Skip to content
Snippets Groups Projects
MachineLearning_inMolecularBiology2022_GroupProject.ipynb 1.12 MiB
Newer Older
jpronkko's avatar
jpronkko committed
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Project Tasks"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In the first few assignments, we have learned how to infer part based components (known as mutational signatures) generated by particular mutational processes using Non-negative Matrix Factorization (NMF). By doing this, we are trying to reconstruct the mutation catalog in a given sample with mutational signatures and their contributions.\n",
    "\n",
    "In this group project, you will use similar mutational profiles and signature activities to predict cancer types but with much larger sample size. \n",
    "You should:\n",
    "* Separate the data into training and test groups within each cancer type.\n",
    "* Find out which features are informative for the prediction of the cancer type (label). You should combine the profiles and activities and use each data type independently.\n",
    "* Implement different models for classification of the samples given the input data and evaluate the model performance using test data to avoid overfitting. Explain briefly how does each model that you have used work.\n",
    "* Report model performance, using standard machine learning metrics such as confusion matrices etc. \n",
    "* Compare model performance across methods and across cancer types, are some types easier top predict than others.\n",
    "* Submit a single Jupyter notebook as the final report and present that during the last assignment session "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The data include both mutational catalogs from multiple cancers and the predicted activities in the paper [\"Alexandrov LB, et al. (2020) The repertoire of mutational signatures in human cancer\"](https://www.nature.com/articles/s41586-020-1943-3). The data either are generated from whole human genome (WGS) or only exomes regions (WES). Since the exome region only constitutes about 1% of human genome, the total mutation numbers in these samples are, of course, much smaller. So if you plan to use WGS together with WES data, remember to normalize the profile for each sample to sum up to 1.\n",
    "\n",
    "Note that, the data is generated from different platforms by different research groups, some of them (e.g. labeled with PCAWG, TCGA) are processed with the same bioinformatics pipeline. Thus, these samples will have less variability related to data processing pipelines."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Cancer types might be labeled under the same tissue, e.g. 'Bone-Benign','Bone-Epith', which can also be combined together or take the one has more samples."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here is a link to background reading [\"Pan-Cancer Analysis of Whole Genomes\"](https://www.nature.com/collections/afdejfafdb). Have a look especially the paper [\"A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns\"](https://www.nature.com/articles/s41467-019-13825-8)."
   ]
  },
  {
   "cell_type": "code",
jpronkko's avatar
jpronkko committed
   "execution_count": 1,
jpronkko's avatar
jpronkko committed
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import re"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Mutational catalogs and activities - WGS data"
   ]
  },
  {
   "cell_type": "code",
jpronkko's avatar
jpronkko committed
   "execution_count": 2,
jpronkko's avatar
jpronkko committed
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Mutation type</th>\n",
       "      <th>Trinucleotide</th>\n",
       "      <th>Biliary-AdenoCA::SP117655</th>\n",
       "      <th>Biliary-AdenoCA::SP117556</th>\n",
       "      <th>Biliary-AdenoCA::SP117627</th>\n",
       "      <th>Biliary-AdenoCA::SP117775</th>\n",
       "      <th>Biliary-AdenoCA::SP117332</th>\n",
       "      <th>Biliary-AdenoCA::SP117712</th>\n",
       "      <th>Biliary-AdenoCA::SP117017</th>\n",
       "      <th>Biliary-AdenoCA::SP117031</th>\n",
       "      <th>...</th>\n",
       "      <th>Uterus-AdenoCA::SP94540</th>\n",
       "      <th>Uterus-AdenoCA::SP95222</th>\n",
       "      <th>Uterus-AdenoCA::SP89389</th>\n",
       "      <th>Uterus-AdenoCA::SP90503</th>\n",
       "      <th>Uterus-AdenoCA::SP92460</th>\n",
       "      <th>Uterus-AdenoCA::SP92931</th>\n",
       "      <th>Uterus-AdenoCA::SP91265</th>\n",
       "      <th>Uterus-AdenoCA::SP89909</th>\n",
       "      <th>Uterus-AdenoCA::SP90629</th>\n",
       "      <th>Uterus-AdenoCA::SP95550</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>C&gt;A</td>\n",
       "      <td>ACA</td>\n",
       "      <td>269</td>\n",
       "      <td>114</td>\n",
       "      <td>105</td>\n",
       "      <td>217</td>\n",
       "      <td>52</td>\n",
       "      <td>192</td>\n",
       "      <td>54</td>\n",
       "      <td>196</td>\n",
       "      <td>...</td>\n",
       "      <td>117</td>\n",
       "      <td>233</td>\n",
       "      <td>94</td>\n",
       "      <td>114</td>\n",
       "      <td>257</td>\n",
       "      <td>139</td>\n",
       "      <td>404</td>\n",
       "      <td>97</td>\n",
       "      <td>250</td>\n",
       "      <td>170</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>C&gt;A</td>\n",
       "      <td>ACC</td>\n",
       "      <td>148</td>\n",
       "      <td>56</td>\n",
       "      <td>71</td>\n",
       "      <td>123</td>\n",
       "      <td>36</td>\n",
       "      <td>139</td>\n",
       "      <td>54</td>\n",
       "      <td>102</td>\n",
       "      <td>...</td>\n",
       "      <td>90</td>\n",
       "      <td>167</td>\n",
       "      <td>59</td>\n",
       "      <td>64</td>\n",
       "      <td>268</td>\n",
       "      <td>75</td>\n",
       "      <td>255</td>\n",
       "      <td>78</td>\n",
       "      <td>188</td>\n",
       "      <td>137</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2 rows × 2782 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "  Mutation type Trinucleotide  Biliary-AdenoCA::SP117655  \\\n",
       "0           C>A           ACA                        269   \n",
       "1           C>A           ACC                        148   \n",
       "\n",
       "   Biliary-AdenoCA::SP117556  Biliary-AdenoCA::SP117627  \\\n",
       "0                        114                        105   \n",
       "1                         56                         71   \n",
       "\n",
       "   Biliary-AdenoCA::SP117775  Biliary-AdenoCA::SP117332  \\\n",
       "0                        217                         52   \n",
       "1                        123                         36   \n",
       "\n",
       "   Biliary-AdenoCA::SP117712  Biliary-AdenoCA::SP117017  \\\n",
       "0                        192                         54   \n",
       "1                        139                         54   \n",
       "\n",
       "   Biliary-AdenoCA::SP117031  ...  Uterus-AdenoCA::SP94540  \\\n",
       "0                        196  ...                      117   \n",
       "1                        102  ...                       90   \n",
       "\n",
       "   Uterus-AdenoCA::SP95222  Uterus-AdenoCA::SP89389  Uterus-AdenoCA::SP90503  \\\n",
       "0                      233                       94                      114   \n",
       "1                      167                       59                       64   \n",
       "\n",
jpronkko's avatar
jpronkko committed
       "   Uterus-AdenoCA::SP92460  Uterus-AdenoCA::SP92931  Uterus-AdenoCA::SP91265  \\\n",
       "0                      257                      139                      404   \n",
       "1                      268                       75                      255   \n",
       "\n",
       "   Uterus-AdenoCA::SP89909  Uterus-AdenoCA::SP90629  Uterus-AdenoCA::SP95550  \n",
       "0                       97                      250                      170  \n",
       "1                       78                      188                      137  \n",
       "\n",
       "[2 rows x 2782 columns]"
      ]
     },
jpronkko's avatar
jpronkko committed
     "execution_count": 2,
jpronkko's avatar
jpronkko committed
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "## PCAWG data is performed by the same pipeline\n",
    "PCAWG_wgs_mut = pd.read_csv (\"./project_data/catalogs/WGS/WGS_PCAWG.96.csv\")\n",
    "PCAWG_wgs_mut.head(2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Accuracy is the cosine similarity of reconstruct catalog to the observed catalog "
   ]
  },
  {
   "cell_type": "code",
jpronkko's avatar
jpronkko committed
   "execution_count": 3,
jpronkko's avatar
jpronkko committed
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Cancer Types</th>\n",
       "      <th>Sample Names</th>\n",
       "      <th>Accuracy</th>\n",
       "      <th>SBS1</th>\n",
       "      <th>SBS2</th>\n",
       "      <th>SBS3</th>\n",
       "      <th>SBS4</th>\n",
       "      <th>SBS5</th>\n",
       "      <th>SBS6</th>\n",
       "      <th>SBS7a</th>\n",
       "      <th>...</th>\n",
       "      <th>SBS51</th>\n",
       "      <th>SBS52</th>\n",
       "      <th>SBS53</th>\n",
