Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''
# Author: Riku Laine
# Date: 25JUL2019 (start)
# Project name: Potential outcomes in model evaluation
# Description: This script creates the figures and results used
# in synthetic data experiments.
#
# Parameters:
# -----------
# (1) figure_path : file name for saving the created figures.
# (2) N_sim : Size of simulated data set.
# (3) M_sim : Number of judges in simulated data,
# N_sim must be divisible by M_sim!
# (4) which : Which data + outcome analysis should be performed.
# (5) group_amount : How many groups if Jung-inspired model is used.
# (6) stan_code_file_name : Name of file containing the stan model code.
# (7) sigma_tau : Values of prior variance for the Jung-inspired model.
# (8) model_type : What model type to be fitted. Options:
# - "lr" : logistic regression
# - "rf" : random forest
# - "fully_random" : Fully random, all predictions will be 0.5.
#
'''
# Refer to the `notes.tex` file for explanations about the modular framework.
# Imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as scs
import scipy.special as ssp
import scipy.integrate as si
import numpy.random as npr
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import pystan
import gc
plt.switch_backend('agg')
import sys
# figure storage name
figure_path = sys.argv[1]
# Size of simulated data set
N_sim = int(sys.argv[2])
# Number of judges in simulated data, N_sim must be divisible by M_sim!
M_sim = int(sys.argv[3])
# Which data + outcome generation should be performed.
which = int(sys.argv[4])
# How many groups if jung model is used
group_amount = int(sys.argv[5])
# Name of stan model code file
stan_code_file_name = sys.argv[6]
# Variance prior
sigma_tau = float(sys.argv[7])
# Type of model to be fitted
model_type = sys.argv[8]
# Settings
plt.rcParams.update({'font.size': 16})
plt.rcParams.update({'figure.figsize': (10, 6)})
print("These results have been obtained with the following settings:")
print("Number of observations in the simulated data:", N_sim)
print("Number of judges in the simulated data:", M_sim)
print("Number of groups:", group_amount)
print("Prior for the variances:", sigma_tau)
# Basic functions
def inverseLogit(x):
return 1.0 / (1.0 + np.exp(-1.0 * x))
def logit(x):
return np.log(x) - np.log(1.0 - x)
def inverseCumulative(x, mu, sigma):
'''Compute the inverse of the cumulative distribution of logit-normal
distribution at x with parameters mu and sigma (mean and st.dev.).'''
return inverseLogit(ssp.erfinv(2 * x - 1) * np.sqrt(2 * sigma**2) - mu)
def standardError(p, n):
denominator = p * (1 - p)
return np.sqrt(denominator / n)
# ## Data generation modules
def bernoulliDGWithoutUnobservables(N_total=50000):
'''Generates data | Variables: X, Y | Outcome from Bernoulli'''
df = pd.DataFrame()
# Sample feature X from standard Gaussian distribution, N(0, 1).
df = df.assign(X=npr.normal(size=N_total))
# Calculate P(Y=0|X=x) = 1 / (1 + exp(-X)) = inverseLogit(X)
df = df.assign(probabilities_Y=inverseLogit(df.X))
# Draw Y ~ Bernoulli(1 - inverseLogit(X))
# Note: P(Y=1|X=x) = 1 - P(Y=0|X=x) = 1 - inverseLogit(X)
results = npr.binomial(n=1, p=1 - df.probabilities_Y, size=N_total)
df = df.assign(result_Y=results)
return df
def thresholdDGWithUnobservables(N_total=50000,
beta_X=1.0,
beta_Z=1.0,
beta_W=0.2):
'''Generates data | Variables: X, Z, W, Y | Outcome by threshold'''
df = pd.DataFrame()
