Newer
Older
"Fluctuation of failure rate estimates across iterations\n" +
"Bernoulli + independent decisions, without unobservables",
figure_path + "sl_bernoulli_independent_without_Z",
model_type="lr",
fit_with_Z=False
print("\nWith unobservables (Bernoullian outcome + independent decisions)")
print("Decision-maker in the data and model: random and y ~ x + z")
dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)
decider = lambda x: randomDecider(x, nJudges_M=M_sim, use_acceptance_rates=True)
"Fluctuation of failure rate estimates across iterations\n" +
"Bernoulli + independent decisions, without unobservables",
figure_path + "sl_bernoulli_independent_without_Z",
model_type="lr",
fit_with_Z=True
print("\nWith unobservables (Bernoullian outcome + independent decisions)")
print("Decision-maker in the data and model: y ~ x and random")
dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)
decider = lambda x: quantileDecider(
x, featureX_col="X", featureZ_col=None, nJudges_M=M_sim, beta_X=1, beta_Z=1)
"Fluctuation of failure rate estimates across iterations\n" +
"Bernoulli + independent decisions, without unobservables",
figure_path + "sl_bernoulli_independent_without_Z",
model_type="fully_random",
fit_with_Z=False
print("\nWith unobservables (Bernoullian outcome + independent decisions)")
print("Decision-maker in the data and model: y ~ x and y ~ x")
dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)
decider = lambda x: quantileDecider(
x, featureX_col="X", featureZ_col=None, nJudges_M=M_sim, beta_X=1, beta_Z=1)
"Fluctuation of failure rate estimates across iterations\n" +
"Bernoulli + independent decisions, without unobservables",
figure_path + "sl_bernoulli_independent_without_Z",
model_type="lr",
fit_with_Z=False
print("\nWith unobservables (Bernoullian outcome + independent decisions)")
print("Decision-maker in the data and model: y ~ x and y ~ x + z")
dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)
decider = lambda x: quantileDecider(
x, featureX_col="X", featureZ_col=None, nJudges_M=M_sim, beta_X=1, beta_Z=1)
"Fluctuation of failure rate estimates across iterations\n" +
"Bernoulli + independent decisions, without unobservables",
figure_path + "sl_bernoulli_independent_without_Z",
model_type="lr",
fit_with_Z=True
if which == 7:
print("\nWith unobservables (Bernoullian outcome + independent decisions)")
print("Decision-maker in the data and model: y ~ x + z and random")
dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)
decider = lambda x: quantileDecider(
x, featureX_col="X", featureZ_col='Z', nJudges_M=M_sim, beta_X=1, beta_Z=1)
perfComp(
dg, lambda x: decider(x),
"Fluctuation of failure rate estimates across iterations\n" +
"Bernoulli + independent decisions, without unobservables",
figure_path + "sl_bernoulli_independent_without_Z",
model_type="fully_random",
fit_with_Z=False
)
if which == 8:
print("\nWith unobservables (Bernoullian outcome + independent decisions)")
print("Decision-maker in the data and model: y ~ x + z and y ~ x")
dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)
decider = lambda x: quantileDecider(
x, featureX_col="X", featureZ_col='Z', nJudges_M=M_sim, beta_X=1, beta_Z=1)
"Fluctuation of failure rate estimates across iterations\n" +
"Bernoulli + independent decisions, without unobservables",
figure_path + "sl_bernoulli_independent_without_Z",
model_type="lr",
fit_with_Z=False
if which == 9:
print("\nWith unobservables (Bernoullian outcome + independent decisions)")
print("Decision-maker in the data and model: y ~ x + z and y ~ x + z")
dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)
decider = lambda x: quantileDecider(
x, featureX_col="X", featureZ_col='Z', nJudges_M=M_sim, beta_X=1, beta_Z=1)
perfComp(
dg, lambda x: decider(x),
"Fluctuation of failure rate estimates across iterations\n" +
"Bernoulli + independent decisions, without unobservables",
figure_path + "sl_bernoulli_independent_without_Z",
model_type="lr",
fit_with_Z=True
)
if which == 10:
print("\nWith unobservables (Bernoullian outcome + independent decisions)")
print("Decision-maker in the data and model: biased and random")
dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)
decider = lambda x: biasDecider(
x, featureX_col="X", featureZ_col='Z', nJudges_M=M_sim, beta_X=1, beta_Z=1)
"Fluctuation of failure rate estimates across iterations\n" +
"Bernoulli + independent decisions, without unobservables",
figure_path + "sl_bernoulli_independent_without_Z",
model_type="fully_random",
fit_with_Z=False
if which == 11:
print("\nWith unobservables (Bernoullian outcome + independent decisions)")
print("Decision-maker in the data and model: biased and y ~ x")
dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)
decider = lambda x: biasDecider(
x, featureX_col="X", featureZ_col='Z', nJudges_M=M_sim, beta_X=1, beta_Z=1)
perfComp(
dg, lambda x: decider(x),
"Fluctuation of failure rate estimates across iterations\n" +
"Bernoulli + independent decisions, without unobservables",
figure_path + "sl_bernoulli_independent_without_Z",
model_type="lr",
fit_with_Z=False
)
if which == 12:
print("\nWith unobservables (Bernoullian outcome + independent decisions)")
print("Decision-maker in the data and model: biased and y ~ x + z")
dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)
decider = lambda x: biasDecider(
x, featureX_col="X", featureZ_col='Z', nJudges_M=M_sim, beta_X=1, beta_Z=1)
"Fluctuation of failure rate estimates across iterations\n" +
"Bernoulli + independent decisions, without unobservables",
figure_path + "sl_bernoulli_independent_without_Z",
model_type="lr",
fit_with_Z=True
if which == 13:
print("\nWith unobservables (Bernoullian outcome + independent decisions)")
print("Fewer subjects per decision-maker, from 500 to 100. Now N_total =", N_sim / 5)
dg = lambda: bernoulliDGWithUnobservables(N_total=int(N_sim / 5))
decider = lambda x: quantileDecider(
x, featureX_col="X", featureZ_col=None, nJudges_M=M_sim, beta_X=1, beta_Z=1)
"Fluctuation of failure rate estimates across iterations\n" +
"Bernoulli + independent decisions, without unobservables",
figure_path + "sl_bernoulli_independent_without_Z",
model_type="lr",
fit_with_Z=True
if which == 14:
print("\nWith unobservables (Bernoullian outcome + independent decisions)")
print("Now R ~ Uniform(0.1, 0.4)")
dg = lambda: bernoulliDGWithUnobservables(N_total=N_sim)
decider = lambda x: quantileDecider(x, featureX_col="X", featureZ_col=None,
nJudges_M=M_sim, beta_X=1, beta_Z=1,
leniency_upper_limit=0.4)
"Fluctuation of failure rate estimates across iterations\n" +
"Bernoulli + independent decisions, without unobservables",
figure_path + "sl_bernoulli_independent_without_Z",
model_type="lr",
fit_with_Z=True
)