceptance rates uniformly from a closed interval\n",
        "    # from 0.1 to 0.9 and round to tenth decimal place.\n",
        "    acceptance_rates = np.round(npr.uniform(.1, .9, nJudges_M), 10)\n",
        "\n",
        "    # Replicate the rates so they can be attached to the corresponding judge ID.\n",
        "    df = df.assign(acceptanceRate_R=np.repeat(acceptance_rates, nSubjects_N))\n",
        "\n",
        "    probabilities_T = sigmoid(beta_X * df[featureX_col] + beta_Z * df[featureZ_col])\n",
        "    probabilities_T += np.sqrt(0.1) * npr.normal(size=nJudges_M * nSubjects_N)\n",
        "\n",
        "    df = df.assign(probabilities_T=probabilities_T)\n",
        "\n",
        "    # Sort by judges then probabilities in decreasing order\n",
        "    # Most dangerous for each judge are at the top.\n",
        "    df.sort_values(by=[\"judgeID_J\", \"probabilities_T\"],\n",
        "                   ascending=False,\n",
        "                   inplace=True)\n",
        "\n",
        "    # Iterate over the data. Subject will be given a negative decision\n",
        "    # if they are in the top (1-r)*100% of the individuals the judge will judge.\n",
        "    # I.e. if their within-judge-index is under 1 - acceptance threshold times\n",
        "    # the number of subjects assigned to each judge they will receive a\n",
        "    # negative decision.\n",
        "    df.reset_index(drop=True, inplace=True)\n",
        "\n",
        "    df['decision_T'] = np.where((df.index.values % nSubjects_N) <\n",
        "                                ((1 - df['acceptanceRate_R']) * nSubjects_N),\n",
        "                                0, 1)\n",
        "    \n",
        "    if hide_unobserved:\n",
        "        df.loc[df.decision_T == 0, result_Y] = np.nan\n",
        "\n",
        "    return df\n",
        "\n",
        "\n",
        "def coinFlipDecider(df,\n",
        "                    featureX_col,\n",
        "                    featureZ_col,\n",
        "                    nJudges_M=100,\n",
        "                    beta_X=1,\n",
        "                    beta_Z=1,\n",
        "                    hide_unobserved=True):\n",
        "\n",
        "    # Assert that every judge will have the same number of subjects.\n",
        "    assert df.shape[0] % nJudges_M == 0, \"Can't assign subjets evenly!\"\n",
        "\n",
        "    # Compute the number of subjects allocated for each judge.\n",
        "    nSubjects_N = int(df.shape[0] / nJudges_M)\n",
        "\n",
        "    # Assign judge IDs as running numbering from 0 to nJudges_M - 1\n",
        "    df = df.assign(judgeID_J=np.repeat(range(0, nJudges_M), nSubjects_N))\n",
        "\n",
        "    # Sample acceptance rates uniformly from a closed interval\n",
        "    # from 0.1 to 0.9 and round to tenth decimal place.\n",
        "    #acceptance_rates = np.round(npr.uniform(.1, .9, nJudges_M), 10)\n",
        "    \n",
        "    # No real leniency here???\n",
        "    acceptance_rates = np.ones(nJudges_M)*0.5\n",
        "    \n",
        "    # Replicate the rates so they can be attached to the corresponding judge ID.\n",
        "    df = df.assign(acceptanceRate_R=np.repeat(acceptance_rates, nSubjects_N))\n",
        "\n",
        "    probabilities_T = sigmoid(beta_X * df[featureX_col] + beta_Z * df[featureZ_col])\n",
        "    #probabilities_T += np.sqrt(0.1) * npr.normal(size=nJudges_M * nSubjects_N)\n",
        "\n",
        "    df = df.assign(probabilities_T=probabilities_T)\n",
        "\n",
        "    # Draw T from Bernoulli distribution\n",
        "    decisions = npr.binomial(n=1, p=1 - df.probabilities_T, size=df.shape[0])\n",
        "\n",
        "    df = df.assign(decision_T=decisions)\n",
        "    \n",
        "    if hide_unobserved:\n",
        "        df.loc[df.decision_T == 0, 'result_Y'] = np.nan\n",
        "    \n",
        "    return df"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "## Evaluator modules\n",
        "\n",
        "### Convenience functions"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 94,
       "metadata": {},
       "outputs": [],
       "source": [
        "def fitPredictiveModel(x_train, y_train, x_test, class_value, model_type=None):\n",
        "    '''\n",
        "    Fit a predictive model (default logistic regression) with given training \n",
        "    instances and return probabilities for test instances to obtain a given \n",
        "    class label.\n",
        "    \n",
        "    Arguments:\n",
        "    ----------\n",
        "    \n",
        "    x_train -- x values of training instances\n",
        "    y_train -- y values of training instances\n",
        "    x_test -- x values of test instances\n",
        "    class_value -- class label for which the probabilities are counted for.\n",
        "    model_type -- type of model to be fitted.\n",
        "    \n",
        "    Returns:\n",