# Sample the variables from standard Gaussian distributions.
df = df.assign(X=npr.normal(size=N_total))
df = df.assign(Z=npr.normal(size=N_total))
df = df.assign(W=npr.normal(size=N_total))
# Calculate P(Y=0|X, Z, W)
probabilities_Y = inverseLogit(beta_X * df.X + beta_Z * df.Z + beta_W * df.W)
df = df.assign(probabilities_Y=probabilities_Y)
# Result is 0 if P(Y = 0| X = x; Z = z; W = w) >= 0.5 , 1 otherwise
df = df.assign(result_Y=np.where(df.probabilities_Y >= 0.5, 0, 1))
return df
def bernoulliDGWithUnobservables(N_total=50000,
beta_X=1.0,
beta_Z=1.0,
beta_W=0.2):
'''Generates data | Variables: X, Z, W, Y | Outcome from Bernoulli'''
df = pd.DataFrame()
# Sample feature X, Z and W from standard Gaussian distribution, N(0, 1).
df = df.assign(X=npr.normal(size=N_total))
df = df.assign(Z=npr.normal(size=N_total))
df = df.assign(W=npr.normal(size=N_total))
# Calculate P(Y=0|X=x) = 1 / (1 + exp(-X)) = inverseLogit(X)
probabilities_Y = inverseLogit(beta_X * df.X + beta_Z * df.Z + beta_W * df.W)
df = df.assign(probabilities_Y=probabilities_Y)
# Draw Y from Bernoulli distribution
results = npr.binomial(n=1, p=1 - df.probabilities_Y, size=N_total)
df = df.assign(result_Y=results)
return df
# ## Decider modules
def humanDeciderLakkaraju(df,
featureX_col,
featureZ_col=None,
nJudges_M=100,
beta_X=1,
beta_Z=1,
add_epsilon=True):
'''Decider module | Non-independent batch decisions.'''
# Assert that every judge will have the same number of subjects.
assert df.shape[0] % nJudges_M == 0, "Can't assign subjets evenly!"
# Compute the number of subjects allocated for each judge.
nSubjects_N = int(df.shape[0] / nJudges_M)
# Assign judge IDs as running numbering from 0 to nJudges_M - 1
df = df.assign(judgeID_J=np.repeat(range(0, nJudges_M), nSubjects_N))
# Sample acceptance rates uniformly from a closed interval
# from 0.1 to 0.9 and round to tenth decimal place.
# 26JUL2019: Fix one leniency to 0.9 so that contraction can compute all
# values.
acceptance_rates = np.append(npr.uniform(.1, .9, nJudges_M - 1), 0.9)
acceptance_rates = np.round(acceptance_rates, 10)
# Replicate the rates so they can be attached to the corresponding judge ID.
df = df.assign(acceptanceRate_R=np.repeat(acceptance_rates, nSubjects_N))
if add_epsilon:
epsilon = np.sqrt(0.1) * npr.normal(size=df.shape[0])
else:
epsilon = 0
if featureZ_col is None:
probabilities_T = inverseLogit(beta_X * df[featureX_col] + epsilon)
else:
probabilities_T = inverseLogit(beta_X * df[featureX_col] +
beta_Z * df[featureZ_col] + epsilon)
df = df.assign(probabilities_T=probabilities_T)
# Sort by judges then probabilities in decreasing order
# Most dangerous for each judge are at the top.
df.sort_values(by=["judgeID_J", "probabilities_T"],
ascending=False,
inplace=True)
# Iterate over the data. Subject will be given a negative decision
# if they are in the top (1-r)*100% of the individuals the judge will judge.
# I.e. if their within-judge-index is under 1 - acceptance threshold times
# the number of subjects assigned to each judge they will receive a
# negative decision.
df.reset_index(drop=True, inplace=True)
df['decision_T'] = np.where((df.index.values % nSubjects_N) <
((1 - df['acceptanceRate_R']) * nSubjects_N),
0, 1)
df_labeled = df.copy()
# Hide unobserved
df_labeled.loc[df.decision_T == 0, 'result_Y'] = np.nan
return df_labeled, df
def bernoulliDecider(df,
featureX_col,
featureZ_col=None,
nJudges_M=100,
beta_X=1,
beta_Z=1,
add_epsilon=True):
'''Use X and Z to make a decision with probability
P(T=0|X, Z)=inverseLogit(beta_X*X+beta_Z*Z).'''
# Assert that every judge will have the same number of subjects.
assert df.shape[0] % nJudges_M == 0, "Can't assign subjets evenly!"
