Newer
Older
from dash import dash, dcc, html, Output, Input
from collections import Counter
from dash_plot_generation.utils import split_companies, extract_unique_companies, convert_owners_to_limits, \
get_owner_means
from dash.exceptions import PreventUpdate
import plotly.graph_objects as go
import plotly.express as px
DARK_STEAM = "rgb(23,29,37)"
WHITE_STEAM = "rgb(235,235,235)"
TITLE_WHITE_STEAM = "rgb(197,195,192)"
DARK_BLUE_STEAM = "rgb(27,40,56)"
TAB_COLOR = "rgb(31,46,65)"
TAB_EDGE = "rgb(37,55,77)"
DROPDOWN_COLOR = "rgb(50,70,101"
SMALL_PANEL_COLOR = "rgb(22,32,45)"
DEFAULT_TABS_DICT = {'width': 'auto', 'display': 'flex',
'background-color': TAB_COLOR, 'border-color': TAB_EDGE}
TAB_HEADER_COLOR = "rgb(45,96,150)"
DEVELOPER_DROPDOWN = "developer_dropdown"
TAB_NORMAL_DICT = {'background-color': TAB_COLOR, 'color': TITLE_WHITE_STEAM,
'border': '0px solid',
'border_bottom': '2px solid ' + TAB_EDGE}
TAB_HIGHLIGHT_DICT = {'backgroundColor': TAB_HEADER_COLOR, 'color': 'white', "border-color": "transparent",
'font-size': '15px'}
PANEL_DEFAULT_DICT = {'display': 'inline-block',
'background-color': TAB_COLOR, 'border': '2px solid', 'border-color': TAB_EDGE,
'color': WHITE_STEAM}
SMALL_PANEL_DICT = {'float': 'left', 'background-color': SMALL_PANEL_COLOR, 'box-sizing': 'border-box',
'padding': '10px'}
DEV_TOP_GENRES_LABEL = "dev_top_genres"
DEV_CCU_LABEL = "dev_ccu"
DEV_GAME_COUNT_LABEL = "dev_game_count"
DEV_REV_PER_GAME_LABEL = "dev_rev_per_game"
DEV_REVENUE_LABEL = "dev_revenue"
DEV_TOP_GAMES = "pub_top_games"
PUB_TOP_GENRES_LABEL = "pub_top_genres"
PUB_CCU_LABEL = "pub_ccu"
PUB_GAME_COUNT_LABEL = "pub_game_count"
PUB_REV_PER_GAME_LABEL = "pub_rev_per_game"
PUB_REVENUE_LABEL = "pub_revenue"
PUB_TOP_GAMES = "pub_top_games"
DEMO_PLOT_LABELS = ["Action", "Adventure", "RPG", "Puzzle", "Strategy", "Other"]
DEMO_PLOT_COLORS = list(zip(DEMO_PLOT_LABELS, px.colors.qualitative.G10))
csv_path = os.path.normpath(os.getcwd() + os.sep + os.pardir + os.sep + "api_exploration")
split_csv_path = os.path.join(csv_path, "file_segments")
# steam_dark_template = dict(layout=go.Layout(title_font))
external_stylesheets=['https://codepen.io/chriddyp/pen/bWLwgP.css'],
def initialize_data():
global df
files = os.listdir(split_csv_path)
dataframe = None
for file in os.listdir(split_csv_path):
file_path = os.path.join(split_csv_path, file)
dataframe = pandas.concat([dataframe, pandas.read_csv(file_path)]) if dataframe is not None \
@APP.callback([Output(DEV_REVENUE_LABEL, "children"),
Output(DEV_TOP_GENRES_LABEL, "children"),
Output(DEV_CCU_LABEL, "children"),
Output(DEV_GAME_COUNT_LABEL, "children"),
Output(DEV_REV_PER_GAME_LABEL, "children"),
Output(DEV_TOP_GAMES, "children")],
inputs=[Input(DEVELOPER_DROPDOWN, "value")])
def update_dev_info(dev_name):
global df
if not dev_name:
raise PreventUpdate
mask = df.developer.apply(lambda x: dev_name in x if isinstance(x, str) else False)
dev_data = df[mask]
ccu = sum(dev_data["ccu"])
dev_data["owner_means"] = dev_data["owners"].apply(lambda x: get_owner_means(convert_owners_to_limits(x)))
dev_data["game_prices"] = dev_data["price"]
dev_data["game_revenue"] = dev_data.apply(lambda x: x["owner_means"] * x["game_prices"] if
not (pandas.isna(x["owner_means"]) or pandas.isna(x["game_prices"]))
else 0, axis=1)
# dev_data["game_revenue"] = pandas.Series([owner_count * game_price for (owner_count, game_price) in
# zip(dev_data["owner_means"], dev_data["game_prices"]) if
# not (pandas.isna(game_price) or pandas.isna(owner_count))])
genre_totals = [genre for genre_list in dev_data["genres"] if isinstance(genre_list, str)
for genre in genre_list.split(", ")]
genre_counts = Counter(genre_totals).most_common(3)
top_games = dev_data.sort_values(by=["game_revenue"], ascending=False)["name"].head(3)
# top_genres = dict(sorted(genre_totals.items(), key=lambda x: x[1], reverse=True)[:4])
dev_revenue = str(int(round(numpy.nansum(dev_data["game_revenue"]), -1)))
dev_top_genre_labels = ", ".join([genre_c[0] for genre_c in genre_counts])
dev_ccu = str(ccu)
dev_game_count = str(dev_data.shape[0])
dev_game_revenue_per_game = str(
int(round(numpy.nansum(dev_data["game_revenue"]) / len(dev_data["game_revenue"]), -1)))
dev_top_games_label = ", ".join(top_games)
return dev_revenue, dev_top_genre_labels, dev_ccu, dev_game_count, dev_game_revenue_per_game, dev_top_games_label
def initialize_dash(host: str = "0.0.0.0", **kwargs):
"""
Runs the Dash server.
Args:
host: IP address of the server
kwargs: Variables which are passed down to APP.run function as named arguments.
Note:
The server IP is not actually 0.0.0.0; if the dash app is not accessible via this address, use the same port
number but replace the IP address with your local network IP instead.
"""
global APP, df, DEMO_PLOT_COLORS, DEMO_PLOT_LABELS
# unique_publishers = extract_unique_companies(df["publisher"].apply(lambda x: split_companies(x)))
# unique_developers = extract_unique_companies(df["developer"].iloc[0:10].apply(lambda x: split_companies(x)))
APP.css.append_css({
'external_url': 'styles.css'
})
APP.layout = html.Div(
children=[
html.Nav(className="nav nav-pills", children=[
html.H6("SteamSavvy - Steam game data insights",
style={"margin-left": "30px", "width": "20%", "display": "inline-block"}),
html.A('About', className="nav-item nav-link btn", href='/apps/App1',
style={"margin-left": "300px"}),
html.A('Technical report', className="nav-item nav-link active btn", href='/apps/App2',
style={"margin-left": "150px"})
],
style={"background-color": "rgb(23,29,37)", "color": "rgb(197,195,192)", 'width': '100%'}),
html.Div(className="row", children=[
html.Div(children=[
dcc.Tabs(id="tabs_main_plots1", value="tab1", children=[
style=TAB_NORMAL_DICT, selected_style=TAB_HIGHLIGHT_DICT),
style=TAB_NORMAL_DICT, selected_style=TAB_HIGHLIGHT_DICT),
style=TAB_NORMAL_DICT, selected_style=TAB_HIGHLIGHT_DICT),
dcc.Tab(label="Market performance", value="tab4",
style=TAB_NORMAL_DICT, selected_style=TAB_HIGHLIGHT_DICT),
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
html.Div(children=[
html.Div(style=SMALL_PANEL_DICT | {'width': '60%', 'height': '100%', 'margin-right': '5%',
'padding-left': '5%',
'background-color': TAB_COLOR},
children=[dcc.Graph(
figure=go.Figure(data=[
{'x': ["Action", "Adventure", "RPG", "Puzzle", "Strategy"],
'y': [0.7, 0.4, 0.8, 1.2, 1.3],
'type': 'bar'},
],
layout=dict(template="plotly_dark",
title="Relative genre perfomance",
plot_bgcolor=TAB_COLOR,
paper_bgcolor=TAB_COLOR)),
),
html.P(f"""Genre performance measures the assessed exploitability of the
specific game genre. The assesment is done by estimating the genre popularity,
and games developed in the next two years and showing the relative differences