       "      <th>SBS54</th>\n",
       "      <th>SBS55</th>\n",
       "      <th>SBS56</th>\n",
       "      <th>SBS57</th>\n",
       "      <th>SBS58</th>\n",
       "      <th>SBS59</th>\n",
       "      <th>SBS60</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Biliary-AdenoCA</td>\n",
       "      <td>SP117655</td>\n",
       "      <td>0.968</td>\n",
       "      <td>1496</td>\n",
       "      <td>1296</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1825</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Biliary-AdenoCA</td>\n",
       "      <td>SP117556</td>\n",
       "      <td>0.963</td>\n",
       "      <td>985</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>922</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2 rows × 68 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "      Cancer Types Sample Names  Accuracy  SBS1  SBS2  SBS3  SBS4  SBS5  SBS6  \\\n",
       "0  Biliary-AdenoCA     SP117655     0.968  1496  1296     0     0  1825     0   \n",
       "1  Biliary-AdenoCA     SP117556     0.963   985     0     0     0   922     0   \n",
       "\n",
       "   SBS7a  ...  SBS51  SBS52  SBS53  SBS54  SBS55  SBS56  SBS57  SBS58  SBS59  \\\n",
       "0      0  ...      0      0      0      0      0      0      0      0      0   \n",
       "1      0  ...      0      0      0      0      0      0      0      0      0   \n",
       "\n",
       "   SBS60  \n",
       "0      0  \n",
       "1      0  \n",
       "\n",
       "[2 rows x 68 columns]"
      ]
     },
jpronkko's avatar
jpronkko committed
     "execution_count": 3,
jpronkko's avatar
jpronkko committed
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "## Activities:\n",
    "PCAWG_wgs_act = pd.read_csv (\"./project_data/activities/WGS/WGS_PCAWG.activities.csv\")\n",
    "PCAWG_wgs_act.head(2)"
   ]
  },
  {
   "cell_type": "code",
jpronkko's avatar
jpronkko committed
   "execution_count": 4,
jpronkko's avatar
jpronkko committed
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Mutation type</th>\n",
       "      <th>Trinucleotide</th>\n",
       "      <th>ALL::PD4020a</th>\n",
       "      <th>ALL::SJBALL011_D</th>\n",
       "      <th>ALL::SJBALL012_D</th>\n",
       "      <th>ALL::SJBALL020013_D1</th>\n",
       "      <th>ALL::SJBALL020422_D1</th>\n",
       "      <th>ALL::SJBALL020579_D1</th>\n",
       "      <th>ALL::SJBALL020589_D1</th>\n",
       "      <th>ALL::SJBALL020625_D1</th>\n",
       "      <th>...</th>\n",
       "      <th>Stomach-AdenoCa::pfg316T</th>\n",
       "      <th>Stomach-AdenoCa::pfg317T</th>\n",
       "      <th>Stomach-AdenoCa::pfg344T</th>\n",
       "      <th>Stomach-AdenoCa::pfg373T</th>\n",
       "      <th>Stomach-AdenoCa::pfg375T</th>\n",
       "      <th>Stomach-AdenoCa::pfg378T</th>\n",
       "      <th>Stomach-AdenoCa::pfg398T</th>\n",
       "      <th>Stomach-AdenoCa::pfg413T</th>\n",
       "      <th>Stomach-AdenoCa::pfg416T</th>\n",
       "      <th>Stomach-AdenoCa::pfg424T</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>C&gt;A</td>\n",
       "      <td>ACA</td>\n",
       "      <td>35</td>\n",
       "      <td>9</td>\n",
       "      <td>2</td>\n",
       "      <td>7</td>\n",
       "      <td>5</td>\n",
       "      <td>7</td>\n",
       "      <td>3</td>\n",
       "      <td>5</td>\n",
       "      <td>...</td>\n",
       "      <td>133</td>\n",
       "      <td>185</td>\n",
       "      <td>202</td>\n",
       "      <td>185</td>\n",
       "      <td>96</td>\n",
       "      <td>134</td>\n",
       "      <td>12</td>\n",
       "      <td>279</td>\n",
       "      <td>75</td>\n",
       "      <td>135</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>C&gt;A</td>\n",
       "      <td>ACC</td>\n",
       "      <td>16</td>\n",
       "      <td>2</td>\n",
       "      <td>4</td>\n",
       "      <td>10</td>\n",
       "      <td>5</td>\n",
       "      <td>9</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>...</td>\n",
       "      <td>48</td>\n",
       "      <td>70</td>\n",
       "      <td>126</td>\n",
       "      <td>88</td>\n",
       "      <td>35</td>\n",
       "      <td>54</td>\n",
       "      <td>16</td>\n",
       "      <td>112</td>\n",
       "      <td>31</td>\n",
       "      <td>91</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2 rows × 1867 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "  Mutation type Trinucleotide  ALL::PD4020a  ALL::SJBALL011_D  \\\n",
       "0           C>A           ACA            35                 9   \n",
       "1           C>A           ACC            16                 2   \n",
       "\n",
       "   ALL::SJBALL012_D  ALL::SJBALL020013_D1  ALL::SJBALL020422_D1  \\\n",
       "0                 2                     7                     5   \n",
       "1                 4                    10                     5   \n",
       "\n",
       "   ALL::SJBALL020579_D1  ALL::SJBALL020589_D1  ALL::SJBALL020625_D1  ...  \\\n",
       "0                     7                     3                     5  ...   \n",
       "1                     9                     1                     2  ...   \n",
       "\n",
       "   Stomach-AdenoCa::pfg316T  Stomach-AdenoCa::pfg317T  \\\n",
       "0                       133                       185   \n",
       "1                        48                        70   \n",
       "\n",
       "   Stomach-AdenoCa::pfg344T  Stomach-AdenoCa::pfg373T  \\\n",
       "0                       202                       185   \n",
       "1                       126                        88   \n",
       "\n",
       "   Stomach-AdenoCa::pfg375T  Stomach-AdenoCa::pfg378T  \\\n",
       "0                        96                       134   \n",
       "1                        35                        54   \n",
       "\n",
       "   Stomach-AdenoCa::pfg398T  Stomach-AdenoCa::pfg413T  \\\n",
       "0                        12                       279   \n",
       "1                        16                       112   \n",
       "\n",
       "   Stomach-AdenoCa::pfg416T  Stomach-AdenoCa::pfg424T  \n",
       "0                        75                       135  \n",
       "1                        31                        91  \n",
       "\n",
       "[2 rows x 1867 columns]"
      ]
     },
jpronkko's avatar
jpronkko committed
     "execution_count": 4,
jpronkko's avatar
jpronkko committed
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "nonPCAWG_wgs_mut = pd.read_csv (\"./project_data/catalogs/WGS/WGS_Other.96.csv\")\n",
    "nonPCAWG_wgs_mut.head(2)"
   ]
  },
  {
   "cell_type": "code",
jpronkko's avatar
jpronkko committed
   "execution_count": 5,
jpronkko's avatar
jpronkko committed
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Cancer Types</th>\n",
       "      <th>Sample Names</th>\n",
       "      <th>Accuracy</th>\n",
       "      <th>SBS1</th>\n",
       "      <th>SBS2</th>\n",
       "      <th>SBS3</th>\n",
       "      <th>SBS4</th>\n",
       "      <th>SBS5</th>\n",
       "      <th>SBS6</th>\n",
       "      <th>SBS7a</th>\n",
       "      <th>...</th>\n",
       "      <th>SBS51</th>\n",
       "      <th>SBS52</th>\n",
       "      <th>SBS53</th>\n",
       "      <th>SBS54</th>\n",
       "      <th>SBS55</th>\n",
       "      <th>SBS56</th>\n",
       "      <th>SBS57</th>\n",
       "      <th>SBS58</th>\n",
       "      <th>SBS59</th>\n",
       "      <th>SBS60</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>ALL</td>\n",
       "      <td>PD4020a</td>\n",
       "      <td>0.995</td>\n",
       "      <td>208</td>\n",
       "      <td>3006</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>365</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>ALL</td>\n",
       "      <td>SJBALL011_D</td>\n",
       "      <td>0.905</td>\n",
       "      <td>66</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>144</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2 rows × 68 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "  Cancer Types Sample Names  Accuracy  SBS1  SBS2  SBS3  SBS4  SBS5  SBS6  \\\n",
       "0          ALL      PD4020a     0.995   208  3006     0     0   365     0   \n",
       "1          ALL  SJBALL011_D     0.905    66     0     0     0   144     0   \n",
       "\n",
       "   SBS7a  ...  SBS51  SBS52  SBS53  SBS54  SBS55  SBS56  SBS57  SBS58  SBS59  \\\n",
       "0      0  ...      0      0      0      0      0      0      0      0      0   \n",
       "1      0  ...      0      0      0      0      0      0      0      0      0   \n",
       "\n",
       "   SBS60  \n",
       "0      0  \n",
       "1      0  \n",
       "\n",
       "[2 rows x 68 columns]"
      ]
     },
jpronkko's avatar
jpronkko committed
     "execution_count": 5,
jpronkko's avatar
jpronkko committed
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "nonPCAWG_wgs_act = pd.read_csv (\"./project_data/activities/WGS/WGS_Other.activities.csv\")\n",
    "nonPCAWG_wgs_act.head(2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Mutational catalogs - WES data"
   ]
  },
  {
   "cell_type": "code",
jpronkko's avatar
jpronkko committed
   "execution_count": 6,
jpronkko's avatar
jpronkko committed
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Mutation type</th>\n",