# Compute the number of subjects allocated for each judge.
nSubjects_N = int(df.shape[0] / nJudges_M)
# Assign judge IDs as running numbering from 0 to nJudges_M - 1
df = df.assign(judgeID_J=np.repeat(range(0, nJudges_M), nSubjects_N))
if add_epsilon:
epsilon = np.sqrt(0.1) * npr.normal(size=df.shape[0])
else:
epsilon = 0
if featureZ_col is None:
probabilities_T = inverseLogit(beta_X * df[featureX_col] + epsilon)
else:
probabilities_T = inverseLogit(beta_X * df[featureX_col] +
beta_Z * df[featureZ_col] + epsilon)
df = df.assign(probabilities_T=probabilities_T)
# Draw T from Bernoulli distribution
decisions = npr.binomial(n=1, p=1 - df.probabilities_T, size=df.shape[0])
df = df.assign(decision_T=decisions)
# Calculate the acceptance rates.
acceptance_rates = df.groupby('judgeID_J').mean().decision_T.values
# Replicate the rates so they can be attached to the corresponding judge ID.
df = df.assign(acceptanceRate_R=np.repeat(acceptance_rates, nSubjects_N))
df_labeled = df.copy()
df_labeled.loc[df.decision_T == 0, 'result_Y'] = np.nan
return df_labeled, df
def quantileDecider(df,
featureX_col,
featureZ_col=None,
nJudges_M=100,
beta_X=1,
beta_Z=1,
add_epsilon=True):
'''Assign decisions by the value of inverse cumulative distribution function
of the logit-normal distribution at leniency r.'''
# Assert that every judge will have the same number of subjects.
assert df.shape[0] % nJudges_M == 0, "Can't assign subjets evenly!"
# Compute the number of subjects allocated for each judge.
nSubjects_N = int(df.shape[0] / nJudges_M)
# Assign judge IDs as running numbering from 0 to nJudges_M - 1
df = df.assign(judgeID_J=np.repeat(range(0, nJudges_M), nSubjects_N))
# Sample acceptance rates uniformly from a closed interval
# from 0.1 to 0.9 and round to tenth decimal place.
# 26JUL2019: Fix one leniency to 0.9 so that contraction can compute all
# values.
acceptance_rates = np.append(npr.uniform(.1, .9, nJudges_M - 1), 0.9)
acceptance_rates = np.round(acceptance_rates, 10)
# Replicate the rates so they can be attached to the corresponding judge ID.
df = df.assign(acceptanceRate_R=np.repeat(acceptance_rates, nSubjects_N))
if add_epsilon:
epsilon = np.sqrt(0.1) * npr.normal(size=df.shape[0])
else:
epsilon = 0
if featureZ_col is None:
probabilities_T = inverseLogit(beta_X * df[featureX_col] + epsilon)
# Compute the bounds straight from the inverse cumulative.
# Assuming X is N(0, 1) so Var(bX*X)=bX**2*Var(X)=bX**2.
df = df.assign(bounds=inverseCumulative(
x=df.acceptanceRate_R, mu=0, sigma=np.sqrt(beta_X**2)))
else:
probabilities_T = inverseLogit(beta_X * df[featureX_col] +
beta_Z * df[featureZ_col] + epsilon)
# Compute the bounds straight from the inverse cumulative.
# Assuming X and Z are i.i.d standard Gaussians with variance 1.
# Thus Var(bx*X+bZ*Z)= bX**2*Var(X)+bZ**2*Var(Z).
df = df.assign(bounds=inverseCumulative(
x=df.acceptanceRate_R, mu=0, sigma=np.sqrt(beta_X**2 + beta_Z**2)))
df = df.assign(probabilities_T=probabilities_T)
# Assign negative decision if the predicted probability (probabilities_T) is
# over the judge's threshold (bounds).
df = df.assign(decision_T=np.where(df.probabilities_T >= df.bounds, 0, 1))
df_labeled = df.copy()
df_labeled.loc[df.decision_T == 0, 'result_Y'] = np.nan
return df_labeled, df
def randomDecider(df, nJudges_M=100, use_acceptance_rates=False):
'''Doesn't use any information about X and Z to make decisions.
If use_acceptance_rates is False (default) then all decisions are positive
with probability 0.5. If True, probabilities will be sampled from
U(0.1, 0.9) and rounded to tenth decimal place.'''
# Assert that every judge will have the same number of subjects.
assert df.shape[0] % nJudges_M == 0, "Can't assign subjets evenly!"
# Compute the number of subjects allocated for each judge.
nSubjects_N = int(df.shape[0] / nJudges_M)
# Assign judge IDs as running numbering from 0 to nJudges_M - 1
df = df.assign(judgeID_J=np.repeat(range(0, nJudges_M), nSubjects_N))
if use_acceptance_rates:
# Sample acceptance rates uniformly from a closed interval
# from 0.1 to 0.9 and round to tenth decimal place.
acceptance_rates = np.round(npr.uniform(.1, .9, nJudges_M), 10)
else:
# No real leniency here -> set to 0.5.
acceptance_rates = np.ones(nJudges_M) * 0.5
# Replicate the rates so they can be attached to the corresponding judge ID.
df = df.assign(acceptanceRate_R=np.repeat(acceptance_rates, nSubjects_N))
df = df.assign(
decision_T=npr.binomial(n=1, p=df.acceptanceRate_R, size=df.shape[0]))
df_labeled = df.copy()
df_labeled.loc[df.decision_T == 0, 'result_Y'] = np.nan
return df_labeled, df
def biasDecider(df,
featureX_col,
featureZ_col=None,
nJudges_M=100,
beta_X=1,
beta_Z=1,
add_epsilon=True):
'''
Biased decider: If X > 1, then X <- X * 0.75. People with high X,
get more positive decisions as they should. And if -2 < X -1, then
X <- X + 0.5. People with X in [-2, 1], get less positive decisions
as they should.
'''
# If X > 1, then X <- X * 0.75. People with high X, get more positive
# decisions as they should
df = df.assign(biased_X=np.where(df[featureX_col] > 1, df[featureX_col] *
0.75, df[featureX_col]))
# If -2 < X -1, then X <- X + 0.5. People with X in [-2, 1], get less
# positive decisions as they should
df.biased_X = np.where((df.biased_X > -2) & (df.biased_X < -1) == 1,
df.biased_X + 0.5, df.biased_X)
# Assert that every judge will have the same number of subjects.
assert df.shape[0] % nJudges_M == 0, "Can't assign subjets evenly!"
# Use quantile decider, but judge by the biased X.
df_labeled, df = humanDeciderLakkaraju(df,
featureX_col='biased_X',
featureZ_col=featureZ_col,
nJudges_M=nJudges_M,
beta_X=beta_X,
beta_Z=beta_Z,
add_epsilon=add_epsilon)
return df_labeled, df
# ## Evaluator modules
# ### Convenience functions
def fitPredictiveModel(x_train, y_train, x_test, class_value, model_type=None):
'''
Fit a predictive model (default logistic regression) with given training
instances and return probabilities for test instances to obtain a given
class label.
Arguments:
----------
x_train -- x values of training instances
y_train -- y values of training instances
x_test -- x values of test instances
class_value -- class label for which the probabilities are counted for.
model_type -- type of model to be fitted.
Returns:
--------
(1) Trained predictive model
(2) Probabilities for given test inputs for given class.
'''
if model_type is None or model_type in ["logistic_regression", "lr"]:
# Instantiate the model (using the default parameters)
logreg = LogisticRegression(solver='lbfgs')
# Check shape and fit the model.
if x_train.ndim == 1:
logreg = logreg.fit(x_train.values.reshape(-1, 1), y_train)
else:
logreg = logreg.fit(x_train, y_train)
label_probs_logreg = getProbabilityForClass(x_test, logreg,
class_value)
return logreg, label_probs_logreg
elif model_type in ["random_forest", "rf"]:
# Instantiate the model
forest = RandomForestClassifier(n_estimators=100, max_depth=3)
# Check shape and fit the model.
if x_train.ndim == 1:
forest = forest.fit(x_train.values.reshape(-1, 1), y_train)
else:
forest = forest.fit(x_train, y_train)
label_probs_forest = getProbabilityForClass(x_test, forest,
class_value)
return forest, label_probs_forest
elif model_type == "fully_random":
label_probs = np.ones_like(x_test) / 2
model_object = lambda x: 0.5
return model_object, label_probs
else:
raise ValueError("Invalid model_type!", model_type)
def getProbabilityForClass(x, model, class_value):
'''
Function (wrapper) for obtaining the probability of a class given x and a
predictive model.
Arguments:
-----------
x -- individual features, an array of shape (observations, features)
model -- a trained sklearn model. Predicts probabilities for given x.
Should accept input of shape (observations, features)
class_value -- the resulting class to predict (usually 0 or 1).
Returns:
--------
(1) The probabilities of given class label for each x.
'''
if x.ndim == 1:
# if x is vector, transform to column matrix.
f_values = model.predict_proba(np.array(x).reshape(-1, 1))
else:
f_values = model.predict_proba(x)
# Get correct column of predicted class, remove extra dimensions and return.
return f_values[:, model.classes_ == class_value].flatten()
def cdf(x_0, model, class_value):
'''
Cumulative distribution function as described above. Integral is
approximated using Simpson's rule for efficiency.
Arguments:
----------
x_0 -- private features of an instance for which the value of cdf is to be
calculated.
model -- a trained sklearn model. Predicts probabilities for given x.
Should accept input of shape (observations, features)
class_value -- the resulting class to predict (usually 0 or 1).
'''
def prediction(x):
return getProbabilityForClass(
np.array([x]).reshape(-1, 1), model, class_value)
prediction_x_0 = prediction(x_0)
x_values = np.linspace(-15, 15, 40000)
x_preds = prediction(x_values)
y_values = scs.norm.pdf(x_values)
results = np.zeros(x_0.shape[0])
for i in range(x_0.shape[0]):
y_copy = y_values.copy()
y_copy[x_preds > prediction_x_0[i]] = 0
results[i] = si.simps(y_copy, x=x_values)
return results
# ### Contraction algorithm
#
# Below is an implementation of Lakkaraju's team's algorithm presented in
# [their paper](https://helka.finna.fi/PrimoRecord/pci.acm3098066). Relevant
# parameters to be passed to the function are presented in the description.
def contraction(df, judgeIDJ_col, decisionT_col, resultY_col, modelProbS_col,
accRateR_col, r):
'''
This is an implementation of the algorithm presented by Lakkaraju
et al. in their paper "The Selective Labels Problem: Evaluating
Algorithmic Predictions in the Presence of Unobservables" (2017).
Arguments:
----------
df -- The (Pandas) data frame containing the data, judge decisions,
judge IDs, results and probability scores.
judgeIDJ_col -- String, the name of the column containing the judges' IDs
in df.
decisionT_col -- String, the name of the column containing the judges' decisions
resultY_col -- String, the name of the column containing the realization
modelProbS_col -- String, the name of the column containing the probability
scores from the black-box model B.
accRateR_col -- String, the name of the column containing the judges'
acceptance rates
r -- Float between 0 and 1, the given acceptance rate.
Returns:
--------
(1) The estimated failure rate at acceptance rate r.
'''
# Get ID of the most lenient judge.
most_lenient_ID_q = df[judgeIDJ_col].loc[df[accRateR_col].idxmax()]
# Subset. "D_q is the set of all observations judged by q."
D_q = df[df[judgeIDJ_col] == most_lenient_ID_q].copy()
# All observations of R_q have observed outcome labels.
# "R_q is the set of observations in D_q with observed outcome labels."
R_q = D_q[D_q[decisionT_col] == 1].copy()