        "    --------\n",
        "    (1) Trained predictive model\n",
        "    (2) Probabilities for given test inputs for given class.\n",
        "    '''\n",
        "\n",
        "    if model_type is None or model_type in [\"logistic_regression\", \"lr\"]:\n",
        "        # Instantiate the model (using the default parameters)\n",
        "        logreg = LogisticRegression(solver='lbfgs')\n",
        "\n",
        "        # Check shape and fit the model.\n",
        "        if x_train.ndim == 1:\n",
        "            logreg = logreg.fit(x_train.values.reshape(-1, 1), y_train)\n",
        "        else:\n",
        "            logreg = logreg.fit(x_train, y_train)\n",
        "\n",
        "        label_probs_logreg = getProbabilityForClass(x_test, logreg,\n",
        "                                                    class_value)\n",
        "\n",
        "        return logreg, label_probs_logreg\n",
        "\n",
        "    elif model_type in [\"random_forest\", \"rf\"]:\n",
        "        # Instantiate the model\n",
        "        forest = RandomForestClassifier(n_estimators=100, max_depth=3)\n",
        "\n",
        "        # Check shape and fit the model.\n",
        "        if x_train.ndim == 1:\n",
        "            forest = forest.fit(x_train.values.reshape(-1, 1), y_train)\n",
        "        else:\n",
        "            forest = forest.fit(x_train, y_train)\n",
        "\n",
        "        label_probs_forest = getProbabilityForClass(x_test, forest,\n",
        "                                                    class_value)\n",
        "\n",
        "        return forest, label_probs_forest\n",
        "\n",
        "    elif model_type == \"fully_random\":\n",
        "\n",
        "        label_probs = np.ones_like(x_test) / 2\n",
        "\n",
        "        model_object = lambda x: 0.5\n",
        "\n",
        "        return model_object, label_probs\n",
        "    else:\n",
        "        raise ValueError(\"Invalid model_type!\", model_type)\n",
        "\n",
        "\n",
        "def getProbabilityForClass(x, model, class_value):\n",
        "    '''\n",
        "    Function (wrapper) for obtaining the probability of a class given x and a \n",
        "    predictive model.\n",
        "\n",
        "    Arguments:\n",
        "    -----------\n",
        "    x -- individual features, an array of shape (observations, features)\n",
        "    model -- a trained sklearn model. Predicts probabilities for given x. \n",
        "        Should accept input of shape (observations, features)\n",
        "    class_value -- the resulting class to predict (usually 0 or 1).\n",
        "\n",
        "    Returns:\n",
        "    --------\n",
        "    (1) The probabilities of given class label for each x.\n",
        "    '''\n",
        "    if x.ndim == 1:\n",
        "        # if x is vector, transform to column matrix.\n",
        "        f_values = model.predict_proba(np.array(x).reshape(-1, 1))\n",
        "    else:\n",
        "        f_values = model.predict_proba(x)\n",
        "\n",
        "    # Get correct column of predicted class, remove extra dimensions and return.\n",
        "    return f_values[:, model.classes_ == class_value].flatten()\n",
        "\n",
        "\n",
        "def cdf(x_0, model, class_value):\n",
        "    '''\n",
        "    Cumulative distribution function as described above. Integral is \n",
        "    approximated using Simpson's rule for efficiency.\n",
        "    \n",
        "    Arguments:\n",
        "    ----------\n",
        "    \n",
        "    x_0 -- private features of an instance for which the value of cdf is to be\n",
        "        calculated.\n",
        "    model -- a trained sklearn model. Predicts probabilities for given x. \n",
        "        Should accept input of shape (observations, features)\n",
        "    class_value -- the resulting class to predict (usually 0 or 1).\n",
        "\n",
        "    '''\n",
        "\n",
        "    def prediction(x):\n",
        "        return getProbabilityForClass(\n",
        "            np.array([x]).reshape(-1, 1), model, class_value)\n",
        "\n",
        "    prediction_x_0 = prediction(x_0)\n",
        "\n",
        "    x_values = np.linspace(-15, 15, 40000)\n",
        "\n",
        "    x_preds = prediction(x_values)\n",
        "\n",
        "    y_values = scs.norm.pdf(x_values)\n",
        "\n",
        "    results = np.zeros(x_0.shape[0])\n",
        "    print(\"en loop\")\n",
        "    for i in range(x_0.shape[0]):\n",
        "\n",
        "        y_copy = y_values.copy()\n",
        "\n",
        "        y_copy[x_preds > prediction_x_0[i]] = 0\n",
        "        \n",
        "        results[i] = si.simps(y_copy, x=x_values)\n",
        "    print(\"jlk loop\")\n",
        "    return results\n",
        "\n",
        "\n",
        "def bailIndicator(r, y_model, x_train, x_test):\n",