       "      <th>Trinucleotide</th>\n",
       "      <th>AML::TCGA-AB-2802-03B-01W-0728-08</th>\n",
       "      <th>AML::TCGA-AB-2803-03B-01W-0728-08</th>\n",
       "      <th>AML::TCGA-AB-2804-03B-01W-0728-08</th>\n",
       "      <th>AML::TCGA-AB-2805-03B-01W-0728-08</th>\n",
       "      <th>AML::TCGA-AB-2806-03B-01W-0728-08</th>\n",
       "      <th>AML::TCGA-AB-2807-03B-01W-0728-08</th>\n",
       "      <th>AML::TCGA-AB-2808-03B-01W-0728-08</th>\n",
       "      <th>AML::TCGA-AB-2809-03D-01W-0755-09</th>\n",
       "      <th>...</th>\n",
       "      <th>Eye-Melanoma::TCGA-WC-A885-01A-11D-A39W-08</th>\n",
       "      <th>Eye-Melanoma::TCGA-WC-A888-01A-11D-A39W-08</th>\n",
       "      <th>Eye-Melanoma::TCGA-WC-A88A-01A-11D-A39W-08</th>\n",
       "      <th>Eye-Melanoma::TCGA-WC-AA9A-01A-11D-A39W-08</th>\n",
       "      <th>Eye-Melanoma::TCGA-WC-AA9E-01A-11D-A39W-08</th>\n",
       "      <th>Eye-Melanoma::TCGA-YZ-A980-01A-11D-A39W-08</th>\n",
       "      <th>Eye-Melanoma::TCGA-YZ-A982-01A-11D-A39W-08</th>\n",
       "      <th>Eye-Melanoma::TCGA-YZ-A983-01A-11D-A39W-08</th>\n",
       "      <th>Eye-Melanoma::TCGA-YZ-A984-01A-11D-A39W-08</th>\n",
       "      <th>Eye-Melanoma::TCGA-YZ-A985-01A-11D-A39W-08</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>C&gt;A</td>\n",
       "      <td>ACA</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>4</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>C&gt;A</td>\n",
       "      <td>ACC</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2 rows × 9495 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "  Mutation type Trinucleotide  AML::TCGA-AB-2802-03B-01W-0728-08  \\\n",
       "0           C>A           ACA                                  0   \n",
       "1           C>A           ACC                                  0   \n",
       "\n",
       "   AML::TCGA-AB-2803-03B-01W-0728-08  AML::TCGA-AB-2804-03B-01W-0728-08  \\\n",
       "0                                  0                                  0   \n",
       "1                                  2                                  0   \n",
       "\n",
       "   AML::TCGA-AB-2805-03B-01W-0728-08  AML::TCGA-AB-2806-03B-01W-0728-08  \\\n",
       "0                                  0                                  4   \n",
       "1                                  0                                  0   \n",
       "\n",
       "   AML::TCGA-AB-2807-03B-01W-0728-08  AML::TCGA-AB-2808-03B-01W-0728-08  \\\n",
       "0                                  0                                  2   \n",
       "1                                  1                                  3   \n",
       "\n",
       "   AML::TCGA-AB-2809-03D-01W-0755-09  ...  \\\n",
       "0                                  0  ...   \n",
       "1                                  0  ...   \n",
       "\n",
       "   Eye-Melanoma::TCGA-WC-A885-01A-11D-A39W-08  \\\n",
       "0                                           1   \n",
       "1                                           0   \n",
       "\n",
       "   Eye-Melanoma::TCGA-WC-A888-01A-11D-A39W-08  \\\n",
       "0                                           0   \n",
       "1                                           0   \n",
       "\n",
       "   Eye-Melanoma::TCGA-WC-A88A-01A-11D-A39W-08  \\\n",
       "0                                           0   \n",
       "1                                           0   \n",
       "\n",
       "   Eye-Melanoma::TCGA-WC-AA9A-01A-11D-A39W-08  \\\n",
       "0                                           0   \n",
       "1                                           0   \n",
       "\n",
       "   Eye-Melanoma::TCGA-WC-AA9E-01A-11D-A39W-08  \\\n",
       "0                                           0   \n",
       "1                                           0   \n",
       "\n",
       "   Eye-Melanoma::TCGA-YZ-A980-01A-11D-A39W-08  \\\n",
       "0                                           0   \n",
       "1                                           0   \n",
       "\n",
       "   Eye-Melanoma::TCGA-YZ-A982-01A-11D-A39W-08  \\\n",
       "0                                           0   \n",
       "1                                           0   \n",
       "\n",
       "   Eye-Melanoma::TCGA-YZ-A983-01A-11D-A39W-08  \\\n",
       "0                                           0   \n",
       "1                                           1   \n",
       "\n",
       "   Eye-Melanoma::TCGA-YZ-A984-01A-11D-A39W-08  \\\n",
       "0                                           0   \n",
       "1                                           0   \n",
       "\n",
       "   Eye-Melanoma::TCGA-YZ-A985-01A-11D-A39W-08  \n",
       "0                                           0  \n",
       "1                                           0  \n",
       "\n",
       "[2 rows x 9495 columns]"
      ]
     },
jpronkko's avatar
jpronkko committed
     "execution_count": 6,
jpronkko's avatar
jpronkko committed
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "## Performed by TCGA pipeline\n",
    "TCGA_wes_mut = pd.read_csv (\"./project_data/catalogs/WES/WES_TCGA.96.csv\")\n",
    "TCGA_wes_mut.head(2)"
   ]
  },
  {
   "cell_type": "code",
jpronkko's avatar
jpronkko committed
   "execution_count": 7,
jpronkko's avatar
jpronkko committed
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Cancer Types</th>\n",
       "      <th>Sample Names</th>\n",
       "      <th>Accuracy</th>\n",
       "      <th>SBS1</th>\n",
       "      <th>SBS2</th>\n",
       "      <th>SBS3</th>\n",
       "      <th>SBS4</th>\n",
       "      <th>SBS5</th>\n",
       "      <th>SBS6</th>\n",
       "      <th>SBS7a</th>\n",
       "      <th>...</th>\n",
       "      <th>SBS51</th>\n",
       "      <th>SBS52</th>\n",
       "      <th>SBS53</th>\n",
       "      <th>SBS54</th>\n",
       "      <th>SBS55</th>\n",
       "      <th>SBS56</th>\n",
       "      <th>SBS57</th>\n",
       "      <th>SBS58</th>\n",
       "      <th>SBS59</th>\n",
       "      <th>SBS60</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>AML</td>\n",
       "      <td>TCGA-AB-2802-03B-01W-0728-08</td>\n",
       "      <td>0.811</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>AML</td>\n",
       "      <td>TCGA-AB-2803-03B-01W-0728-08</td>\n",
       "      <td>0.608</td>\n",
       "      <td>4</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>7</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2 rows × 68 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "  Cancer Types                  Sample Names  Accuracy  SBS1  SBS2  SBS3  \\\n",
       "0          AML  TCGA-AB-2802-03B-01W-0728-08     0.811     3     0     0   \n",
       "1          AML  TCGA-AB-2803-03B-01W-0728-08     0.608     4     0     0   \n",
       "\n",
       "   SBS4  SBS5  SBS6  SBS7a  ...  SBS51  SBS52  SBS53  SBS54  SBS55  SBS56  \\\n",
       "0     0     0     0      0  ...      0      0      0      0      0      0   \n",
       "1     0     7     0      0  ...      0      0      0      0      0      0   \n",
       "\n",
       "   SBS57  SBS58  SBS59  SBS60  \n",
       "0      0      0      0      0  \n",
       "1      0      0      0      0  \n",
       "\n",
       "[2 rows x 68 columns]"
      ]
     },
jpronkko's avatar
jpronkko committed
     "execution_count": 7,
jpronkko's avatar
jpronkko committed
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "##Activities\n",
    "TCGA_wes_act = pd.read_csv(\"./project_data/activities/WES/WES_TCGA.activities.csv\")\n",
    "TCGA_wes_act.head(2)"
   ]
  },
  {
   "cell_type": "code",
jpronkko's avatar
jpronkko committed
   "execution_count": 8,
jpronkko's avatar
jpronkko committed
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Mutation type</th>\n",
       "      <th>Trinucleotide</th>\n",
       "      <th>ALL::TARGET-10-PAIXPH-03A-01D</th>\n",
       "      <th>ALL::TARGET-10-PAKHZT-03A-01R</th>\n",
       "      <th>ALL::TARGET-10-PAKMVD-09A-01D</th>\n",
       "      <th>ALL::TARGET-10-PAKSWW-03A-01D</th>\n",
       "      <th>ALL::TARGET-10-PALETF-03A-01D</th>\n",
       "      <th>ALL::TARGET-10-PALLSD-09A-01D</th>\n",
       "      <th>ALL::TARGET-10-PAMDKS-03A-01D</th>\n",
       "      <th>ALL::TARGET-10-PAPJIB-04A-01D</th>\n",
       "      <th>...</th>\n",
       "      <th>Head-SCC::V-109</th>\n",
       "      <th>Head-SCC::V-112</th>\n",
       "      <th>Head-SCC::V-116</th>\n",
       "      <th>Head-SCC::V-119</th>\n",
       "      <th>Head-SCC::V-123</th>\n",
       "      <th>Head-SCC::V-124</th>\n",
       "      <th>Head-SCC::V-125</th>\n",
       "      <th>Head-SCC::V-14</th>\n",
       "      <th>Head-SCC::V-29</th>\n",
       "      <th>Head-SCC::V-98</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>C&gt;A</td>\n",
       "      <td>ACA</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>C&gt;A</td>\n",
       "      <td>ACC</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2 rows × 9693 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "  Mutation type Trinucleotide  ALL::TARGET-10-PAIXPH-03A-01D  \\\n",
       "0           C>A           ACA                              0   \n",
       "1           C>A           ACC                              0   \n",
       "\n",
