Skip to content
Snippets Groups Projects
sl.tex 4.71 KiB
Newer Older
  • Learn to ignore specific revisions
  • \documentclass[sigconf,anonymous]{acmart}
    % \documentclass[sigconf]{acmart}
    
    
    % For camera-ready version: change these
    \settopmatter{printacmref=false}
    \settopmatter{printccs=false}
    \setcopyright{none}
    
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    \sloppy
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    
    \usepackage{tikz}
    \usepackage{tikz-cd}
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    \usetikzlibrary{shapes}
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    \usetikzlibrary{arrows,automata, positioning}
    
    
    % Packages
    \usepackage{type1cm}     % type1 computer modern font
    \usepackage{graphicx}     % advanced figures
    \usepackage{xspace}     % fix space in macros
    \usepackage{balance}     % to better equalize the last page
    \usepackage{multirow}     % multi rows for tables
    \usepackage[font={bf}, tableposition=top]{caption}     % captions on top for tables
    \usepackage{bold-extra}     % bold + {small capital, italic}
    \usepackage{siunitx}          % \num for decimal grouping
    \usepackage[vlined,linesnumbered,ruled,noend]{algorithm2e}     % algorithms
    \usepackage{booktabs}     % nicer tables
    %\usepackage[hyphens]{url}     % handle long urls
    %\usepackage[bookmarks, pdftex, colorlinks=false]{hyperref}     % clickable references
    %\usepackage[square,numbers]{natbib}     % better references
    \usepackage{microtype}    % compress text
    \usepackage{units}     % nicer slanted fractions
    \usepackage{mathtools}     % amsmath++
    %\usepackage{amssymb}     % math symbols
    
    Michael Mathioudakis's avatar
    Michael Mathioudakis committed
    \usepackage{amsmath}
    
    \usepackage{relsize}
    \usepackage{caption}
    \captionsetup{belowskip=6pt,aboveskip=2pt} % to save space.
    %\usepackage{subcaption}
    % \usepackage{multicolumn}
    \usepackage[]{inputenc}
    \usepackage{xfrac}
    \RequirePackage{graphicx,color}
    \usepackage[font={small}]{subfig} % subfig, 4 figures in a row
    \usepackage{pifont}
    \usepackage{footnote} % show footnotes in tables
    \makesavenoteenv{table}
    
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    \newtheorem{problem}{Problem}
    
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    %\newcommand{\ourtitle}{Evaluating Decision Makers over Selectively Labeled Data}
    
    
    
    %\newcommand{\ourtitle}{A Causal Approach to\\Evaluating Decision Makers over Selectively Labeled Data}
    
    \newcommand{\ourtitle}{Evaluating Decision Makers over Selectively Labeled Data:\\
    A Causal Modeling Approach
    }
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    % A in the Presence of Unobservables and Selective Labels
    % A Causal Treatment for Unobservables and Selective Labels
    % Incomplete Data
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    %-unobservables
    %-selective labels
    
    %-causal
    %-bayesian
    
    
    
    \input{macros}
    
    \usepackage{chato-notes}
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    %\author{Michael Mathioudakis}
    %\affiliation{%
     % \institution{University of Helsinki}
     % \city{Helsinki} 
     % \country{Finland} 
    %}
    %\email{michael.mathioudakis@helsinki.fi}
    
    
    
    \begin{abstract}
    
    Today, AI systems replace humans in an increasing number of decisions affecting people's lives.
    
    Michael Mathioudakis's avatar
    Michael Mathioudakis committed
    %
    
    Therefore, it is important to evaluate the performance of such systems {\it offline}, i.e., before they are deployed in real settings --
    and compare it to the performance of human decisions they aim to replace.
    
    Michael Mathioudakis's avatar
    Michael Mathioudakis committed
    %
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    The data which such evaluation is performed on has two major challenges, biasing any direct evaluations of considered decision makers.
    %
    First, in most cases the data does not include all factors that play a role in the decisions recorded in it.
    %
    Second, the past decision in the data skew the data, and, in particular, any possible outcomes recorded in it.
    %Another major challenge in such cases is that often past decisions have skewed the data on which the evaluation is performed. 
    
    Michael Mathioudakis's avatar
    Michael Mathioudakis committed
    %
    
    For example, when a bank decides whether a customer should be granted a loan, it is desired to grant loans to customers who would honor its conditions, but not to ones who would violate them.
    
    Michael Mathioudakis's avatar
    Michael Mathioudakis committed
    %
    
    However, we can directly evaluate only the decision to grant the loan, while we cannot observe whether customers who were not granted the loan would indeed violate its conditions. 
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    %
    %THIS IS NOT SKEW THIS IS MISSING DATA
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    Such selection bias appears in the decisions of both human and AI decision makers -- and should be properly taken into account for evaluation.
    
    Michael Mathioudakis's avatar
    Michael Mathioudakis committed
    %
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    %Further complications arise since commonly not all features that the decisions are based on are observed. DISCUSS UNOBSERVABLES IN THE INTRO?
    %
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    In this paper, we develop a Bayesian approach towards this end, using what we call counterfactual-based imputation.
    % to infer unobserved outcomes.
    
    Michael Mathioudakis's avatar
    Michael Mathioudakis committed
    %
    Compared to previous state-of-the-art, the quality of decisions is estimated more accurately and with lower variance. 
    %
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    The approach is also %demonstrated to be 
    robust to different variations in the decision mechanisms in the data.
    
    \end{abstract}
    
    
    \begin{document}
    
    
    \fancyhead{}
    \maketitle
    
    \renewcommand{\shortauthors}{Authors}
    
    
    
    \input{introduction}
    
    \input{setting}
    
    \input{imputation}
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    
    
    Riku-Laine's avatar
    Riku-Laine committed
    \input{experiments} 
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    
    
    \input{related} 
    
    \input{conclusions}
    
    Riku-Laine's avatar
    Riku-Laine committed
    
    
    % \textbf{Acknowledgments.}
    %The computational resources must be mentioned. 
    
    
    %\clearpage
    % \balance
    \bibliographystyle{ACM-Reference-Format}
    \bibliography{biblio}
    %\balancecolumns % GM June 2007
    
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    %\clearpage
    
    Antti Hyttinen's avatar
    Antti Hyttinen committed
    
    
    \end{document}