# Sort observations in R_q in descending order of confidence scores S and
# assign to R_sort_q.
# "Observations deemed as high risk by B are at the top of this list"
R_sort_q = R_q.sort_values(by=modelProbS_col, ascending=False)
number_to_remove = int(
round((1.0 - r) * D_q.shape[0] - (D_q.shape[0] - R_q.shape[0])))
# "R_B is the list of observations assigned to t = 1 by B"
R_B = R_sort_q[number_to_remove:R_sort_q.shape[0]]
return np.sum(R_B[resultY_col] == 0) / D_q.shape[0], D_q.shape[0]
# ### Evaluators
def trueEvaluationEvaluator(df, featureX_col, decisionT_col, resultY_col, r):
df.sort_values(by='B_prob_0_model', inplace=True, ascending=True)
to_release = int(round(df.shape[0] * r))
failed = df[resultY_col][0:to_release] == 0
return np.sum(failed) / df.shape[0], df.shape[0]
def labeledOutcomesEvaluator(df,
featureX_col,
decisionT_col,
resultY_col,
r,
adjusted=False):
df_observed = df.loc[df[decisionT_col] == 1, :]
df_observed = df_observed.sort_values(by='B_prob_0_model',
inplace=False,
ascending=True)
to_release = int(round(df_observed.shape[0] * r))
failed = df_observed[resultY_col][0:to_release] == 0
if adjusted:
return np.mean(failed), df.shape[0]
return np.sum(failed) / df.shape[0], df.shape[0]
def humanEvaluationEvaluator(df, judgeIDJ_col, decisionT_col, resultY_col,
accRateR_col, r):
# Get judges with correct leniency as list
is_correct_leniency = df[accRateR_col].round(1) == r
# No judges with correct leniency
if np.sum(is_correct_leniency) == 0:
return np.nan, np.nan
correct_leniency_list = df.loc[is_correct_leniency, judgeIDJ_col]
# Released are the people they judged and released, T = 1
released = df[df[judgeIDJ_col].isin(correct_leniency_list)
& (df[decisionT_col] == 1)]
failed = released[resultY_col] == 0
# Get their failure rate, aka ratio of reoffenders to number of people judged in total
return np.sum(failed) / correct_leniency_list.shape[0], correct_leniency_list.shape[0]
def monteCarloEvaluator(df,
featureX_col,
decisionT_col,
resultY_col,
accRateR_col,
r,
mu_X=0,
mu_Z=0,
beta_X=1,
beta_Z=1,
sigma_X=1,
sigma_Z=1):
# Compute the predicted/assumed decision bounds for all the judges.
q_r = inverseCumulative(x=df[accRateR_col],
mu=mu_X + mu_Z,
sigma=np.sqrt((beta_X * sigma_X)**2 +
(beta_Z * sigma_Z)**2))
df = df.assign(bounds=logit(q_r) - df[featureX_col])
# Compute the expectation of Z when it is known to come from truncated
# Gaussian.
alphabeta = (df.bounds - mu_Z) / (sigma_Z)
Z_ = scs.norm.sf(alphabeta, loc=mu_Z, scale=sigma_Z) # 1 - cdf(ab)
# E(Z | Z > a). Expectation of Z if negative decision.
exp_lower_trunc = mu_Z + (sigma_Z * scs.norm.pdf(alphabeta)) / Z_
# E(Z | Z < b). Expectation of Z if positive decision.
exp_upper_trunc = mu_Z - (
sigma_Z * scs.norm.pdf(alphabeta)) / scs.norm.cdf(alphabeta)
exp_Z = (1 - df[decisionT_col]
) * exp_lower_trunc + df[decisionT_col] * exp_upper_trunc
# Attach the predicted probability for Y=0 to data.
df = df.assign(predicted_Y=inverseLogit(df[featureX_col] + exp_Z))