between the genres.""")]),
html.Div(style=SMALL_PANEL_DICT | {'width': '35%', 'height': '100%',
'background-color': TAB_COLOR},
children=[
html.Div(style={'width': '100%', 'height': '50%'},
children=[dcc.Graph(
figure=go.Figure(data=[go.Pie(
labels=["Action", "Adventure", "RPG", "Puzzle", "Strategy", "Other"],
values=[0.8, 0.3, 0.4, 0.4, 0.3, 0.55],
sort=False)],
layout=dict(template="plotly_dark",
title="Genre popularity",
plot_bgcolor=TAB_COLOR,
paper_bgcolor=TAB_COLOR,
margin=dict(l=20, r=20, t=50, b=20))),
style={'width': '100%', 'height': '100%'})]),
html.Div(style={'width': '100%', 'height': '50%'},
children=[dcc.Graph(
figure=go.Figure(data=[go.Pie(
labels=["Action", "Adventure", "RPG", "Puzzle", "Strategy",
"Other"],
values=[0.7, 0.5, 0.1, 0.4, 0.3, 0.7],
sort=False,)],
layout=dict(template="plotly_dark",
title="Genre revenue share",
plot_bgcolor=TAB_COLOR,
paper_bgcolor=TAB_COLOR,
margin=dict(l=20, r=20, t=50, b=20))),
style={'width': '100%', 'height': '100%'})]
)])],
style={'height': '88%', 'width': '100%', 'margin': '0'})
], style=PANEL_DEFAULT_DICT | {'width': 'calc(45% - 10px)', 'height': '600px',
'margin-right': '100px','padding-left': '4%',
'padding-right': '4%', 'padding-bottom': '4%',
'padding-top':'3%', 'margin-bottom': '20px'
html.Div(children=[
dcc.Tabs(id="tabs_main_plots2", value="tab3", children=[
dcc.Tab(label="Developer infromation", value="tab3", children=[
options=[{"label": html.Span([developer], style={'color': WHITE_STEAM}),
"value": developer} for developer in unique_developers],
style={'margin-top': '20px', 'color': WHITE_STEAM},
className='dash-dropdown', # Add the CSS class here
html.Div(children=[
html.P("Total game sale revenue"),
html.Small(id=DEV_REVENUE_LABEL, children="524.245.000€"),
html.P("Average game sale revenue"),
html.Small(id=DEV_REV_PER_GAME_LABEL, children="92.625.000€"),
html.P("Highest game sale revenue games:"),
html.Small(id=DEV_TOP_GAMES, children="Half life 2"),
]),
style=SMALL_PANEL_DICT | {'width': '48%', 'height': '100%',
'margin-right': '20px', 'margin-bottom': '50px'}
html.P("Number of games", className="game-info"),
html.Small(id=DEV_GAME_COUNT_LABEL, children="5", className="game-info"),
html.P("Number of concurrent users", className="game-info"),
html.Small(id=DEV_CCU_LABEL, children="92.625.000€", className="game-info"),
html.P("Most common game genres", className="game-info"),
html.Small(id=DEV_TOP_GENRES_LABEL, children="FPS, Action, Puzzle",
className="game-info"),
html.P("Average game rating", className="game-info"),
], style=SMALL_PANEL_DICT | {'width': '48%', 'height': '100%'}
)
])
], style={'margin-left': '20px', 'margin-right': '20px'}
)
], style=TAB_NORMAL_DICT, selected_style=TAB_HIGHLIGHT_DICT),
dcc.Tab(label="Publisher information", value="tab4", children=[
dcc.Dropdown(id="publisher_dropdown", value="Valve",
options=[{"label": publisher, "value": publisher} for publisher in
], style=TAB_NORMAL_DICT, selected_style=TAB_HIGHLIGHT_DICT)
style=PANEL_DEFAULT_DICT | {'width': 'calc(30% - 10px)', 'height': '600px', 'margin-right': '4%',
'padding-left': '3%',
'padding-right': '3%', 'padding-bottom': '4%',
'padding-top': '3%', 'margin-bottom': '20px'
})
style={'width': '100%', "padding-top": "15px", 'padding-left': "50px"}),
APP.run(host=host, **kwargs)
print("The server has closed!")
if __name__ == "__main__":
initialize_data()