Skip to content
Snippets Groups Projects
Commit c830d28e authored by Oskar Lappi's avatar Oskar Lappi
Browse files

Namespaced bimap

parent ee29a35a
No related branches found
No related tags found
No related merge requests found
......@@ -4,351 +4,353 @@
#include <iterator>
#include <unordered_set>
template <typename T>
struct bimap_left {
T val;
};
template <typename T>
struct bimap_right {
T val;
};
template <typename L, typename R>
struct CompareLeft {
bool
operator()(const std::pair<L, R> &lhs, const std::pair<L, R> &rhs) const
{
return lhs.first < rhs.first || (lhs.first == rhs.first && lhs.second < rhs.second);
}
bool
operator()(const L &lhs, const std::pair<L, R> &rhs) const
{
return lhs < rhs.first;
}
bool
operator()(const std::pair<L, R> &lhs, const L &rhs) const
{
return lhs.first < rhs;
}
using is_transparent = L;
};
template <typename L, typename R>
struct CompareRight {
bool
operator()(const std::pair<L, R> &lhs, const std::pair<L, R> &rhs) const
{
return lhs.second < rhs.second || (lhs.second == rhs.second && lhs.first < rhs.first);
}
bool
operator()(const R &lhs, const std::pair<L, R> &rhs) const
{
return lhs < rhs.second;
}
bool
operator()(const std::pair<L, R> &lhs, const R &rhs) const
{
return lhs.second < rhs;
}
using is_transparent = L;
};
//TODO: maybe add unkeyed versions of member functions for when L != R
// (replacing left with L, right with R)
template <typename L, typename R>
struct bimap {
using left = bimap_left<L>;
using right = bimap_right<R>;
using relation = std::pair<L,R>;
using l_relation_set = std::set<relation, CompareLeft<L,R>>;
using r_relation_set = std::set<relation, CompareRight<L,R>>;
using relation_iterator = typename l_relation_set::iterator;
//TODO: see if the iterator types are the same
std::set<L> left_elements;
std::set<R> right_elements;
l_relation_set l_relations;
r_relation_set r_relations;
//TODO: badly named? Maybe should make the sets private if I have accessors...?
const l_relation_set&
relations_ref()
{
return l_relations;
}
std::vector<relation>
all_relations_vec()
{
std::vector<relation> rel;
for (auto it = l_relations.begin(); it != l_relations.end(); it++){
rel.push_back(*it);
}
return rel;
}
// Insert elements
void
insert(left l_key)
{
left_elements.insert(l_key.val);
}
void
insert(right r_key)
{
right_elements.insert(r_key.val);
}
void
l_insert(L l)
{
left_elements.insert(l);
}
void
r_insert(R r)
{
right_elements.insert(r);
}
// Insert relations
void
insert(L l, R r)
{
left_elements.insert(l);
right_elements.insert(r);
l_relations.insert({l,r});
r_relations.insert({l,r});
}
void
insert(relation rel)
{
left_elements.insert(rel.first);
right_elements.insert(rel.second);
l_relations.insert(rel);
r_relations.insert(rel);
}
// Erase relations
void
erase(const relation &rel)
{
r_relations.erase(rel);
l_relations.erase(rel);
}
// Erase elements
void
erase(left l_key)
{
left_elements.erase(l_key.val);
//Find all relations in l_relations and remove them from r_relations
auto &[lb, ub] = l_relations.equal_range(l_key.val);
for (auto it = lb; it < ub; it++){
r_relations.erase(*it);
}
l_relations.erase(l_key.val);
}
void
erase(right r_key)
{
right_elements.erase(r_key.val);
auto &[lb, ub] = r_relations.equal_range(r_key.val);
for (auto it = lb; it < ub; it++){
l_relations.erase(*it);
}
r_relations.erase(r_key.val);
}
void
l_erase(L l)
{
left_elements.erase(l);
auto &[lb, ub] = l_relations.equal_range(l);
for (auto it = lb; it < ub; it++){
r_relations.erase(*it);
}
l_relations.erase(l);
}
void
r_erase(R r)
{
right_elements.erase(r);
auto &[lb, ub] = l_relations.equal_range(r);
for (auto it = lb; it < ub; it++){
r_relations.erase(*it);
}
r_relations.erase(r);
}
// Contains
bool contains(relation rel)
{
return l_relations.contains(rel);