       "   ALL::TARGET-10-PAKHZT-03A-01R  ALL::TARGET-10-PAKMVD-09A-01D  \\\n",
       "0                              0                              0   \n",
       "1                              0                              0   \n",
       "\n",
       "   ALL::TARGET-10-PAKSWW-03A-01D  ALL::TARGET-10-PALETF-03A-01D  \\\n",
       "0                              1                              0   \n",
       "1                              1                              0   \n",
       "\n",
       "   ALL::TARGET-10-PALLSD-09A-01D  ALL::TARGET-10-PAMDKS-03A-01D  \\\n",
       "0                              0                              0   \n",
       "1                              0                              0   \n",
       "\n",
       "   ALL::TARGET-10-PAPJIB-04A-01D  ...  Head-SCC::V-109  Head-SCC::V-112  \\\n",
       "0                              2  ...                0                0   \n",
       "1                              0  ...                1                0   \n",
       "\n",
       "   Head-SCC::V-116  Head-SCC::V-119  Head-SCC::V-123  Head-SCC::V-124  \\\n",
       "0                0                0                0                0   \n",
       "1                0                0                0                0   \n",
       "\n",
       "   Head-SCC::V-125  Head-SCC::V-14  Head-SCC::V-29  Head-SCC::V-98  \n",
       "0                0               0               0               1  \n",
       "1                0               1               0               0  \n",
       "\n",
       "[2 rows x 9693 columns]"
      ]
     },
jpronkko's avatar
jpronkko committed
     "execution_count": 8,
jpronkko's avatar
jpronkko committed
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "other_wes_mut = pd.read_csv(\"./project_data/catalogs/WES/WES_Other.96.csv\")\n",
    "other_wes_mut.head(2)"
   ]
  },
  {
   "cell_type": "code",
jpronkko's avatar
jpronkko committed
   "execution_count": 9,
jpronkko's avatar
jpronkko committed
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Cancer Types</th>\n",
       "      <th>Sample Names</th>\n",
       "      <th>Accuracy</th>\n",
       "      <th>SBS1</th>\n",
       "      <th>SBS2</th>\n",
       "      <th>SBS3</th>\n",
       "      <th>SBS4</th>\n",
       "      <th>SBS5</th>\n",
       "      <th>SBS6</th>\n",
       "      <th>SBS7a</th>\n",
       "      <th>...</th>\n",
       "      <th>SBS51</th>\n",
       "      <th>SBS52</th>\n",
       "      <th>SBS53</th>\n",
       "      <th>SBS54</th>\n",
       "      <th>SBS55</th>\n",
       "      <th>SBS56</th>\n",
       "      <th>SBS57</th>\n",
       "      <th>SBS58</th>\n",
       "      <th>SBS59</th>\n",
       "      <th>SBS60</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>ALL</td>\n",
       "      <td>TARGET-10-PAIXPH-03A-01D</td>\n",
       "      <td>0.529</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>ALL</td>\n",
       "      <td>TARGET-10-PAKHZT-03A-01R</td>\n",
       "      <td>0.696</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2 rows × 68 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "  Cancer Types              Sample Names  Accuracy  SBS1  SBS2  SBS3  SBS4  \\\n",
       "0          ALL  TARGET-10-PAIXPH-03A-01D     0.529     0     0     0     0   \n",
       "1          ALL  TARGET-10-PAKHZT-03A-01R     0.696     0     0     0     0   \n",
       "\n",
       "   SBS5  SBS6  SBS7a  ...  SBS51  SBS52  SBS53  SBS54  SBS55  SBS56  SBS57  \\\n",
       "0     0     0      0  ...      0      0      0      1      0      0      0   \n",
       "1     0     0      0  ...      0      0      0      1      0      0      0   \n",
       "\n",
       "   SBS58  SBS59  SBS60  \n",
       "0      0      0      0  \n",
       "1      0      0      0  \n",
       "\n",
       "[2 rows x 68 columns]"
      ]
     },
jpronkko's avatar
jpronkko committed
     "execution_count": 9,
jpronkko's avatar
jpronkko committed
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "other_wes_act = pd.read_csv(\"./project_data/activities/WES/WES_Other.activities.csv\")\n",
    "other_wes_act.head(2)"
   ]
  },
jpronkko's avatar
jpronkko committed
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Imports and helpers"
   ]
  },
jpronkko's avatar
jpronkko committed
  {
   "cell_type": "code",
jpronkko's avatar
jpronkko committed
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
jpronkko's avatar
jpronkko committed
    "import re\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import sklearn\n",
    "from sklearn.decomposition import PCA\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns\n",
jpronkko's avatar
jpronkko committed
    "#import torch \n",
    "\n",
    "from sklearn.ensemble import RandomForestClassifier\n",
jpronkko's avatar
jpronkko committed
    "\n",
    "from sklearn.metrics import accuracy_score\n",
    "from sklearn.metrics import roc_auc_score\n",
    "from sklearn.metrics import roc_curve\n",
jpronkko's avatar
jpronkko committed
    "from sklearn.metrics import classification_report\n",
    "\n",
jpronkko's avatar
jpronkko committed
    "from sklearn.model_selection import cross_val_score, train_test_split, KFold\n",
    "from sklearn.model_selection import StratifiedShuffleSplit\n",
    "from sklearn.model_selection import StratifiedKFold, GridSearchCV\n",
    "from sklearn.model_selection import learning_curve\n",
    "\n",
jpronkko's avatar
jpronkko committed
    "from sklearn.preprocessing import LabelEncoder\n",
    "\n",
    "# These ones are work in progress\n",
    "def plot_roc_auc(X_tst, y_test, model, is_multi_class=False):\n",
    "    probs = model.predict_proba(X_tst)\n",
    "    probs = probs[:, 1]\n",
    "    if is_multi_class:\n",
    "        auc = roc_auc_score(y_test, probs, multi_class='ovo')\n",
    "    else:\n",
    "        auc = roc_auc_score(y_test, probs, multi_class='ovo')\n",
    "    \n",
    "    fp_rate, tp_rate, thresholds = roc_curve(y_test, probs)\n",
    "    \n",
    "    plt.figure(figsize=(7,6))\n",
    "    plt.axis('scaled')\n",
    "    plt.xlim([0,1])\n",
    "    plt.ylim([0,1])\n",
    "    plt.title(\"AUC & ROC\")\n",
    "    plt.plot(fp_rate, tp_rate, 'g')\n",
    "    plt.fill_between(fp_rate, tp_rate, facecolor = \"green\", alpha = 0.7)\n",
    "    plt.text(0.95, 0.05, f'AUC = {auc}', ha='right', fontsize=12, weight='bold', color='blue')\n",
    "    plt.xlabel(\"False Positive Rate\")\n",
    "    plt.ylabel(\"True Positive Rate\")\n",
    "\n",
jpronkko's avatar
jpronkko committed
    "def plot_confusion_mat(y_test, y_pred, labs=None, size=None):\n",
    "    cm = sklearn.metrics.confusion_matrix(y_test, y_pred)\n",
    "    if size is None:\n",
    "        plt.figure(figsize=(12,10))\n",
    "    else:\n",
    "        plt.figure(figsize=size)\n",
    "    if labs is None:\n",
    "        sns.heatmap(cm, square=False, annot=True, fmt='d', cmap='viridis', cbar=True)\n",
    "    else:\n",
    "        sns.heatmap(cm, square=False, annot=True, fmt='d', cmap='viridis', xticklabels=labs, yticklabels=labs, cbar=True)\n",
    "    plt.xlabel('Predicted label')\n",
    "    plt.ylabel('True label')\n",
    "    #plt.ylim(0, 2)\n",
    "\n",
    "def plot_learning_curve(model, X, y):\n",
    "    N, train_lc, val_lc = learning_curve(model, X, y, cv=7, train_sizes=np.linspace(0.3, 1, 25))\n",
    "    plt.figure(figsize=(7,6))\n",
jpronkko's avatar
jpronkko committed
    "    plt.title(\"Learning curve\")\n",
    "    plt.plot(N, np.mean(train_lc, 1), color='blue', label='training score')\n",
    "    plt.plot(N, np.mean(val_lc, 1), color='red', label='validation score')\n",
    "    #plt.hlines(N, np.mean([train_lc[-1],  val_lc[-1]]), N[0], N[-1], color='gray', label='mean', linestyle='dashed')\n",
    "\n",
    "def plot_trn_tst_dist(y_all, y_train, y_test, y_pred, in_cols=False):\n",
    "    #fig = None\n",
    "    #ax = None\n",
    "    if in_cols:\n",
    "        fig, ax = plt.subplots(2,2)\n",
    "    else:\n",
    "        fig, ax = plt.subplots(4,1)\n",
    "\n",
    "    fig.set_size_inches(15,8)\n",
    "\n",
    "    plt_sets = [y_all, y_train, y_test, y_pred]\n",
    "    plt_labels = [\"All\", \"Train\", \"Test\", \"Pred\"]\n",
    "    plt_set_df = pd.DataFrame()\n",
    "    for i in range(len(plt_sets)):\n",
    "        s = pd.Series(plt_sets[i]).value_counts().sort_index()\n",
    "        plt_set_df[plt_labels[i]] = s\n",
    "    \n",
    "        pd.DataFrame({plt_labels[i]: s}).plot(ax=ax.flat[i], kind=\"bar\")\n",
    "        #sns.countplot(x=s, \n",
    "        #            palette=sns.hls_palette(2),\n",
    "        #            ax=ax[i])\n",
    "        ax.flat[i].tick_params(axis=\"x\", rotation=90)\n",
    "\n",
    "    fig.tight_layout()\n",
    "    with pd.option_context('display.max_rows', None,\n",
    "                       'display.max_columns', None,\n",
    "                       'display.precision', 2,\n",
    "                       ):\n",
    "        print(plt_set_df)\n",
    "\n",
    "\n",
    "   \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Dataset preprocess, combine profile data to a single data frame\n",
    "\n",
    "From all profile sets, a combined data frame is made, which has samples in the rows and features in the columns."
   ]
  },
  {
   "cell_type": "code",
jpronkko's avatar
jpronkko committed
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Profile data:\n",
      "\n",
      "---Data set diagnostics print---\n",
      "\n",
      "Missing entries in mutations: 0\n",
      "The shape of the mutations data frame (23727, 97)\n",
      "Checking normalization: sum of some rows:\n",
      " Panc::8066452                           1.0\n",
      "Cervix::TCGA-VS-A8QM-01A-11D-A37N-09    1.0\n",
      "Prost-AdenoCA::SP116270                 1.0\n",
      "CNS::MBRep_T68                          1.0\n",
      "Breast::SA056                           1.0\n",
      "dtype: float64\n",
      "\n",
      "\n",
      "Some tumor counts:\n",
      " Breast    1858\n",
      "Lung      1668\n",
      "CNS       1595\n",
      "Liver     1358\n",
      "Kidney    1269\n",
      "Name: tumor_types, dtype: int64\n",
      "\n",
      "\n",
      "Tumor types with smallish counts: 1\n",
      "Small-Intestine-carcinoid    34\n",
      "Name: tumor_types, dtype: int64\n",
      "\n",
      "\n",
      "Unique tumor types:  51\n",
      "['ALL', 'AML', 'Adrenal-neoplasm', 'Biliary-AdenoCA', 'Bladder-TCC', 'Blood-CMDI', 'Bone', 'Breast', 'CNS', 'CNS-NOS', 'Cervix', 'ColoRect-AdenoCA', 'ColoRect-Adenoma', 'DLBC', 'Eso-AdenoCA', 'Eso-SCC', 'Ewings', 'Eye', 'Head-SCC', 'Kidney', 'Liver', 'Lung', 'Lymph', 'Meninges-Meningioma', 'Mesothelium-Mesothelioma', 'Myeloid', 'Neuroblastoma', 'Oral-SCC', 'Ovary-AdenoCA', 'Panc', 'Para-AdenoCA', 'Para-Adenoma', 'Pheochromocytoma', 'Pit-All', 'Prost-AdenoCA', 'Prost-Adenoma', 'Sarcoma', 'Sarcoma-bone', 'Skin-BCC', 'Skin-Melanoma', 'Skin-SCC', 'Small-Intestine-carcinoid', 'SoftTissue-Leiomyo', 'SoftTissue-Liposarc', 'Stomach-AdenoCA', 'Testis-CA', 'Thy-AdenoCA', 'Thymoma', 'Transitional-cell-carcinoma', 'UCS', 'Uterus-AdenoCA']\n"
     ]
    }
   ],
   "source": [
    "\n",
    "def prepare_mut_df(raw_mutation_dfs, is_profile, small_sample_limit=None):\n",
    "\n",
    "    mutations_all = pd.DataFrame()\n",
    "\n",
    "    for df in raw_mutation_dfs:\n",
    "        # Make a copy of the original data frame and start processing from there\n",
    "        mutations  = df.copy()\n",
    "    \n",
    "        if is_profile:\n",
    "            mutations['mut_tri'] = mutations.apply(lambda a: '{}_{}'.format(a['Mutation type'], a['Trinucleotide']), axis=1)\n",
    "            mutations = mutations.set_index('mut_tri').drop(['Mutation type', 'Trinucleotide'], axis=1)\n",
    "            mutations = mutations.T\n",
    "        else:\n",
    "            mutations['mut_tri'] = mutations.apply(lambda a: '{}::{}'.format(a['Cancer Types'], a['Sample Names']), axis=1)\n",
    "            mutations = mutations.set_index('mut_tri').drop(['Cancer Types', 'Sample Names', 'Accuracy'], axis=1)\n",
    "     \n",
    "        # Rename some index names\n",
    "        renamed_items = list(mutations.index)\n",
    "        index_items = list(mutations.index)\n",
    "\n",
    "        # Combine rows for low count labels\n",
    "        for i in range(len(index_items)):\n",
    "            result = index_items[i]\n",
    "            for to_sub in ['Bone', 'Breast', 'Cervix', 'CNS', 'Eye', 'Liver', 'Lymph', 'Lung', 'Kidney', 'Myeloid', 'Panc' ]:\n",
    "                result = re.sub( to_sub + r'(-\\w*)', to_sub, result)\n",
    "                \n",
    "            renamed_items[i] = result.replace('Ca', 'CA')\n",
    "       \n",
    "        mutations.rename(index=dict(zip(index_items, renamed_items)), inplace = True)\n",
    "   \n",
    "        # Normalize \n",
    "        row_sums = mutations.sum(axis=1)\n",
    "        mutations = mutations.divide(row_sums, axis = 0)\n",
    "\n",
    "        mutations_all = pd.concat([mutations_all, mutations])\n",
    "\n",
    "    mutations_all.sort_index(inplace=True)\n",
    "\n",
    "    # Do we need to renormalize after obtaining the full dataframe?\n",
    "  \n",
    "    # Figure out tumor types based on the first part of the index\n",
    "    tumor_types = [a.split(':')[0] for a in mutations_all.index]\n",
    "    # Prepare a list with all the types appearing only once\n",
    "    unique_tumor_types = sorted(list(set(tumor_types)))\n",
    "    # Attach this back to the frame\n",
    "    mutations_all[\"tumor_types\"] = tumor_types\n",
    "\n",
    "    # Get rid of types with very few samples if the limit is specified\n",
    "    if small_sample_limit is not None:\n",
    "        counts = mutations_all[\"tumor_types\"].value_counts()\n",
    "        small_counts = list(counts[counts < small_sample_limit].index)\n",
    "        mutations_all = mutations_all.loc[~mutations_all[\"tumor_types\"].isin(small_counts)]\n",
    "\n",
    "    \n",
    "    return (mutations_all, unique_tumor_types)\n",
    "\n",
    "\n",
    "def print_dset_diag(mut_df, unique_tumor_types, small_sample_limit):\n",
    "    # Check if the data frame is ok\n",
    "    print(\"\\n---Data set diagnostics print---\\n\")\n",
    "    print(\"Missing entries in mutations:\", mut_df.isnull().sum().sum())\n",
    "    print(\"The shape of the mutations data frame\", mut_df.shape)\n",
    "\n",
    "    # Check to see if the rows are normalized to one, take a sample from the data frame\n",
    "    norm_df = mut_df.sample(n=5, random_state=5)\n",
    "    print(\"Checking normalization: sum of some rows:\\n\", norm_df.iloc[:,0:-1].sum(axis=1))\n",
    "    print(\"\\n\")\n",
    "\n",
    "    # Check some counts of tumor types\n",
    "    tumor_counts = mut_df[\"tumor_types\"].value_counts() #.sort_values(ascending=True)\n",
    "    print(\"Some tumor counts:\\n\", tumor_counts.head(5))\n",
    "    print(\"\\n\")\n",
    "\n",
    "    small_counts = tumor_counts < 1.5*small_sample_limit\n",
    "    print(\"Tumor types with smallish counts:\",  sum(small_counts))\n",
    "\n",
    "    print(tumor_counts[small_counts])\n",
    "    print(\"\\n\")\n",
    "\n",
    "    # Tumor types\n",
    "    print(\"Unique tumor types: \", len(unique_tumor_types))\n",
    "    print(unique_tumor_types)\n",
    "\n",
    "\n",
    "small_sample_limit = 30\n",
    "\n",
    "profile_raw_data_sets = [PCAWG_wgs_mut, TCGA_wes_mut, nonPCAWG_wgs_mut, other_wes_mut]\n",
    "profile_mut_all, prf_unique_tumor_types = prepare_mut_df(profile_raw_data_sets, True, small_sample_limit)\n",
    "\n",
    "# Print some diagnostics from the prepared data set\n",
    "print(\"Profile data:\")\n",
    "print_dset_diag(profile_mut_all, prf_unique_tumor_types, small_sample_limit)\n",
    "\n",
    "# Data matrix X for fitting, omit the tumor labeling from there, use that information in constructing true y\n",
    "# Note: this contains profile data only\n",
    "X_prf = profile_mut_all.drop(\"tumor_types\", axis=1)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Dataset preprocess for activites data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
jpronkko's avatar
jpronkko committed
      "Activities data:\n",
      "\n",
      "---Data set diagnostics print---\n",
      "\n",
      "Missing entries in mutations: 0\n",
      "The shape of the mutations data frame (23727, 66)\n",
      "Checking normalization: sum of some rows:\n",
jpronkko's avatar
jpronkko committed
      " mut_tri\n",
      "Panc::8066452                           1.0\n",
      "Cervix::TCGA-VS-A8QM-01A-11D-A37N-09    1.0\n",
      "Prost-AdenoCA::SP116270                 1.0\n",
      "CNS::MBRep_T68                          1.0\n",
      "Breast::SA056                           1.0\n",
      "dtype: float64\n",
jpronkko's avatar
jpronkko committed
      "\n",
      "\n",
      "Some tumor counts:\n",
jpronkko's avatar
jpronkko committed
      " Breast    1858\n",
      "Lung      1668\n",
      "CNS       1595\n",
      "Liver     1358\n",
      "Kidney    1269\n",
      "Name: tumor_types, dtype: int64\n",
jpronkko's avatar
jpronkko committed
      "\n",
      "\n",
      "Tumor types with smallish counts: 1\n",
      "Small-Intestine-carcinoid    34\n",
      "Name: tumor_types, dtype: int64\n",
      "\n",
      "\n",
      "Unique tumor types:  51\n",
      "['ALL', 'AML', 'Adrenal-neoplasm', 'Biliary-AdenoCA', 'Bladder-TCC', 'Blood-CMDI', 'Bone', 'Breast', 'CNS', 'CNS-NOS', 'Cervix', 'ColoRect-AdenoCA', 'ColoRect-Adenoma', 'DLBC', 'Eso-AdenoCA', 'Eso-SCC', 'Ewings', 'Eye', 'Head-SCC', 'Kidney', 'Liver', 'Lung', 'Lymph', 'Meninges-Meningioma', 'Mesothelium-Mesothelioma', 'Myeloid', 'Neuroblastoma', 'Oral-SCC', 'Ovary-AdenoCA', 'Panc', 'Para-AdenoCA', 'Para-Adenoma', 'Pheochromocytoma', 'Pit-All', 'Prost-AdenoCA', 'Prost-Adenoma', 'Sarcoma', 'Sarcoma-bone', 'Skin-BCC', 'Skin-Melanoma', 'Skin-SCC', 'Small-Intestine-carcinoid', 'SoftTissue-Leiomyo', 'SoftTissue-Liposarc', 'Stomach-AdenoCA', 'Testis-CA', 'Thy-AdenoCA', 'Thymoma', 'Transitional-cell-carcinoma', 'UCS', 'Uterus-AdenoCA']\n"
     ]
    }
   ],
   "source": [
    "act_raw_data_sets = [PCAWG_wgs_act, TCGA_wes_act, nonPCAWG_wgs_act, other_wes_act]\n",
    "act_mut_all, act_unique_tumor_types = prepare_mut_df(act_raw_data_sets, is_profile=False, small_sample_limit=small_sample_limit)\n",
    "\n",
    "# Print some diagnostics from the prepared data set\n",
    "print(\"Activities data:\")\n",
    "print_dset_diag(act_mut_all, act_unique_tumor_types, small_sample_limit)\n",
    "\n",
    "# Data matrix X for fitting, omit the tumor labeling from there, use that information in constructing true y\n",
    "# Note: this contains profile data only\n",
    "X_act = act_mut_all.drop(\"tumor_types\", axis=1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Check profile data content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Some content from the full profile set:\n"
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th>mut_tri</th>\n",
       "      <th>C&gt;A_ACA</th>\n",
       "      <th>C&gt;A_ACC</th>\n",
       "      <th>C&gt;A_ACG</th>\n",
       "      <th>C&gt;A_ACT</th>\n",
       "      <th>C&gt;A_CCA</th>\n",
       "      <th>C&gt;A_CCC</th>\n",
       "      <th>C&gt;A_CCG</th>\n",
       "      <th>C&gt;A_CCT</th>\n",
       "      <th>C&gt;A_GCA</th>\n",
       "      <th>C&gt;A_GCC</th>\n",
       "      <th>...</th>\n",
       "      <th>T&gt;G_CTT</th>\n",
       "      <th>T&gt;G_GTA</th>\n",
       "      <th>T&gt;G_GTC</th>\n",
       "      <th>T&gt;G_GTG</th>\n",
       "      <th>T&gt;G_GTT</th>\n",
       "      <th>T&gt;G_TTA</th>\n",
       "      <th>T&gt;G_TTC</th>\n",
       "      <th>T&gt;G_TTG</th>\n",
       "      <th>T&gt;G_TTT</th>\n",
       "      <th>tumor_types</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
jpronkko's avatar
jpronkko committed
       "      <th>ALL::11</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.133333</td>\n",
       "      <td>0.066667</td>\n",
       "      <td>0.0</td>\n",
       "      <td>...</td>\n",
jpronkko's avatar
jpronkko committed
       "      <td>0.066667</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.066667</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>ALL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
jpronkko's avatar
jpronkko committed
       "      <th>ALL::2211636</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>...</td>\n",
jpronkko's avatar
jpronkko committed
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>ALL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
jpronkko's avatar
jpronkko committed
       "      <th>ALL::2211638</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>...</td>\n",
jpronkko's avatar
jpronkko committed
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.333333</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>ALL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
jpronkko's avatar
jpronkko committed
       "      <th>ALL::2211640</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>...</td>\n",
jpronkko's avatar
jpronkko committed
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>ALL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
jpronkko's avatar
jpronkko committed
       "      <th>ALL::2211642</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>...</td>\n",
jpronkko's avatar
jpronkko committed