        "    '''\n",
        "    Indicator function for whether a judge will bail or jail a suspect.\n",
        "    Rationale explained above.\n",
        "\n",
        "    Algorithm:\n",
        "    ----------\n",
        "\n",
        "    (1) Calculate recidivism probabilities from training set with a trained \n",
        "        model and assign them to predictions_train.\n",
        "\n",
        "    (2) Calculate recidivism probabilities from test set with the trained \n",
        "        model and assign them to predictions_test.\n",
        "\n",
        "    (3) Construct a quantile function of the probabilities in\n",
        "        in predictions_train.\n",
        "\n",
        "    (4)\n",
        "    For pred in predictions_test:\n",
        "\n",
        "        if pred belongs to a percentile (computed from step (3)) lower than r\n",
        "            return True\n",
        "        else\n",
        "            return False\n",
        "\n",
        "    Arguments:\n",
        "    ----------\n",
        "\n",
        "    r -- float, acceptance rate, between 0 and 1\n",
        "    y_model -- a trained sklearn predictive model to predict the outcome\n",
        "    x_train -- private features of the training instances\n",
        "    x_test -- private features of the test instances\n",
        "\n",
        "    Returns:\n",
        "    --------\n",
        "    (1) Boolean list indicating a bail decision (bail = True) for each \n",
        "        instance in x_test.\n",
        "    '''\n",
        "\n",
        "    predictions_train = getProbabilityForClass(x_train, y_model, 0)\n",
        "\n",
        "    predictions_test = getProbabilityForClass(x_test, y_model, 0)\n",
        "\n",
        "    return [\n",
        "        scs.percentileofscore(predictions_train, pred, kind='weak') < r\n",
        "        for pred in predictions_test\n",
        "    ]"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "### Contraction algorithm\n",
        "\n",
        "Below is an implementation of Lakkaraju's team's algorithm presented in [their paper](https://helka.finna.fi/PrimoRecord/pci.acm3098066). Relevant parameters to be passed to the function are presented in the description."
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 40,
       "metadata": {},
       "outputs": [],
       "source": [
        "def contraction(df, judgeIDJ_col, decisionT_col, resultY_col, modelProbS_col,\n",
        "                accRateR_col, r):\n",
        "    '''\n",
        "    This is an implementation of the algorithm presented by Lakkaraju\n",
        "    et al. in their paper \"The Selective Labels Problem: Evaluating \n",
        "    Algorithmic Predictions in the Presence of Unobservables\" (2017).\n",
        "\n",
        "    Arguments:\n",
        "    -----------\n",
        "    df -- The (Pandas) data frame containing the data, judge decisions,\n",
        "        judge IDs, results and probability scores.\n",
        "    judgeIDJ_col -- String, the name of the column containing the judges' IDs\n",
        "        in df.\n",
        "    decisionT_col -- String, the name of the column containing the judges' decisions\n",
        "    resultY_col -- String, the name of the column containing the realization\n",
        "    modelProbS_col -- String, the name of the column containing the probability\n",
        "        scores from the black-box model B.\n",
        "    accRateR_col -- String, the name of the column containing the judges' \n",
        "        acceptance rates\n",
        "    r -- Float between 0 and 1, the given acceptance rate.\n",
        "\n",
        "    Returns:\n",
        "    --------\n",
        "    (1) The estimated failure rate at acceptance rate r.\n",
        "    '''\n",
        "    # Get ID of the most lenient judge.\n",
        "    most_lenient_ID_q = df[judgeIDJ_col].loc[df[accRateR_col].idxmax()]\n",
        "\n",
        "    # Subset. \"D_q is the set of all observations judged by q.\"\n",
        "    D_q = df[df[judgeIDJ_col] == most_lenient_ID_q].copy()\n",
        "\n",
        "    # All observations of R_q have observed outcome labels.\n",
        "    # \"R_q is the set of observations in D_q with observed outcome labels.\"\n",
        "    R_q = D_q[D_q[decisionT_col] == 1].copy()\n",
        "\n",
        "    # Sort observations in R_q in descending order of confidence scores S and\n",
        "    # assign to R_sort_q.\n",
        "    # \"Observations deemed as high risk by B are at the top of this list\"\n",
        "    R_sort_q = R_q.sort_values(by=modelProbS_col, ascending=False)\n",
        "\n",
        "    number_to_remove = int(\n",
        "        round((1.0 - r) * D_q.shape[0] - (D_q.shape[0] - R_q.shape[0])))\n",
        "\n",
        "    # \"R_B is the list of observations assigned to t = 1 by B\"\n",
        "    R_B = R_sort_q[number_to_remove:R_sort_q.shape[0]]\n",
        "\n",
        "    return np.sum(R_B[resultY_col] == 0) / D_q.shape[0]"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "### Evaluators"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 96,
       "metadata": {},
       "outputs": [],
       "source": [
        "def contractionEvaluator(df, featureX_col, judgeIDJ_col, decisionT_col,\n",
        "                         resultY_col, accRateR_col, r):\n",
        "\n",
        "    train, test = train_test_split(df, test_size=0.5)\n",
        "\n",
        "    B_model, predictions = fitPredictiveModel(\n",
        "        train.loc[train[decisionT_col] == 1, featureX_col],\n",
        "        train.loc[train[decisionT_col] == 1, resultY_col], test[featureX_col],\n",
        "        0)\n",
        "\n",
        "    test = test.assign(B_prob_0_model=predictions)\n",
        "\n",
        "    # Invoke the original contraction.\n",
        "    FR = contraction(test,\n",
        "                     judgeIDJ_col=judgeIDJ_col,\n",
        "                     decisionT_col=decisionT_col,\n",
        "                     resultY_col=resultY_col,\n",
        "                     modelProbS_col=\"B_prob_0_model\",\n",
        "                     accRateR_col=accRateR_col,\n",
        "                     r=r)\n",
        "\n",
        "    return FR\n",
        "\n",
        "\n",
        "def trueEvaluationEvaluator(df, featureX_col, decisionT_col, resultY_col, r):\n",
        "\n",
        "    train, test = train_test_split(df, test_size=0.5)\n",
        "\n",
        "    B_model, predictions = fitPredictiveModel(train[featureX_col],\n",
        "                                              train[resultY_col],\n",
        "                                              test[featureX_col], 0)\n",
        "\n",
        "    test = test.assign(B_prob_0_model=predictions)\n",
        "\n",
        "    test.sort_values(by='B_prob_0_model', inplace=True, ascending=True)\n",
        "\n",
        "    to_release = int(round(test.shape[0] * r / 10))\n",
        "\n",
        "    return np.sum(test[resultY_col][0:to_release] == 0) / test.shape[0]\n",
        "\n",
        "\n",
        "def labeledOutcomesEvaluator(df, featureX_col, decisionT_col, resultY_col, r):\n",
        "\n",
        "    train, test = train_test_split(df, test_size=0.5)\n",
        "\n",
        "    B_model, predictions = fitPredictiveModel(\n",
        "        train.loc[train[decisionT_col] == 1, featureX_col],\n",
        "        train.loc[train[decisionT_col] == 1, resultY_col], test[featureX_col],\n",
        "        0)\n",
        "\n",
        "    test = test.assign(B_prob_0_model=predictions)\n",
        "\n",
        "    test_observed = test.loc[test[decisionT_col] == 1, :]\n",
        "\n",
        "    test_observed = test_observed.sort_values(by='B_prob_0_model',\n",
        "                                              inplace=False,\n",
        "                                              ascending=True)\n",
        "\n",
        "    to_release = int(round(test_observed.shape[0] * r / 10))\n",
        "\n",
        "    return np.sum(\n",
        "        test_observed[resultY_col][0:to_release] == 0) / test.shape[0]\n",
        "\n",
        "\n",
        "def humanEvaluationEvaluator(df, judgeIDJ_col, decisionT_col, resultY_col,\n",
        "                             accRateR_col, r):\n",
        "\n",
        "    # Get judges with correct leniency as list\n",
        "    is_correct_leniency = df[accRateR_col].round(1) == r / 10\n",
        "\n",
        "    correct_leniency_list = df.loc[is_correct_leniency, judgeIDJ_col]\n",
        "\n",
        "    # Released are the people they judged and released, T = 1\n",
        "    released = df[df[judgeIDJ_col].isin(correct_leniency_list)\n",
        "                  & (df.decision_T == 1)]\n",
        "\n",
        "    # Get their failure rate, aka ratio of reoffenders to number of people judged in total\n",
        "    return np.sum(released[resultY_col] == 0) / correct_leniency_list.shape[0]\n",
        "\n",
        "\n",
        "def causalEvaluator(df, featureX_col, decisionT_col, resultY_col, r):\n",
        "\n",
        "    train, test = train_test_split(df, test_size=0.5)\n",
        "\n",
        "    B_model, predictions = fitPredictiveModel(\n",
        "        train.loc[train[decisionT_col] == 1, featureX_col],\n",
        "        train.loc[train[decisionT_col] == 1, resultY_col], test[featureX_col],\n",
        "        0)\n",
        "\n",
        "    test = test.assign(B_prob_0_model=predictions)\n",
        "\n",
        "    released = cdf(test[featureX_col], B_model, 0) < r / 10\n",
        "\n",
        "    return np.mean(test.B_prob_0_model * released)"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "## Performance comparison\n",
        "\n",
        "Below we try to replicate the results obtained by Lakkaraju and compare their model's performance to the one of ours."
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {
        "heading_collapsed": true
       },
       "source": [
        "### Without unobservables in the data\n",
        "\n",
        "The underlying figure is attached to the preliminary paper. When conducting finalization, last analysis should be conducted with a preset random seed."
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 42,
       "metadata": {
        "hidden": true,
        "scrolled": false
       },
       "outputs": [],
       "source": [
        "# f_rates = np.zeros((8, 5))\n",
        "# f_sems = np.zeros((8, 5))\n",
        "\n",
        "# nIter = 15\n",
        "\n",
        "# #npr.seed(0)\n",
        "\n",
        "# for r in np.arange(1, 9):\n",
        "\n",
        "#     print(\"[\", r, \"]\", sep='', end=\" \")\n",
        "\n",
        "#     s_f_rate_true = np.zeros(nIter)\n",
        "#     s_f_rate_labeled = np.zeros(nIter)\n",
        "#     s_f_rate_human = np.zeros(nIter)\n",
        "#     s_f_rate_cont = np.zeros(nIter)\n",
        "#     s_f_rate_caus = np.zeros(nIter)\n",
        "\n",
        "#     for i in range(nIter):\n",
        "\n",
        "#         print(i, end=\" \")\n",
        "\n",
        "#         s_train_labeled, s_train, s_test_labeled, s_test, s_df = dataWithoutUnobservables(sigma=2)\n",
        "\n",
        "#         s_logreg, predictions = fitPredictiveModel(\n",
        "#             s_train_labeled.dropna().X,\n",
        "#             s_train_labeled.dropna().result_Y, s_test.X, 0)\n",
        "#         s_test = s_test.assign(B_prob_0_model=predictions)\n",
        "\n",
        "#         s_logreg, predictions_labeled = fitPredictiveModel(\n",
        "#             s_train_labeled.dropna().X,\n",
        "#             s_train_labeled.dropna().result_Y, s_test_labeled.X, 0)\n",
        "#         s_test_labeled = s_test_labeled.assign(\n",
        "#             B_prob_0_model=predictions_labeled)\n",
        "\n",
        "#         #### True evaluation\n",
        "#         # Sort by actual failure probabilities, subjects with the smallest risk are first.\n",
        "#         s_sorted = s_test.sort_values(by='B_prob_0_model',\n",
        "#                                       inplace=False,\n",
        "#                                       ascending=True)\n",
        "\n",
        "#         to_release = int(round(s_sorted.shape[0] * r / 10))\n",
        "\n",
        "#         # Calculate failure rate as the ratio of failures to successes among those\n",
        "#         # who were given a positive decision, i.e. those whose probability of negative\n",
        "#         # outcome was low enough.\n",
        "#         s_f_rate_true[i] = np.sum(\n",
        "#             s_sorted.result_Y[0:to_release] == 0) / s_sorted.shape[0]\n",
        "\n",
        "#         #### Labeled outcomes\n",
        "#         # Sort by estimated failure probabilities, subjects with the smallest risk are first.\n",
        "#         s_sorted = s_test_labeled.sort_values(by='B_prob_0_model',\n",
        "#                                               inplace=False,\n",
        "#                                               ascending=True)\n",
        "\n",
        "#         to_release = int(round(s_test_labeled.dropna().shape[0] * r / 10))\n",
        "\n",
        "#         # Calculate failure rate as the ratio of failures to successes among those\n",
        "#         # who were given a positive decision, i.e. those whose probability of negative\n",
        "#         # outcome was low enough.\n",
        "#         s_f_rate_labeled[i] = np.sum(\n",
        "#             s_sorted.result_Y[0:to_release] == 0) / s_sorted.shape[0]\n",
        "\n",
        "#         #### Human error rate\n",
        "#         # Get judges with correct leniency as list\n",
        "#         correct_leniency_list = s_test_labeled.judgeID_J[\n",
        "#             s_test_labeled['acceptanceRate_R'].round(1) == r / 10].values\n",
        "\n",
        "#         # Released are the people they judged and released, T = 1\n",
        "#         released = s_test_labeled[\n",
        "#             s_test_labeled.judgeID_J.isin(correct_leniency_list)\n",
        "#             & (s_test_labeled.decision_T == 1)]\n",
        "\n",
        "#         # Get their failure rate, aka ratio of reoffenders to number of people judged in total\n",
        "#         s_f_rate_human[i] = np.sum(\n",
        "#             released.result_Y == 0) / correct_leniency_list.shape[0]\n",