}
bool contains(left l_key)
{
return l_relations.contains(l_key.val);
}
bool contains(right r_key)
{
return r_relations.contains(r_key.val);
}
bool l_contains(L l)
{
return l_relations.contains(l);
}
bool r_contains(R r)
{
return r_relations.contains(r);
}
// Count
size_t
count(left l_key)
{
return l_relations.count(l_key.val);
}
size_t
count(right r_key)
{
return r_relations.count(r_key.val);
}
size_t
l_count(L l)
{
return l_relations.count(l);
}
size_t
r_count(R r)
{
return r_relations.count(r);
}
// Equal range
std::pair<relation_iterator, relation_iterator>
equal_range(left l_key)
{
return l_relations.equal_range(l_key.val);
}
std::pair<relation_iterator, relation_iterator>
equal_range(right r_key)
{
return r_relations.equal_range(r_key.val);
}
std::pair<relation_iterator, relation_iterator>
l_equal_range(L l)
{
return equal_range(left{l});
}
std::pair<relation_iterator, relation_iterator>
r_equal_range(R r)
{
return equal_range(right{r});
}
// Convenience function for getting a vector out
std::vector<R>
mapped_vector(left l_key)
{
std::vector<R> v;
auto [lb, ub] = equal_range(l_key);
v.reserve(std::distance(lb,ub));
for (auto it = lb; it != ub; it++){
v.push_back(it->second);
}
return v;
}
std::vector<L>
mapped_vector(right r_key)
{
std::vector<L> v;
auto [lb, ub] = equal_range(r_key);
v.reserve(std::distance(lb,ub));
for (auto it = lb; it != ub; it++){
v.push_back(it->first);
}
return v;
}
// Convenience function for getting a set
std::vector<R>
mapped_set(left l_key)
{
std::set<R> s;
auto [lb, ub] = equal_range(l_key);
for (auto it = lb; it != ub; it++){
s.insert(it->second);
}
return s;
}
std::vector<L>
mapped_set(right r_key)
{
std::set<L> s;
auto [lb, ub] = equal_range(r_key);
s.insert(ub - lb);
for (auto it = lb; it != ub; it++){
s.insert(it->first);
}
return s;
}
std::vector<R>
l_mapped_vector(L l)
{
return mapped_vector(left{l});
}
std::vector<L>
r_mapped_vector(R r)
{
return mapped_vector(right{r});
}
std::vector<R>
l_mapped_set(L l)
{
return mapped_set(left{l});
}
std::vector<L>
r_mapped_set(R r)
{
return mapped_set(right{r});
}
};
namespace ojl {
template <typename T>
struct bimap_left {
T val;
};
template <typename T>
struct bimap_right {
T val;
};
template <typename L, typename R>
struct CompareLeft {
bool
operator()(const std::pair<L, R> &lhs, const std::pair<L, R> &rhs) const
{
return lhs.first < rhs.first || (lhs.first == rhs.first && lhs.second < rhs.second);
}
bool
operator()(const L &lhs, const std::pair<L, R> &rhs) const
{
return lhs < rhs.first;
}
bool
operator()(const std::pair<L, R> &lhs, const L &rhs) const
{
return lhs.first < rhs;
}
using is_transparent = L;
};
template <typename L, typename R>
struct CompareRight {
bool
operator()(const std::pair<L, R> &lhs, const std::pair<L, R> &rhs) const
{
return lhs.second < rhs.second || (lhs.second == rhs.second && lhs.first < rhs.first);
}
bool
operator()(const R &lhs, const std::pair<L, R> &rhs) const
{
return lhs < rhs.second;
}
bool
operator()(const std::pair<L, R> &lhs, const R &rhs) const
{
return lhs.second < rhs;
}
using is_transparent = L;
};
//TODO: maybe add unkeyed versions of member functions for when L != R
// (replacing left with L, right with R)
template <typename L, typename R>
struct bimap {
using left = bimap_left<L>;
using right = bimap_right<R>;
using relation = std::pair<L,R>;
using l_relation_set = std::set<relation, CompareLeft<L,R>>;
using r_relation_set = std::set<relation, CompareRight<L,R>>;
using relation_iterator = typename l_relation_set::iterator;
//TODO: see if the iterator types are the same
std::set<L> left_elements;
std::set<R> right_elements;
l_relation_set l_relations;
r_relation_set r_relations;
//TODO: badly named? Maybe should make the sets private if I have accessors...?
