Newer
Older
# Introduction to Data Science, Luento-opetus, 2023
# Sergei Panarin
# Data preprocessing
# IMPORTANT THINGS:
# Change the number of input files in the read_data function OR later replace with full data file
# FUNCTION replace owner with symbol is copied from the main branch, DELETE LATER and IMPORT
import pandas as pd
import numpy as np
import datetime as dt
import re
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
from math import isnan
# Reading the data from source:
# Pandas cannot read from GitLab URLs, so work is done with locally stored datasets.
# Go through partial files containing parts of the whole dataset
# @param
# @return: full pandas dataframe, containing all the relevant columns from the csv files
def read_data():
# full_data_df = pd.read_csv("full_data.csv")
partial_dfs = []
# range can be changed, reads segments of the full dataset
for index in range(66):
datafile="api_exploration/file_segments/game_data_"+str(index+1)+".csv"
partial_dfs.append(pd.read_csv(datafile))
# Combine partial dataframes into the full version
full_data_df = pd.concat(partial_dfs)
return full_data_df
# transform String columns into integer IDs.
# @param: pandas dataframe with the full data
# @return: pandas dataframe with developer, publisher, genres columns encoded with integer IDs
def label_encoding(data):
to_be_encoded = ["publisher", "developer"]
# remove everything but the first element in those columns and categorize everything
for val in to_be_encoded:
data[val] = data[val].apply(lambda x: str(x).split(",")[0])
data[val] = data[val].astype('category')
# select the category columns and apply label encoding
cat_columns = data.select_dtypes(['category']).columns
data[cat_columns] = data[cat_columns].apply(lambda x: x.cat.codes)
# Transforms full data dataframe into a dataframe with the following columns:
# - Genre
# - Amount of purchases
# - Interval of time (default chosen as 2 months for now)
# @param: pandas dataframe with the full data, interval integer meaning the number of months
# @return: pandas dataframe with genre, # of purchases, time interval columns
def genre_data_aggregation(data, interval):
data["genres"] = data["genres"].apply(lambda x: str(x).split(","))
# preprocess the release date column into the pandas datetime format
data['release_date'] = pd.to_datetime(data['release_date'], dayfirst=True, format="mixed")
# remove whitespaces
data['genres'] = data['genres'].map(lambda x: list(map(str.strip, x)))
data = data[['release_date', 'genres', 'owners']]
agg_data = pd.DataFrame(columns=['genre','dates','populations'])
# big FOR loop, for now
agg_data = data.explode('genres')
agg_data = agg_data.groupby("genres")
#describe()
agg_data = [group for _, group in agg_data]
for x in agg_data:
x.dropna(how='any', inplace=True)
x.sort_values(by=['release_date'], ascending=[True], inplace=True)
#x = x.groupby( [pd.Grouper(key='release_date', freq=str(interval)+"M"), pd.Grouper('genres')] ).agg({'owners': 'sum'})
# remove excessive columns and sort values
# data = data[['release_date', 'genres', 'owners']].sort_values(['release_date','genres', 'owners'], ascending=[True, True, False])
dict_data = {}
# group by the time interval and get sum of the owners
for i in range(0, len(agg_data)):
name = agg_data[i]['genres'].iloc[0]
agg_data[i] = agg_data[i].groupby(pd.Grouper(key='release_date', freq=str(interval)+"M")).agg({'owners': 'sum'})
agg_data[i] = agg_data[i].reset_index()
dict_data[name] = agg_data[i]
return dict_data
# Resets Index of the merged dataframe
def clean_index(data):
return data.reset_index(drop=True)
# Transforms owners column values from str of range of values into the average float value
# @param: pandas dataframe with the full data, interval integer meaning the number of months
# @return: pandas dataframe with owners column modified
def replace_owner_str_with_average_number(data):
def replace_letters(entry):
to_remove = {" M": "000000", " k": "000"}
for char in to_remove.keys():
entry = entry.replace(char, to_remove[char])
return entry
data["owners"] = data["owners"].apply(lambda name: replace_letters(name))
data["owners"] = data["owners"].apply(lambda name: re.findall("\d+",name))
data["owners"] = data["owners"].apply(lambda name: [int(item) for item in name])
data["owners"] = data["owners"].apply(lambda name: float(sum(name)/len(name)))
return data
# Encodes time as numbers for processing
# @param: pandas dataframe with the full data
# @return: pandas dataframe with time modified
def encode_time(df):
df['release_date']=df['release_date'].map(dt.datetime.toordinal)
return df
def lin_reg(df):
y = np.asarray(df['owners'])
X = df[['release_date']]
#X_train, X_test, y_train, y_test = train_test_split(X,y,train_size=.7,random_state=42)
model = LinearRegression() #create linear regression object
#model.fit(X_train, y_train) #train model on train data
model.fit(X, y)
#model.score(X_train, y_train) #check score
return model
# Plot the given genre data
def get_genre_plot(dict_data: object, genre: object) -> object:
plt.scatter(dict_data[genre]["release_date"], dict_data[genre]["owners"])
plt.show()
def get_data_interval(days):
base = dt.datetime.now()
final_date = base + dt.timedelta(days=days)
parts = list(pd.date_range(pd.Timestamp(base), pd.Timestamp(final_date), freq='2M'))
dates = [t.toordinal() for t in parts]
return dates
if __name__ == "__main__":
full_data_df = read_data()
full_data_df = clean_index(full_data_df)
label_encoding(full_data_df)
data = replace_owner_str_with_average_number(full_data_df)
genre_data = genre_data_aggregation(full_data_df, 2)
get_genre_plot(genre_data, genre)
# 730 days = 2 years
dates = np.array(get_data_interval(730))
dates = dates.reshape(len(dates), 1)
# GET ALL MODELS FOR ALL GENRES
models = {}
predictions = {}
process_data = genre_data
for x in process_data:
genre_data[x] = encode_time(genre_data[x])
models[x] = lin_reg(genre_data[x])
for genre in models:
predictions[genre] = models[genre].predict(dates)
# GET POINT OF REFERENCE