        "\n",
        "#         #### Contraction\n",
        "#         s_f_rate_cont[i] = contraction(s_test_labeled, 'judgeID_J',\n",
        "#                                        'decision_T', 'result_Y',\n",
        "#                                        'B_prob_0_model', 'acceptanceRate_R',\n",
        "#                                        r / 10)\n",
        "#         #### Causal model\n",
        "\n",
        "#         #released = bailIndicator(r * 10, s_logreg, s_train.X, s_test.X)\n",
        "#         released=0\n",
        "#         #released = cdf(s_test.X, s_logreg, 0) < r / 10\n",
        "\n",
        "#         s_f_rate_caus[i] = np.mean(s_test.B_prob_0_model * released)\n",
        "\n",
        "#         ########################\n",
        "#         #percentiles = estimatePercentiles(s_train_labeled.X, s_logreg)\n",
        "\n",
        "#         #def releaseProbability(x):\n",
        "#         #    return calcReleaseProbabilities(r * 10,\n",
        "#         #                                     s_train_labeled.X,\n",
        "#         #                                     x,\n",
        "#         #                                     s_logreg,\n",
        "#         #                                     percentileMatrix=percentiles)\n",
        "\n",
        "#         #def integrand(x):\n",
        "#         #    p_y0 = s_logreg.predict_proba(x.reshape(-1, 1))[:, 0]\n",
        "\n",
        "#         #    p_t1 = releaseProbability(x)\n",
        "\n",
        "#         #    p_x = scs.norm.pdf(x)\n",
        "\n",
        "#         #    return p_y0 * p_t1 * p_x\n",
        "\n",
        "#         #s_f_rate_caus[i] = si.quad(lambda x: integrand(np.ones((1, 1)) * x),\n",
        "#         #                           -10, 10)[0]\n",
        "\n",
        "#     f_rates[r - 1, 0] = np.mean(s_f_rate_true)\n",
        "#     f_rates[r - 1, 1] = np.mean(s_f_rate_labeled)\n",
        "#     f_rates[r - 1, 2] = np.mean(s_f_rate_human)\n",
        "#     f_rates[r - 1, 3] = np.mean(s_f_rate_cont)\n",
        "#     f_rates[r - 1, 4] = np.mean(s_f_rate_caus)\n",
        "\n",
        "#     f_sems[r - 1, 0] = scs.sem(s_f_rate_true)\n",
        "#     f_sems[r - 1, 1] = scs.sem(s_f_rate_labeled)\n",
        "#     f_sems[r - 1, 2] = scs.sem(s_f_rate_human)\n",
        "#     f_sems[r - 1, 3] = scs.sem(s_f_rate_cont)\n",
        "#     f_sems[r - 1, 4] = scs.sem(s_f_rate_caus)\n",
        "\n",
        "# x_ax = np.arange(0.1, 0.9, 0.1)\n",
        "\n",
        "# plt.errorbar(x_ax,\n",
        "#              f_rates[:, 0],\n",
        "#              label='True Evaluation',\n",
        "#              c='green',\n",
        "#              yerr=f_sems[:, 0])\n",
        "# plt.errorbar(x_ax,\n",
        "#              f_rates[:, 1],\n",
        "#              label='Labeled outcomes',\n",
        "#              c='magenta',\n",
        "#              yerr=f_sems[:, 1])\n",
        "# plt.errorbar(x_ax,\n",
        "#              f_rates[:, 2],\n",
        "#              label='Human evaluation',\n",
        "#              c='red',\n",
        "#              yerr=f_sems[:, 2])\n",
        "# plt.errorbar(x_ax,\n",
        "#              f_rates[:, 3],\n",
        "#              label='Contraction, log.',\n",
        "#              c='blue',\n",
        "#              yerr=f_sems[:, 3])\n",
        "# # plt.errorbar(x_ax,\n",
        "# #              f_rates[:, 4],\n",
        "# #              label='Causal model, ep',\n",
        "# #              c='black',\n",
        "# #              yerr=f_sems[:, 4])\n",
        "\n",
        "# plt.title('Failure rate vs. Acceptance rate without unobservables')\n",
        "# plt.xlabel('Acceptance rate')\n",
        "# plt.ylabel('Failure rate')\n",
        "# plt.legend()\n",
        "# plt.grid()\n",
        "# plt.show()\n",
        "\n",
        "# print(f_rates)\n",
        "# print(\"\\nMean absolute errors:\")\n",
        "# for i in range(1, f_rates.shape[1]):\n",
        "#     print(np.mean(np.abs(f_rates[:, 0] - f_rates[:, i])))"
       ]
      },
      {
       "cell_type": "markdown",
       "metadata": {},
       "source": [
        "### With unobservables in the data\n",
        "\n",
        "Lakkaraju says that they used logistic regression. We train the predictive models using only *observed observations*, i.e. observations for which labels are available. We then predict the probability of negative outcome for all observations in the test data and attach it to our data set."