const l_relation_set&
relations_ref()
{
return l_relations;
}
std::vector<relation>
all_relations_vec()
{
std::vector<relation> rel;
for (auto it = l_relations.begin(); it != l_relations.end(); it++){
rel.push_back(*it);
}
return rel;
}
// Insert elements
void
insert(left l_key)
{
left_elements.insert(l_key.val);
}
void
insert(right r_key)
{
right_elements.insert(r_key.val);
}
void
l_insert(L l)
{
left_elements.insert(l);
}
void
r_insert(R r)
{
right_elements.insert(r);
}
// Insert relations
void
insert(L l, R r)
{
left_elements.insert(l);
right_elements.insert(r);
l_relations.insert({l,r});
r_relations.insert({l,r});
}
void
insert(relation rel)
{
left_elements.insert(rel.first);
right_elements.insert(rel.second);
l_relations.insert(rel);
r_relations.insert(rel);
}
// Erase relations
void
erase(const relation &rel)
{
r_relations.erase(rel);
l_relations.erase(rel);
}
// Erase elements
void
erase(left l_key)
{
left_elements.erase(l_key.val);
//Find all relations in l_relations and remove them from r_relations
auto &[lb, ub] = l_relations.equal_range(l_key.val);
for (auto it = lb; it < ub; it++){
r_relations.erase(*it);
}
l_relations.erase(l_key.val);
}
void
erase(right r_key)
{
right_elements.erase(r_key.val);
auto &[lb, ub] = r_relations.equal_range(r_key.val);
for (auto it = lb; it < ub; it++){
l_relations.erase(*it);
}
r_relations.erase(r_key.val);
}
void
l_erase(L l)
{
left_elements.erase(l);
auto &[lb, ub] = l_relations.equal_range(l);
for (auto it = lb; it < ub; it++){
r_relations.erase(*it);
}
l_relations.erase(l);
}
void
r_erase(R r)
{
right_elements.erase(r);
auto &[lb, ub] = l_relations.equal_range(r);
for (auto it = lb; it < ub; it++){
r_relations.erase(*it);
}
r_relations.erase(r);
}
// Contains
bool contains(relation rel)
{
return l_relations.contains(rel);
}
bool contains(left l_key)
{
return l_relations.contains(l_key.val);
}
bool contains(right r_key)
{
return r_relations.contains(r_key.val);
}
bool l_contains(L l)
{
return l_relations.contains(l);
}
bool r_contains(R r)
{
return r_relations.contains(r);
}
// Count
size_t
count(left l_key)
{
return l_relations.count(l_key.val);
}
size_t
count(right r_key)
{
return r_relations.count(r_key.val);
}
size_t
l_count(L l)
{
return l_relations.count(l);
}
size_t
r_count(R r)
{
return r_relations.count(r);
}
// Equal range
std::pair<relation_iterator, relation_iterator>
equal_range(left l_key)
{
return l_relations.equal_range(l_key.val);
}
std::pair<relation_iterator, relation_iterator>
equal_range(right r_key)
{
return r_relations.equal_range(r_key.val);
}
std::pair<relation_iterator, relation_iterator>
l_equal_range(L l)
{
return equal_range(left{l});
}
std::pair<relation_iterator, relation_iterator>
r_equal_range(R r)
{
return equal_range(right{r});
}
// Convenience function for getting a vector out
std::vector<R>
mapped_vector(left l_key)
{
std::vector<R> v;
auto [lb, ub] = equal_range(l_key);
v.reserve(std::distance(lb,ub));
for (auto it = lb; it != ub; it++){
v.push_back(it->second);
}
return v;
}
std::vector<L>
mapped_vector(right r_key)
{
std::vector<L> v;
auto [lb, ub] = equal_range(r_key);
v.reserve(std::distance(lb,ub));
for (auto it = lb; it != ub; it++){
v.push_back(it->first);
}
return v;
}
// Convenience function for getting a set
std::vector<R>
mapped_set(left l_key)
{
std::set<R> s;
auto [lb, ub] = equal_range(l_key);
for (auto it = lb; it != ub; it++){
s.insert(it->second);
}
return s;
}
std::vector<L>
mapped_set(right r_key)
{
std::set<L> s;
auto [lb, ub] = equal_range(r_key);
s.insert(ub - lb);
for (auto it = lb; it != ub; it++){
s.insert(it->first);
}
return s;
}
std::vector<R>
l_mapped_vector(L l)
{
return mapped_vector(left{l});
}
std::vector<L>
r_mapped_vector(R r)
{
return mapped_vector(right{r});
}
std::vector<R>
l_mapped_set(L l)
{
return mapped_set(left{l});
}
std::vector<L>
r_mapped_set(R r)
{
return mapped_set(right{r});
}
};
}
......@@ -9,7 +9,7 @@ main(int argc, char* argv[])
(void)argc;
(void)argv;
bimap<int, double> bm;
ojl::bimap<int, double> bm;
bm.insert(1,1.0);
bm.insert(1,2.0);
......
......@@ -3,10 +3,10 @@
#include <utility>
#include "ojl/bimap.hpp"
bimap<int, int>
ojl::bimap<int, int>
test_bimap1()
{
bimap<int, int> bm;
ojl::bimap<int, int> bm;
bm.insert(1,10);
bm.insert(1,12);
bm.insert(1,13);
......
......@@ -11,6 +11,8 @@
# include <catch2/catch_all.hpp>
#endif
using namespace ojl;
TEST_CASE("Bimap basic type instances", "[bimap, instantiation]")
{
bimap<int, int> bm_ii;
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment