Newer
Older
%% This BibTeX bibliography file was created using BibDesk.
%% http://bibdesk.sourceforge.net/
%% Created for Laine, Riku P at 2019-08-02 09:38:23 +0300
%% Saved with string encoding Unicode (UTF-8)
@article{holland1986statistics,
title={Statistics and causal inference},
author={Holland, Paul W},
journal={Journal of the American statistical Association},
volume={81},
number={396},
pages={945--960},
year={1986},
publisher={Taylor \& Francis}
}
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
@inproceedings{kallus2018confounding,
title={Confounding-robust policy improvement},
author={Kallus, Nathan and Zhou, Angela},
booktitle={Advances in neural information processing systems},
pages={9269--9279},
year={2018}
}
@inproceedings{DBLP:conf/icml/ThomasB16,
author = {Philip S. Thomas and
Emma Brunskill},
editor = {Maria{-}Florina Balcan and
Kilian Q. Weinberger},
title = {Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning},
booktitle = {Proceedings of the 33nd International Conference on Machine Learning,
{ICML} 2016, New York City, NY, USA, June 19-24, 2016},
series = {{JMLR} Workshop and Conference Proceedings},
volume = {48},
pages = {2139--2148},
publisher = {JMLR.org},
year = {2016},
OPTurl = {http://proceedings.mlr.press/v48/thomasa16.html},
OPTtimestamp = {Wed, 29 May 2019 08:41:46 +0200},
OPTbiburl = {https://dblp.org/rec/bib/conf/icml/ThomasB16},
OPTbibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{chouldechova2017fair,
title={Fair prediction with disparate impact: A study of bias in recidivism prediction instruments},
author={Chouldechova, Alexandra},
journal={Big data},
volume={5},
number={2},
pages={153--163},
year={2017},
publisher={Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA}
}
@article{mccandless2017comparison,
title={A comparison of Bayesian and Monte Carlo sensitivity analysis for unmeasured confounding},
author={McCandless, Lawrence C and Gustafson, Paul},
journal={Statistics in medicine},
volume={36},
number={18},
pages={2887--2901},
year={2017},
publisher={Wiley Online Library}
}
@article{kleinberg2018human,
title={Human decisions and machine predictions},
author={Kleinberg, Jon and Lakkaraju, Himabindu and Leskovec, Jure and Ludwig, Jens and Mullainathan, Sendhil},
journal={The quarterly journal of economics},
volume={133},
number={1},
pages={237--293},
year={2018},
publisher={Oxford University Press}
}
@inproceedings{corbett2017algorithmic,
title={Algorithmic decision making and the cost of fairness},
author={Corbett-Davies, Sam and Pierson, Emma and Feller, Avi and Goel, Sharad and Huq, Aziz},
booktitle={Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},
pages={797--806},
year={2017}
}
@inproceedings{coston2020counterfactual,
title={Counterfactual risk assessments, evaluation, and fairness},
author={Coston, Amanda and Mishler, Alan and Kennedy, Edward H and Chouldechova, Alexandra},
booktitle={Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency},
pages={582--593},
year={2020}
}
@inproceedings{madras2019fairness,
title={Fairness through causal awareness: Learning causal latent-variable models for biased data},
author={Madras, David and Creager, Elliot and Pitassi, Toniann and Zemel, Richard},
booktitle={Proceedings of the Conference on Fairness, Accountability, and Transparency},
pages={349--358},
year={2019}
}
@article{murder,
OPTISSN = {09641998, 1467985X},
OPTURL = {http://www.jstor.org/stable/30136747},
author = {Richard Berk and Lawrence Sherman and Geoffrey Barnes and Ellen Kurtz and Lindsay Ahlman},
journal = {Journal of the Royal Statistical Society. Series A (Statistics in Society)},
number = {1},
pages = {191--211},
publisher = {[Wiley, Royal Statistical Society]},
title = {Forecasting Murder within a Population of Probationers and Parolees: A High Stakes Application of Statistical Learning},
volume = {172},
year = {2009}
}
@book{little2019statistical,
title={Statistical analysis with missing data},
author={Little, Roderick JA and Rubin, Donald B},
volume={793},
year={2019},
publisher={John Wiley \& Sons}
}
@article{bang2005doubly,
title={Doubly robust estimation in missing data and causal inference models},
author={Bang, Heejung and Robins, James M},
journal={Biometrics},
volume={61},
number={4},
pages={962--973},
year={2005},
publisher={Wiley Online Library}
}
@inproceedings{DBLP:conf/icml/DudikLL11,
author = {Miroslav Dud{\'{\i}}k and
John Langford and
Lihong Li},
editor = {Lise Getoor and
Tobias Scheffer},
title = {Doubly Robust Policy Evaluation and Learning},
booktitle = {Proceedings of the 28th International Conference on Machine Learning,
{ICML} 2011, Bellevue, Washington, USA, June 28 - July 2, 2011},
pages = {1097--1104},
publisher = {Omnipress},
year = {2011},
OPTurl = {https://icml.cc/2011/papers/554\_icmlpaper.pdf},
OPTtimestamp = {Wed, 03 Apr 2019 17:43:35 +0200},
OPTbiburl = {https://dblp.org/rec/bib/conf/icml/DudikLL11},
OPTbibsource = {dblp computer science bibliography, https://dblp.org}
@inproceedings{Jung2,
author = {Jung, Jongbin and Shroff, Ravi and Feller, Avi and Goel, Sharad},
title = {Bayesian Sensitivity Analysis for Offline Policy Evaluation},
year = {2020},
isbn = {9781450371100},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
OPTurl = {https://doi.org/10.1145/3375627.3375822},
OPTdoi = {10.1145/3375627.3375822},
booktitle = {Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society},
pages = {64?70},
numpages = {7},
OPTkeywords = {pretrial risk assessment, offline policy evaluation, sensitivity to unmeasured confounding},
OPTlocation = {New York, NY, USA},
OPTseries = {AIES}
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
@inproceedings{DBLP:conf/icml/JohanssonSS16,
author = {Fredrik D. Johansson and
Uri Shalit and
David A. Sontag},
editor = {Maria{-}Florina Balcan and
Kilian Q. Weinberger},
title = {Learning Representations for Counterfactual Inference},
booktitle = {Proceedings of the 33nd International Conference on Machine Learning,
{ICML} 2016, New York City, NY, USA, June 19-24, 2016},
series = {{JMLR} Workshop and Conference Proceedings},
volume = {48},
pages = {3020--3029},
publisher = {JMLR.org},
year = {2016},
url = {http://proceedings.mlr.press/v48/johansson16.html},
timestamp = {Fri, 15 Nov 2019 17:16:09 +0100},
biburl = {https://dblp.org/rec/bib/conf/icml/JohanssonSS16},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/jmlr/BottouPCCCPRSS13,
author = {L{\'{e}}on Bottou and
Jonas Peters and
Joaquin Qui{\~{n}}onero Candela and
Denis Xavier Charles and
Max Chickering and
Elon Portugaly and
Dipankar Ray and
Patrice Y. Simard and
Ed Snelson},
title = {Counterfactual reasoning and learning systems: the example of computational
advertising},
journal = {J. Mach. Learn. Res.},
volume = {14},
number = {1},
pages = {3207--3260},
year = {2013},
url = {http://dl.acm.org/citation.cfm?id=2567766},
timestamp = {Wed, 10 Jul 2019 15:27:56 +0200},
biburl = {https://dblp.org/rec/bib/journals/jmlr/BottouPCCCPRSS13},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{DBLP:conf/icml/NabiMS19,
author = {Razieh Nabi and
Daniel Malinsky and
Ilya Shpitser},
OPTaddress = { {ICML} 2019, 9-15 June 2019, Long Beach, California, {USA}},
OPTeditor = {Kamalika Chaudhuri and
Ruslan Salakhutdinov},
title = {Learning Optimal Fair Policies},
booktitle = {Proceedings of the 36th International Conference on Machine Learning},
series = {Proceedings of Machine Learning Research},
volume = {97},
pages = {4674--4682},
publisher = {{PMLR}},
year = {2019},
OPTurl = {http://proceedings.mlr.press/v97/nabi19a.html},
OPTtimestamp = {Tue, 11 Jun 2019 15:37:38 +0200},
OPTbiburl = {https://dblp.org/rec/bib/conf/icml/NabiMS19},
OPTbibsource = {dblp computer science bibliography, https://dblp.org}
@article{rosenbaum1983central,
title={The central role of the propensity score in observational studies for causal effects},
author={Rosenbaum, Paul R and Rubin, Donald B},
journal={Biometrika},
volume={70},
number={1},
pages={41--55},
year={1983},
publisher={Oxford University Press}
}
@article{austin2011introduction,
title={An introduction to propensity score methods for reducing the effects of confounding in observational studies},
author={Austin, Peter C},
journal={Multivariate behavioral research},
volume={46},
number={3},
pages={399--424},
year={2011},
publisher={Taylor \& Francis}
}
@book{pearl2000,
author = {J.~Pearl},
title = {Causality: Models, Reasoning, and Inference},
publisher = {Cambridge University Press},
year = {2000}
}
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
@article{pearl1995empirical,
title={Causal diagrams for empirical research},
author={Pearl, Judea},
journal={Biometrika},
volume={82},
number={4},
pages={669--688},
year={1995},
publisher={Oxford University Press}
}
@article{brennan2009evaluating,
title={Evaluating the predictive validity of the COMPAS risk and needs assessment system},
author={Brennan, Tim and Dieterich, William and Ehret, Beate},
journal={Criminal Justice and Behavior},
volume={36},
number={1},
pages={21--40},
year={2009},
publisher={Sage Publications Sage CA: Los Angeles, CA}
}
@article{hernan2004structural,
title={A structural approach to selection bias},
author={Hern{\'a}n, Miguel A and Hern{\'a}ndez-D{\'\i}az, Sonia and Robins, James M},
journal={Epidemiology},
volume={15},
number={5},
pages={615--625},
year={2004},
publisher={LWW}
}
@inproceedings{DBLP:conf/icml/Kusner0LS19,
author = {Matt J. Kusner and
Chris Russell and
Joshua R. Loftus and
Ricardo Silva},
title = {Making Decisions that Reduce Discriminatory Impacts},
booktitle = {{ICML}},
series = {Proceedings of Machine Learning Research},
volume = {97},
pages = {3591--3600},
publisher = {{PMLR}},
year = {2019}
}
Author = {Tolan, Song\"{u}l and Miron, Marius and G\'{o}mez, Emilia and Castillo, Carlos},
Booktitle = {Proceedings of the Seventeenth International Conference on Artificial Intelligence and Law},
OPTDate-Added = {2019-08-02 06:37:23 +0000},
OPTDate-Modified = {2019-08-02 06:38:23 +0000},
OPTDoi = {10.1145/3322640.3326705},
OPTIsbn = {978-1-4503-6754-7},
OPTKeywords = {algorithmic bias, algorithmic fairness, criminal recidivism, machine learning, risk assessment},
OPTLocation = {Montreal, QC, Canada},
OPTNumpages = {10},
Title = {Why Machine Learning May Lead to Unfairness: Evidence from Risk Assessment for Juvenile Justice in Catalonia},
Year = {2019}
}
@article{pearl2010introduction,
Author = {Pearl, Judea},
Journal = {The international journal of biostatistics},
Number = {2},
Publisher = {De Gruyter},
Title = {An introduction to causal inference},
Volume = {6},
Year = {2010}}
@book{bookofwhy,
title={The book of why: the new science of cause and effect},
author={Pearl, Judea and Mackenzie, Dana},
year={2018},
publisher={Basic Books},
address = {New York, USA}
}
OPTAcmid = {3098066},
OPTAddress = {New York, NY, USA},
Author = {Lakkaraju, Himabindu and Kleinberg, Jon and Leskovec, Jure and Ludwig, Jens and Mullainathan, Sendhil},
Booktitle = {Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},
OPTDoi = {10.1145/3097983.3098066},
OPTIsbn = {978-1-4503-4887-4},
OPTKeywords = {evaluating machine learning algorithms, selective labels, unmeasured confounders, unobservables},
OPTLocation = {Halifax, NS, Canada},
Numpages = {10},
Pages = {275--284},
Publisher = {ACM},
Series = {KDD '17},
Title = {The Selective Labels Problem: Evaluating Algorithmic Predictions in the Presence of Unobservables},
OPTBdsk-Url-1 = {http://doi.acm.org/10.1145/3097983.3098066},
OPTBdsk-Url-2 = {http://dx.doi.org/10.1145/3097983.3098066}}
@article{jung2018algorithmic,
Author = {Jung, Jongbin and Shroff, Ravi and Feller, Avi and Goel, Sharad},
Date-Added = {2019-08-02 06:37:23 +0000},
Date-Modified = {2019-08-02 06:37:23 +0000},
Journal = {arXiv preprint arXiv:1805.01868},
Title = {Algorithmic decision making in the presence of unmeasured confounding},
Year = {2018}}
@article{dearteaga2018learning,
Author = {De-Arteaga, Maria and Dubrawski, Artur and Chouldechova, Alexandra},
Date-Added = {2019-08-02 06:37:23 +0000},
Date-Modified = {2019-08-02 06:37:23 +0000},
Journal = {arXiv preprint arXiv:1807.00905},
Title = {Learning under selective labels in the presence of expert consistency},
Year = {2018}}
Riku-Laine
committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
@article{ohagan1979outlier,
title={On outlier rejection phenomena in Bayes inference},
author={O'Hagan, Anthony},
journal={Journal of the Royal Statistical Society: Series B (Methodological)},
volume={41},
number={3},
pages={358--367},
year={1979},
publisher={Wiley Online Library}
}
@inproceedings{bareinboim2012controlling,
title={Controlling selection bias in causal inference},
author={Bareinboim, Elias and Pearl, Judea},
booktitle={Artificial Intelligence and Statistics},
pages={100--108},
year={2012}
}
@misc{kleinberg2016inherent,
title={Inherent Trade-Offs in the Fair Determination of Risk Scores},
author={Jon Kleinberg and Sendhil Mullainathan and Manish Raghavan},
year={2016},
eprint={1609.05807},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@article{angwin2016machine,
title={Machine Bias},
url={https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing},
journal={ProPublica},
Riku-Laine
committed
author={Julia Angwin and Jeff Larson and Surya Mattu and Lauren Kirchner}
}
@article{mccandless2007bayesian,
title={Bayesian sensitivity analysis for unmeasured confounding in observational studies},
author={McCandless, Lawrence C and Gustafson, Paul and Levy, Adrian},
journal={Statistics in medicine},
volume={26},
number={11},
pages={2331--2347},
year={2007},
publisher={Wiley Online Library}
}