# Predictions drawn from binomial.
predictions = npr.binomial(n=1, p=1 - df.predicted_Y, size=df.shape[0])
df[resultY_col] = np.where(df[decisionT_col] == 0, predictions,
df[resultY_col])
df.sort_values(by='B_prob_0_model', inplace=True, ascending=True)
to_release = int(round(df.shape[0] * r))
failed = df[resultY_col][0:to_release] == 0
return np.sum(failed) / df.shape[0], df.shape[0]
def perfComp(dgModule, deciderModule, title, save_name):
failure_rates = np.zeros((8, 7))
error_Ns = np.zeros((8, 7))
# Create data
df = dgModule()
# Decicions
df_labeled, df_unlabeled = deciderModule(df)
# Split data
train, test_labeled = train_test_split(df_labeled, test_size=0.5)
# Assign same observations to unlabeled dat
test_unlabeled = df_unlabeled.iloc[test_labeled.index.values]
# Train model
B_model, predictions = fitPredictiveModel(
train.loc[train['decision_T'] == 1, 'X'],
train.loc[train['decision_T'] == 1, 'result_Y'], test_labeled['X'], 0, model_type=model_type)
# Attach predictions to data
test_labeled = test_labeled.assign(B_prob_0_model=predictions)
test_unlabeled = test_unlabeled.assign(B_prob_0_model=predictions)
test_labeled.sort_values(by='B_prob_0_model', inplace=True, ascending=True)
kk_array = pd.qcut(test_labeled['B_prob_0_model'], group_amount, labels=False)
# Find observed values
observed = test_labeled['decision_T'] == 1
# Assign data to the model
dat = dict(D=1,
N_obs=np.sum(observed),
N_cens=np.sum(~observed),
K=group_amount,
sigma_tau=sigma_tau,
M=len(set(df_unlabeled['judgeID_J'])),
jj_obs=test_labeled.loc[observed, 'judgeID_J']+1,
jj_cens=test_labeled.loc[~observed, 'judgeID_J']+1,
kk_obs=kk_array[observed]+1,
kk_cens=kk_array[~observed]+1,
dec_obs=test_labeled.loc[observed, 'decision_T'],
dec_cens=test_labeled.loc[~observed, 'decision_T'],
X_obs=test_labeled.loc[observed, 'X'].values.reshape(-1,1),
X_cens=test_labeled.loc[~observed, 'X'].values.reshape(-1,1),
y_obs=test_labeled.loc[observed, 'result_Y'].astype(int))
fit = sm.sampling(data=dat, chains=5, iter=5000, control = dict(adapt_delta=0.9))
pars = fit.extract()
plt.figure(figsize=(15,30))
fit.plot();
plt.savefig(save_name + '_stan_diagnostic_plot')
plt.show()
plt.close('all')
print(fit, file=open(save_name + '_stan_fit_diagnostics.txt', 'w'))
# Bayes
# Alusta matriisi, rivillä yksi otos posteriorista
# sarakkeet havaintoja
y_imp = np.ones((pars['y_est'].shape[0], test_labeled.shape[0]))
# Täydennetään havaitsemattomat estimoiduilla
y_imp[:, ~observed] = 1 - pars['y_est']
# Täydennetään havaitut havaituilla
y_imp[:, observed] = 1 - test_labeled.loc[observed, 'result_Y']
Rs = np.arange(.1, .9, .1)
to_release_list = np.round(test_labeled.shape[0] * Rs).astype(int)
for i in range(len(to_release_list)):
failed = np.sum(y_imp[:, 0:to_release_list[i]], axis=1)
est_failure_rates = failed / test_labeled.shape[0]
failure_rates[i, 6] = np.mean(est_failure_rates)
error_Ns[i, 6] = test_labeled.shape[0]
for r in range(1, 9):
print(".", end="")
# True evaluation
FR, N = trueEvaluationEvaluator(test_unlabeled, 'X', 'decision_T',
'result_Y', r / 10)
failure_rates[r - 1, 0] = FR
error_Ns[r - 1, 0] = N
# Labeled outcomes only
FR, N = labeledOutcomesEvaluator(test_labeled, 'X', 'decision_T',
'result_Y', r / 10)
failure_rates[r - 1, 1] = FR
error_Ns[r - 1, 1] = N
# Adjusted labeled outcomes
FR, N = labeledOutcomesEvaluator(test_labeled, 'X', 'decision_T',
'result_Y', r / 10, adjusted=True)
failure_rates[r - 1, 2] = FR
error_Ns[r - 1, 2] = N
# Human evaluation
FR, N = humanEvaluationEvaluator(test_labeled, 'judgeID_J',
'decision_T', 'result_Y',