       ]
      },
      {
       "cell_type": "code",
       "execution_count": 97,
       "metadata": {
        "scrolled": false
       },
       "outputs": [
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
          "[1] 0 en loop\n"
         ]
        },
        {
         "name": "stderr",
         "output_type": "stream",
         "text": [
          "/Users/rikulain/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:78: RuntimeWarning: invalid value encountered in long_scalars\n"
         ]
        },
        {
         "name": "stdout",
         "output_type": "stream",
         "text": [
          "jlk loop\n",
          "1 en loop\n"
         ]
        },
        {
         "name": "stderr",
         "output_type": "stream",
         "text": [
          "/Users/rikulain/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:78: RuntimeWarning: invalid value encountered in long_scalars\n"
         ]
        },
        {
         "ename": "KeyboardInterrupt",
         "evalue": "",
         "output_type": "error",
         "traceback": [
          "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
          "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
          "\u001b[0;32m<ipython-input-97-03cd8a3c6103>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     65\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     66\u001b[0m         f_rate_caus[i] = causalEvaluator(df_labeled, 'X', 'decision_T',\n\u001b[0;32m---> 67\u001b[0;31m                                          'result_Y', r / 10)\n\u001b[0m\u001b[1;32m     68\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     69\u001b[0m     \u001b[0mfailure_rates\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mr\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf_rate_true\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
          "\u001b[0;32m<ipython-input-96-4ef6c6b281a2>\u001b[0m in \u001b[0;36mcausalEvaluator\u001b[0;34m(df, featureX_col, decisionT_col, resultY_col, r)\u001b[0m\n\u001b[1;32m     90\u001b[0m     \u001b[0mtest\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtest\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0massign\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mB_prob_0_model\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpredictions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     91\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 92\u001b[0;31m     \u001b[0mreleased\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcdf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfeatureX_col\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mB_model\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0mr\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0;36m10\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     93\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     94\u001b[0m     \u001b[0;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mB_prob_0_model\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mreleased\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
          "\u001b[0;32m<ipython-input-94-f0303c92af6c>\u001b[0m in \u001b[0;36mcdf\u001b[0;34m(x_0, model, class_value)\u001b[0m\n\u001b[1;32m    123\u001b[0m         \u001b[0my_copy\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx_preds\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0mprediction_x_0\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    124\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 125\u001b[0;31m         \u001b[0mresults\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msi\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msimps\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_copy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mx_values\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    126\u001b[0m     \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"jlk loop\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    127\u001b[0m     \u001b[0;32mreturn\u001b[0m \u001b[0mresults\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
          "\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/scipy/integrate/quadrature.py\u001b[0m in \u001b[0;36msimps\u001b[0;34m(y, x, dx, axis, even)\u001b[0m\n\u001b[1;32m    477\u001b[0m                 \u001b[0mfirst_dx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtuple\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mslice2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtuple\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mslice1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    478\u001b[0m             \u001b[0mval\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m0.5\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mfirst_dx\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mslice2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mslice1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 479\u001b[0;31m             \u001b[0mresult\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0m_basic_simps\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mN\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    480\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0meven\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'avg'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    481\u001b[0m             \u001b[0mval\u001b[0m \u001b[0;34m/=\u001b[0m \u001b[0;36m2.0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
          "\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/scipy/integrate/quadrature.py\u001b[0m in \u001b[0;36m_basic_simps\u001b[0;34m(y, start, stop, x, dx, axis)\u001b[0m\n\u001b[1;32m    358\u001b[0m         \u001b[0mh0divh1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mh0\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0mh1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    359\u001b[0m         tmp = hsum/6.0 * (y[slice0]*(2-1.0/h0divh1) +\n\u001b[0;32m--> 360\u001b[0;31m                           \u001b[0my\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mslice1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mhsum\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mhsum\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0mhprod\u001b[0m \u001b[0;34m+\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    361\u001b[0m                           y[slice2]*(2-h0divh1))\n\u001b[1;32m    362\u001b[0m         \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtmp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
          "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
         ]
        }
       ],
       "source": [
        "failure_rates = np.zeros((8, 5))\n",
        "failure_sems = np.zeros((8, 5))\n",
        "\n",
        "nIter = 8\n",
        "\n",
        "for r in np.arange(1, 9):\n",
        "\n",
        "    print(\"[\", r, \"]\", sep='', end=\" \")\n",
        "\n",
        "    f_rate_true = np.zeros(nIter)\n",
        "    f_rate_label = np.zeros(nIter)\n",
        "    f_rate_human = np.zeros(nIter)\n",
        "    f_rate_cont = np.zeros(nIter)\n",
        "    f_rate_caus = np.zeros(nIter)\n",
        "\n",
        "    for i in range(nIter):\n",
        "\n",
        "        print(i, end=\" \")\n",
        "\n",
        "        # Create data\n",
        "        df = coinFlipDGWithUnobservables()\n",
        "\n",
        "        # Decider\n",
        "        df_labeled = coinFlipDecider(df,\n",
        "                                     featureX_col=\"X\",\n",
        "                                     featureZ_col=\"Z\",\n",
        "                                     nJudges_M=100,\n",
        "                                     beta_X=1,\n",
        "                                     beta_Z=1,\n",
        "                                     hide_unobserved=True)\n",
        "\n",
        "        df_unlabeled = coinFlipDecider(df,\n",
        "                                       featureX_col=\"X\",\n",
        "                                       featureZ_col=\"Z\",\n",
        "                                       nJudges_M=100,\n",
        "                                       beta_X=1,\n",
        "                                       beta_Z=1,\n",
        "                                       hide_unobserved=False)\n",
        "\n",
        "        # True evaluation\n",
        "\n",
        "        f_rate_true[i] = trueEvaluationEvaluator(df_unlabeled, 'X',\n",
        "                                                 'decision_T', 'result_Y',\n",
        "                                                 r / 10)\n",
        "\n",
        "        # Labeled outcomes only\n",
        "\n",
        "        f_rate_label[i] = labeledOutcomesEvaluator(df_labeled, 'X',\n",
        "                                                   'decision_T', 'result_Y',\n",
        "                                                   r / 10)\n",
        "\n",
        "        # Human evaluation\n",
        "\n",
        "        f_rate_human[i] = humanEvaluationEvaluator(df_labeled, 'judgeID_J',\n",
        "                                                   'decision_T', 'result_Y',\n",
        "                                                   'acceptanceRate_R', r / 10)\n",
        "\n",
        "        # Contraction\n",
        "\n",
        "        f_rate_cont[i] = contractionEvaluator(df_labeled, 'X', 'judgeID_J',\n",
        "                                              'decision_T', 'result_Y',\n",
        "                                              'acceptanceRate_R', r / 10)\n",
        "\n",
        "        # Causal model - empirical performance\n",
        "\n",
        "        f_rate_caus[i] = causalEvaluator(df_labeled, 'X', 'decision_T',\n",
        "                                         'result_Y', r / 10)\n",
        "\n",
        "    failure_rates[r - 1, 0] = np.mean(f_rate_true)\n",
        "    failure_rates[r - 1, 1] = np.mean(f_rate_label)\n",
        "    failure_rates[r - 1, 2] = np.mean(f_rate_human)\n",
        "    failure_rates[r - 1, 3] = np.mean(f_rate_cont)\n",
        "    failure_rates[r - 1, 4] = np.mean(f_rate_caus)\n",
        "\n",
        "    failure_sems[r - 1, 0] = scs.sem(f_rate_true)\n",
        "    failure_sems[r - 1, 1] = scs.sem(f_rate_label)\n",
        "    failure_sems[r - 1, 2] = scs.sem(f_rate_human)\n",
        "    failure_sems[r - 1, 3] = scs.sem(f_rate_cont)\n",
        "    failure_sems[r - 1, 4] = scs.sem(f_rate_caus)\n",
        "\n",
        "x_ax = np.arange(0.1, 0.9, 0.1)\n",
        "\n",
        "plt.errorbar(x_ax,\n",
        "             failure_rates[:, 0],\n",
        "             label='True Evaluation',\n",
        "             c='green',\n",
        "             yerr=failure_sems[:, 0])\n",
        "plt.errorbar(x_ax,\n",
        "             failure_rates[:, 1],\n",
        "             label='Labeled outcomes',\n",
        "             c='magenta',\n",
        "             yerr=failure_sems[:, 1])\n",
        "plt.errorbar(x_ax,\n",
        "             failure_rates[:, 2],\n",
        "             label='Human evaluation',\n",
        "             c='red',\n",
        "             yerr=failure_sems[:, 2])\n",
        "plt.errorbar(x_ax,\n",
        "             failure_rates[:, 3],\n",
        "             label='Contraction, log.',\n",
        "             c='blue',\n",
        "             yerr=failure_sems[:, 3])\n",
        "plt.errorbar(x_ax,\n",
        "             failure_rates[:, 4],\n",
        "             label='Causal model, ep',\n",
        "             c='black',\n",
        "             yerr=failure_sems[:, 4])\n",
        "\n",
        "plt.title('Failure rate vs. Acceptance rate with unobservables')\n",
        "plt.xlabel('Acceptance rate')\n",
        "plt.ylabel('Failure rate')\n",
        "plt.legend()\n",
        "plt.grid()\n",
        "plt.show()\n",
        "\n",
        "print(failure_rates)\n",
        "print(\"\\nMean absolute errors:\")\n",
        "for i in range(1, failure_rates.shape[1]):\n",
        "    print(np.mean(np.abs(failure_rates[:, 0] - failure_rates[:, i])))"
       ]
      },
      {
       "cell_type": "code",
       "execution_count": null,