'acceptanceRate_R', r / 10)
failure_rates[r - 1, 3] = FR
error_Ns[r - 1, 3] = N
# Contraction
FR, N = contraction(test_labeled, 'judgeID_J', 'decision_T',
'result_Y', 'B_prob_0_model', 'acceptanceRate_R', r / 10)
failure_rates[r - 1, 4] = FR
error_Ns[r - 1, 4] = N
# Causal model - analytic solution
FR, N = monteCarloEvaluator(test_labeled, 'X', 'decision_T',
'result_Y', 'acceptanceRate_R', r / 10)
failure_rates[r - 1, 5] = FR
error_Ns[r - 1, 5] = N
failure_SEs = standardError(failure_rates, error_Ns)
x_ax = np.arange(0.1, 0.9, 0.1)
labels = [
'True Evaluation', 'Labeled outcomes', 'Labeled outcomes, adj.',
'Human evaluation', 'Contraction', 'Analytic solution', 'Potential outcomes'
]
colours = ['g', 'magenta', 'darkviolet', 'r', 'b', 'k', 'c']
for i in range(failure_rates.shape[1]):
plt.errorbar(x_ax,
failure_rates[:, i],
label=labels[i],
c=colours[i],
yerr=failure_SEs[:, i])
plt.title('Failure rate vs. Acceptance rate')
plt.xlabel('Acceptance rate')
plt.ylabel('Failure rate')
plt.legend()
plt.grid()
plt.savefig(save_name + '_all')
plt.show()
print("\nFailure rates:")
print(np.array2string(failure_rates, formatter={'float_kind':lambda x: "%.5f" % x}))
print("\nMean absolute errors:")
for i in range(1, failure_rates.shape[1]):
print(
labels[i].ljust(len(max(labels, key=len))),
np.round(
np.mean(np.abs(failure_rates[:, 0] - failure_rates[:, i])), 5))
sm = pystan.StanModel(file=stan_code_file_name)
if which == 1:
print("\nWithout unobservables (Bernoulli + independent decisions)")
dg = lambda: bernoulliDGWithoutUnobservables(N_total=N_sim)
decider = lambda x: quantileDecider(
x, featureX_col="X", featureZ_col=None, nJudges_M=M_sim, beta_X=1, beta_Z=1)
perfComp(
dg, lambda x: decider(x),
"Fluctuation of failure rate estimates across iterations\n" +
"Bernoulli + independent decisions, without unobservables",
figure_path + "sl_bernoulli_independent_without_Z"
)
gc.collect()
plt.close('all')
print("\nWith unobservables in the data")
if which == 2:
print("\nBernoulli + independent decisions")
dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)
decider = lambda x: quantileDecider(
x, featureX_col="X", featureZ_col="Z", nJudges_M=M_sim, beta_X=1, beta_Z=1, add_epsilon=True)
perfComp(
dg, lambda x: decider(x),
"Fluctuation of failure rate estimates across iterations \n" +
"Bernoulli + independent decisions, with unobservables",
figure_path + "sl_bernoulli_independent_with_Z",
)
gc.collect()
plt.close('all')
if which == 3:
print("\nThreshold rule + independent decisions")
dg = lambda: thresholdDGWithUnobservables(N_total=N_sim)
decider = lambda x: quantileDecider(
x, featureX_col="X", featureZ_col="Z", nJudges_M=M_sim, beta_X=1, beta_Z=1, add_epsilon=True)
perfComp(
dg, lambda x: decider(x),
"Fluctuation of failure rate estimates across iterations \n" +
"Threshold rule + independent decisions, with unobservables",
figure_path + "sl_threshold_independent_with_Z",
)
gc.collect()
plt.close('all')
if which == 4:
print("\nBernoulli + non-independent (batch) decisions")
dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)
decider = lambda x: humanDeciderLakkaraju(
x, featureX_col="X", featureZ_col="Z", nJudges_M=M_sim, beta_X=1, beta_Z=1, add_epsilon=True)
perfComp(
dg, lambda x: decider(x),
"Fluctuation of failure rate estimates across iterations \n" +
"Bernoulli + non-independent decisions, with unobservables",
figure_path + "sl_bernoulli_batch_with_Z",
)
gc.collect()
plt.close('all')
if which == 5:
print("\nThreshold rule + non-independent (batch) decisions")
dg = lambda: thresholdDGWithUnobservables(N_total=N_sim)