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>ALL</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>5 rows × 97 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
jpronkko's avatar
jpronkko committed
       "mut_tri       C>A_ACA  C>A_ACC  C>A_ACG  C>A_ACT  C>A_CCA  C>A_CCC  C>A_CCG  \\\n",
       "ALL::11           0.0      0.0      0.0      0.0      0.0      0.0      0.0   \n",
       "ALL::2211636      0.0      0.0      0.0      0.0      0.0      0.0      0.0   \n",
       "ALL::2211638      0.0      0.0      0.0      0.0      0.0      0.0      0.0   \n",
       "ALL::2211640      0.0      0.0      0.0      0.0      0.0      0.0      0.0   \n",
       "ALL::2211642      0.0      0.0      0.0      0.0      0.0      0.0      0.0   \n",
       "\n",
       "mut_tri        C>A_CCT   C>A_GCA  C>A_GCC  ...   T>G_CTT  T>G_GTA   T>G_GTC  \\\n",
       "ALL::11       0.133333  0.066667      0.0  ...  0.066667      0.0  0.066667   \n",
       "ALL::2211636  0.000000  0.000000      0.0  ...  0.000000      0.0  0.000000   \n",
       "ALL::2211638  0.000000  0.000000      0.0  ...  0.000000      0.0  0.000000   \n",
       "ALL::2211640  0.000000  0.000000      0.0  ...  0.000000      0.0  0.000000   \n",
       "ALL::2211642  0.000000  0.000000      0.0  ...  0.000000      0.0  0.000000   \n",
       "\n",
       "mut_tri       T>G_GTG  T>G_GTT   T>G_TTA  T>G_TTC  T>G_TTG  T>G_TTT  \\\n",
       "ALL::11           0.0      0.0  0.000000      0.0      0.0      0.0   \n",
       "ALL::2211636      0.0      0.0  0.000000      0.0      0.0      0.0   \n",
       "ALL::2211638      0.0      0.0  0.333333      0.0      0.0      0.0   \n",
       "ALL::2211640      0.0      0.0  0.000000      0.0      0.0      0.0   \n",
       "ALL::2211642      0.0      0.0  0.000000      0.0      0.0      0.0   \n",
       "\n",
       "mut_tri       tumor_types  \n",
       "ALL::11               ALL  \n",
       "ALL::2211636          ALL  \n",
       "ALL::2211638          ALL  \n",
       "ALL::2211640          ALL  \n",
       "ALL::2211642          ALL  \n",
       "\n",
       "[5 rows x 97 columns]"
      ]
     },
jpronkko's avatar
jpronkko committed
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
jpronkko's avatar
jpronkko committed
    "print(\"Some content from the full profile set:\")\n",
    "profile_mut_all.head(5)"
  {
   "cell_type": "code",
jpronkko's avatar
jpronkko committed
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
jpronkko's avatar
jpronkko committed
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABaYAAAHACAYAAABZBb/GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAACcHElEQVR4nOzde7zt1bj48c/e7dq7y66oHQqnCz1uRZFwkHsHJ53jnpKKI5cjfkLk7iBCJ6lUSFFyOSi5FLl0IaSLJD3lEkmURDu6qPbvjzFme+7V2mvX3us7vmvP+Xm/Xuu11vzONdcz5ppzfi/PGOMZsxYtWoQkSZIkSZIkSa3M7rsBkiRJkiRJkqTxYmJakiRJkiRJktSUiWlJkiRJkiRJUlMmpiVJkiRJkiRJTZmYliRJkiRJkiQ1NafvBiyHucA2wBXALT23RZIkSZIkSZI0uVWAewBnATcO37EyJqa3AU7vuxGSJEmSJEmSpDvkMcAZwxtWxsT0FQDXXPN3br110Z1+8HrrrcXVV1837Y0ytrGNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sYy82e/Ys7nKXNaHmdIetjInpWwBuvXXRciWmB4/ti7GNbWxjG9vYxja2sY1tbGMb29jGNraxjW1sY49Z7NuVZHbxQ0mSJEmSJElSUyamJUmSJEmSJElNmZiWJEmSJEmSJDVlYlqSJEmSJEmS1JSJaUmSJEmSJElSUyamJUmSJEmSJElNmZiWJEmSJEmSJDVlYlqSJEmSJEmS1JSJaUmSJEmSJElSUyamJUmSJEmSJElNzem7AZJWLvPXXp15c6fedSxYMH+p991w480svPb66W6WJEmSJEmSViImpiXdKfPmzmGHvU9Y7sef+KEdWTiN7ZEkSZIkSdLKx1IekiRJkiRJkqSmTExLkiRJkiRJkpoyMS1JkiRJkiRJasrEtCRJkiRJkiSpKRPTkiRJkiRJkqSmTExLkiRJkiRJkpoyMS1JkiRJkiRJasrEtCRJkiRJkiSpKRPTkiRJkiRJkqSm5izrFyLig8CzgI2BLTLzgojYGDh+6NfWBdbOzLvWx1wK3FC/APbJzJPrfZsDRwPrAVcDu2bmJSv+VCRJkiRJkiRJK4NlJqYpCegPA6cPNmTmpcBDBrcj4sBJ/tazM/OCSf7eYcAhmXlMROwCHA484c40WpIkSZIkSZK08lpmKY/MPCMzL1va/RGxGrAzcOSy/lZEbABsDRxXNx0HbB0RC+5YcyVJkiRJkiRJK7vpqDH9DODyzDxnwvZjI+L8iDg0Itat2+5Vf/cWgPr9D3W7JEmSJEmSJGkMzFq0aNEd+sVaN/rfJ5bniIivAydl5kFD2+6VmZdFxFzgQGB+Zu4SEQ8FPpWZDxz63QuBXSZJbC/NxsBv7uDvSurADnufsNyPPfFDO05jSyRJkiRJkrQS2AS4dHjDHakxvVQRsSGwHfDC4e2D0h+ZeWNEHAp8pd51GbBRRKySmbdExCrAhnX7nXL11ddx6613LKk+bMGC+Vx11cI7/bjpYGxjj0LsBQvmr/Df6LJto/g/N7axjW1sYxvb2MY2trGNbWxjG9vYxl4ZY8+ePYv11ltr8vtWpFHAbsDXMvPqwYaIWDMi1qk/zwKeD5wHkJlX1p93qr++E3BuZl61gu2QJEmSJEmSJK0kljliOiIOAp4J3B04JSKuHirFsRuw14SH3A34Yh0NvQpwIfCKoftfBhwdEW8DrgF2XaFnIEmSJEmSJElaqSwzMZ2Ze3H75PPgvs0n2fZrYKsp/t5FwLZ3oo2SJEmSJEmSpBGyoqU8JEmSJEmSJEm6U0xMS5IkSZIkSZKaMjEtSZIkSZIkSWrKxLQkSZIkSZIkqSkT05IkSZIkSZKkpkxMS5IkSZIkSZKamtN3AyRJkjRe5q+9OvPmTn0aumDB/KXed8ONN7Pw2uunu1mSJEmSGjIxLUmSpKbmzZ3DDnufsNyPP/FDO7JwGtsjSZIkqT1LeUiSJEmSJEmSmjIxLUmSJEmSJElqysS0JEmSJEmSJKkpE9OSJEmSJEmSpKZMTEuSJEmSJEmSmjIxLUmSJEmSJElqysS0JEmSJEmSJKkpE9OSJEmSJEmSpKbm9N0ASbqj5q+9OvPmTr3bWrBg/lLvu+HGm1l47fXT3SxJkiRJkiTdSSamJa005s2dww57n7Dcjz/xQzuycBrbI0mSJEmSpOVjKQ9JkiRJkiRJUlMmpiVJkiRJkiRJTZmYliRJkiRJkiQ1ZWJakiRJkiRJktSUiWlJkiRJkiRJUlMmpiVJkiRJkiRJTZmYliRJkiRJkiQ1ZWJakiRJkiRJktTUnGX9QkR8EHgWsDGwRWZeULdfCtxQvwD2ycyT632bA0cD6wFXA7tm5iXLuk+SJEmSJEmSNPruyIjp44HHAr+d5L5nZ+ZD6tfJQ9sPAw7JzM2BQ4DD7+B9kiRJkiRJkqQRt8zEdGaekZmX3dE/GBEbAFsDx9VNxwFbR8SCqe67c82WJEmSJEmSJK2sVrTG9LERcX5EHBoR69Zt9wIuz8xbAOr3P9TtU90nSZIkSZIkSRoDy6wxPYXHZOZlETEXOBA4GNhlWlp1B6y33lrL/dgFC+ZPY0uMbWxj31mj+n8Z1edlbGMb29gzkftzYxvb2MY2trGNbWxjG3vljr3cielBeY/MvDEiDgW+Uu+6DNgoIlbJzFsiYhVgw7p91hT33SlXX30dt9666E63e8GC+Vx11cI7/bjpYGxjj0Ls6dgRLW/b+oy9LKP6ehvb2MY2dld/e0W5Pze2sY1tbGMb29jGNraxZ37s2bNnLXWA8XKV8oiINSNinfrzLOD5wHkAmXll/Xmn+us7Aedm5lVT3bc87ZAkSZIkSZIkrXyWOWI6Ig4CngncHTglIq4GdgC+WEc8rwJcCLxi6GEvA46OiLcB1wC73sH7JEmSJEmSJEkjbpmJ6czcC9hrkru2muIxFwHb3tn7JEmSJEmSJEmjb7lKeUiSJEmSJEmStLxMTEuSJEmSJEmSmjIxLUmSJEmSJElqysS0JEmSJEmSJKkpE9OSJEmSJEmSpKZMTEuSJEmSJEmSmjIxLUmSJEmSJElqysS0JEmSJEmSJKkpE9OSJEmSJEmSpKZMTEuSJEmSJEmSmjIxLUmSJEmSJElqysS0JEmSJEmSJKkpE9OSJEmSJEmSpKZMTEuSJEmSJEmSmprTdwMkSZLU3vy1V2fe3KlPBRcsmL/U+2648WYWXnv9dDdLkiRJ0pgwMS1JkjSG5s2dww57n7Dcjz/xQzuycBrbI0mSJGm8WMpDkiRJkiRJktSUiWlJkiRJkiRJUlMmpiVJkiRJkiRJTZmYliRJkiRJkiQ1ZWJakiRJkiRJktSUiWlJkiRJkiRJUlMmpiVJkiRJkiRJTZmYliRJkiRJkiQ1ZWJakiRJkiRJktSUiWlJkiRJkiRJUlNzlvULEfFB4FnAxsAWmXlBRKwHfBrYDLgR+CWwZ2ZeVR9zKXBD/QLYJzNPrvdtDhwNrAdcDeyamZdM43OSJEmSJEmSJM1gy0xMA8cDHwZOH9q2CNg/M78HEBEfAN4HvHjod56dmRdM8vcOAw7JzGMiYhfgcOAJd77pkiRJK7f5a6/OvLlTn44tWDB/qffdcOPNLLz2+ululiRJkiR1bpmJ6cw8AyAihrf9Bfje0K/9EHj5sv5WRGwAbA08uW46Djg4IhYMRltLkiSNi3lz57DD3ics9+NP/NCOLJzG9kiSJElSKytcYzoiZlOS0l+ZcNexEXF+RBwaEevWbfcCLs/MWwDq9z/U7ZIkSZIkSZKkMXBHSnksy0eA64CDh7Y9JjMvi4i5wIH1vl2mIdZt1ltvreV+7FRTYrtmbGOPQ+xlGdX/y6g+L2Mb29juU8ct9qg+L2Mb29jGNraxjW1sYxt7JsVeocR0XRjxvsAOmXnrYHtmXla/3xgRh7J4NPVlwEYRsUpm3hIRqwAb1u13ytVXX8etty66021esGA+V13Vz6RXYxt7FGJPx45oedvWZ+xlGdXX29jGNrb71FGLvSyj+l4ztrGNbWxjG9vYxja2sfuIPXv2rKUOMF7uUh4R8R7gocB/ZOaNQ9vXjIh16s+zgOcD5wFk5pX1553qr+8EnGt9aUmSJEmSJEkaH8scMR0RBwHPBO4OnBIRVwPPBfYFLgZ+UBdG/E1m/idwN+CLdTT0KsCFwCuG/uTLgKMj4m3ANcCu0/d0JEmSJEmSJEkz3TIT05m5F7DXJHfNWsrv/xrYaoq/dxGw7R1toCRJkiRJkiRptCx3KQ9JkiRJkiRJkpaHiWlJkiRJkiRJUlMmpiVJkiRJkiRJTS2zxrQkSZI0KuavvTrz5k59Crxgwfyl3nfDjTez8Nrrp7tZkiRJ0tgxMS1JWioTOJJGzby5c9hh7xOW+/EnfmhHFk5jeyRJkqRxZWJakrRUJnAkSZIkSVIXrDEtSZIkSZIkSWrKEdOSJEmSpGlhGTBJknRHmZiWJEmSJE0Ly4BJkqQ7ylIekiRJkiRJkqSmTExLkiRJkiRJkpoyMS1JkiRJkiRJasrEtCRJkiRJkiSpKRPTkiRJkiRJkqSmTExLkiRJkiRJkpoyMS1JkiRJkiRJasrEtCRJkiRJkiSpqTl9N0CSJEmSpJXZ/LVXZ97cqS+vFyyYv9T7brjxZhZee/10N0uSpBnNxLQkSZIkSStg3tw57LD3Ccv9+BM/tCMLp7E9kiStDCzlIUmSJEmSJElqyhHTkiRJkiRJKwHLxkgaJSamJUmSJEmSVgKWjZE0SizlIUmSJEmSJElqysS0JEmSJEmSJKkpE9OSJEmSJEmSpKZMTEuSJEmSJEmSmlrm4ocR8UHgWcDGwBaZeUHdvjlwNLAecDWwa2ZesiL3SZIkSZIkSZJG3x0ZMX088FjgtxO2HwYckpmbA4cAh0/DfZIkSZIkSZKkEbfMEdOZeQZARNy2LSI2ALYGnlw3HQccHBELgFnLc19mXrXCz0aSJEmSJEmSNOMtMzG9FPcCLs/MWwAy85aI+EPdPms577tTien11ltrOZsOCxbMX+7HrihjG3scYi/LqP5fRvV5rSj/58Y2drfG9f8yqrFH9XkZ29h3xqh+xpZlVJ+3sWce32vGNraxZ0rs5U1M9+7qq6/j1lsX3enHLVgwn6uuWthBi4xt7PGIPR07ouVtW5+xl8XXe+n8nxvb2FP/7RW1Mu5TxzX2sozq+9zY4xV7XD9j4/q8jd0+tu81Yxvb2Ctb7NmzZy11gPEdqTE9mcuAjSJiFYD6fcO6fXnvkyRJkiRJkiSNgeVKTGfmlcB5wE51007AuZl51fLet1ytlyRJkiRJkiStdJZZyiMiDgKeCdwdOCUirs7MBwIvA46OiLcB1wC7Dj1see+TJEmSJEmSJI24ZSamM3MvYK9Jtl8EbLuUxyzXfZIkSZIkSZKk0be8NaYlSZIkSZIkSVouJqYlSZIkSZIkSU2ZmJYkSZIkSZIkNWViWpIkSZIkSZLUlIlpSZIkSZIkSVJTJqYlSZIkSZIkSU2ZmJYkSZIkSZIkNWViWpIkSZIkSZLUlIlpSZIkSZIkSVJTJqYlSZIkSZIkSU2ZmJYkSZIkSZIkNWViWpIkSZIkSZLUlIlpSZIkSZIkSVJTJqYlSZIkSZIkSU2ZmJYkSZIkSZIkNWViWpIkSZIkSZLUlIlpSZIkSZIkSVJTJqYlSZIkSZIkSU2ZmJYkSZIkSZIkNWViWpIkSZIkSZLUlIlpSZIkSZIkSVJTJqYlSZIkSZIkSU3N6bsBkiRJfZq/9urMmzv1KdGCBfOXet8NN97Mwmuvn+5mSZIkSdJIMzEtSZLG2ry5c9hh7xOW+/EnfmhHFk5jeyRJkiRpHFjKQ5IkSZIkSZLUlIlpSZIkSZIkSVJTK1TKIyI2Bo4f2rQusHZm3jUiLgVuqF8A+2TmyfVxmwNHA+sBVwO7ZuYlK9IWSZIkSZIkSdLKYYUS05l5KfCQwe2IOHDC33x2Zl4wyUMPAw7JzGMiYhfgcOAJK9IWSZIkSZIkSdLKYdpKeUTEasDOwJHL+L0NgK2B4+qm44CtI2LBdLVFkiRJkiRJkjRzrdCI6QmeAVyemecMbTs2ImYBZwD7ZuZfgXvV37sFIDNviYg/1O1X3dFg66231nI3dMGC+cv92BVlbGOPQ+xlGdX/y6g+rxXl/9zYoxB7Wcb1/2LsletvG9vYMyX2sozqZ2xZRvV5G3vm8b1mbGMbe6bEns7E9B4sOVr6MZl5WUTMBQ4EDgZ2ma5gV199HbfeuuhOP27BgvlcddXC6WqGsY09drGnY0e0vG3rM/ay+Hovnf9zY8/02OO6XzN2+9jLMqqfMWOPV+xx/YyN6/M2dvvYvteMbWxjr2yxZ8+etdQBxtNSyiMiNgS2A44dbMvMy+r3G4FDgX+td10GbBQRq9THrgJsWLdLkiRJkiRJkkbcdNWY3g34WmZeDRARa0bEOvXnWcDzgfMAMvPK+vNO9bE7Aedm5h0u4yFJkiRJkiRJWnlNVymP3YC9hm7fDfhiHQ29CnAh8Iqh+18GHB0RbwOuAXadpnZIkiRJkiRJkma4aUlMZ+bmE27/Gthqit+/CNh2OmJLkiRJkiRJklYu01XKQ5IkSZIkSZKkO8TEtCRJkiRJkiSpKRPTkiRJkiRJkqSmTExLkiRJkiRJkpoyMS1JkiRJkiRJasrEtCRJkiRJkiSpqTl9N0CSJEmSJEmaieavvTrz5k6dPluwYP5S77vhxptZeO31090saSSYmJYkSZIkSZImMW/uHHbY+4TlfvyJH9qRhdPYHmmUWMpDkiRJkiRJktSUiWlJkiRJkiRJUlMmpiVJkiRJkiRJTZmYliRJkiRJkiQ1ZWJakiRJkiRJktSUiWlJkiRJkiRJUlMmpiVJkiRJkiRJTc3puwGSJGmx+Wuvzry5Ux+eFyyYv9T7brjxZhZee/10N0uSJEmSpGllYlqSpBlk3tw57LD3Ccv9+BM/tCMLp7E9kiRJkiR1wVIekiRJkiRJkqSmTExLkiRJkiRJkpoyMS1JkiRJkiRJasrEtCRJkiRJkiSpKRc/nEbz116deXOn/pcuWDB/qffdcOPNLLz2+ululiRJkiRJknSHmeNSCyamp9G8uXPYYe8TlvvxJ35oRxZOY3skSZIkjR+TCZKkFWWOa7z0de5gYlqSJEmSRojJBEmSdGf0de5gjWlJkiRJkiRJUlMrPGI6Ii4FbqhfAPtk5skRsTlwNLAecDWwa2ZeUh+z1PskSZIkSZIkSaNtukZMPzszH1K/Tq7bDgMOyczNgUOAw4d+f6r7JEmSJEmSJEkjrJMa0xGxAbA18OS66Tjg4IhYAMxa2n2ZeVUX7ZEkrXxcuEmSJEmSpNE1XYnpYyNiFnAGsC9wL+DyzLwFIDNviYg/1O2zprjPxLQkCXDhJkmSJEmSRtl0JKYfk5mXRcRc4EDgYOB/p+HvTmm99dZa7sdONcKub122rc/nbezxir0so/p/GdXntaJG9f8yrv/zUX09V9S4/l+MvXL9bWMb+84Y1f/LuP7PR/X1NPby8b3W3qj+z5dlVJ/3uMZeluVp2wonpjPzsvr9xog4FPgK8Fpgo4hYpY6IXgXYELiMMmJ6affdYVdffR233rroTrd3wYL5XHVVN2PopuPN0WXbuvrbxh6v2H2+z/2MtY/t6z25Uf2fL4vv86VbGd/nxm4fe1lG9TNm7Pax/YxNblT/58syqu/zcY3te6197HH9n4/r8x7X2F2+3rNnz1rqAOMVSkxHxJrAnMz8Wy3l8XzgvMy8MiLOA3YCjqnfzx3UkJ7qPq18rAMradS4X5MkSZIkqVsrOmL6bsAX66jnVYALgVfU+14GHB0RbwOuAXYdetxU92klYx1YSaPG/ZokSZIkSd1aocR0Zv4a2Gop910EbHtn75MkSZIkSZIkjbbZfTdAkiRJkiRJkjReTExLkiRJkiRJkpoyMS1JkiRJkiRJasrEtCRJkiRJkiSpKRPTkiRJkiRJkqSmTExLkiRJkiRJkpoyMS1JkiRJkiRJasrEtCRJkiRJkiSpKRPTkiRJkiRJkqSmTExLkiRJkiRJkpqa03cDJEmSJEmSJKlv89denXlzp06XLlgwf6n33XDjzSy89vrpbtbIMjEtSZIkSZIkaezNmzuHHfY+Ybkff+KHdmThNLZn1JmYliRJkjSSHPUkSZI0c5mYliRJkjSSHPUkSZI0c7n4oSRJkiRJkiSpKUdMS8vJqaGSJEmSJEnS8jExLS0np4ZKkiRJGmcO1pEkrQgT05IkSZIk6U5zsI4kaUVYY1qSJEmSJEmS1JSJaUmSJEmSJElSUyamJUmSJEmSJElNmZiWJEmSJEmSJDU1cosfuiqwJEmSJEmSJM1sI5eYdlVgSZIkSZIkSZrZRi4xLUmjxpkgkiRJkiRp1JiYlqQZzpkgkiRJkiRp1KxQYjoi1gM+DWwG3Aj8EtgzM6+KiEuBG+oXwD6ZeXJ93ObA0cB6wNXArpl5yYq0RZIkrRhH50uSJEmSWlnREdOLgP0z83sAEfEB4H3Ai+v9z87MCyZ53GHAIZl5TETsAhwOPGEF2yJJklaAo/MlSZIkSa3MXpEHZ+ZfBknp6ofAv0z1mIjYANgaOK5uOg7YOiIWrEhbJEmSJEmSJEkrhxVKTA+LiNnAy4GvDG0+NiLOj4hDI2Lduu1ewOWZeQtA/f6Hul2SJEmSJEmSNOKmc/HDjwDXAQfX24/JzMsiYi5wYN2+y3QFW2+9tabrT93OVPUzu7a8sW/65y2stuoqy/2378jju9Tl/7zP13NZfN6jFdv/ubGN7WfM2MaeyX/b2MtnVF/vZRnV98O4/s993u35P2/P//nM4/Neuf72ilqetk1LYjoiPgjcF9ghM28FyMzL6vcbI+JQFo+kvgzYKCJWycxbImIVYMO6/Q67+urruPXWRbfbPh0v0FVXLV+FzL5jr2hd0JXxeS/LggXzO/3bK8rnvfLEXhb/58Y29orFXhY/Y8YehdjL0uX7fFxjj+vr7WdscqP6P18Wn3d7/s/b83/ezd9eUT7v6bWyPu/Zs2ctdYDxCpfyiIj3AA8F/iMzb6zb1oyIderPs4DnA+cBZOaV9eed6p/YCTg3M69a0bZIkiRJkiRJkma+FRoxHREPBPYFLgZ+EBEAvwH2Br5YR0OvAlwIvGLooS8Djo6ItwHXALuuSDskSZIkSZIkSSuPFUpMZ+bPgVlLuXurKR53EbDtisSWJEmSJEmSJK2cVriUhyRJkiRJkiRJd8a0LH4oSZIkSZLUyvy1V2fe3KlTGlMt5nXDjTez8Nrrp7tZkqQ7wcS0JEmSJElaqcybO4cd9j5huR9/4od2ZOE0tkeSdOeZmJYkSZIkSZJmGGcGaNSZmJYkSZIkrfRM4EgaNc4M0KgzMS1JkiRJWumZwJEkaeViYlorNUdFSJIkSZIkSSsfE9NaqTkqQpJGgx2NkiRJkjReTExLkqTe2dEoSZIkSeNldt8NkCRJkiRJkiSNFxPTkiRJkiRJkqSmTExLkiRJkiRJkpqyxrQk3QEuzCZJku4Mzx2k0eXnW5Kmh4lpSboDXJhNkiTdGZ47SKPLz7fULTt/xoeJaUmSJGnEeYEnSZJWFnb+jA8T05IkSdKI8wJPkiRJM42LH0qSJEmSJEmSmjIxLUmSJEmSJElqysS0JEmSJEmSJKkpE9OSJEmSJEmSpKZc/FBaCc1fe3XmzZ3647tgwfyl3nfDjTez8Nrrp7tZkiRJt+N5iyRJkiZjYlpaCc2bO4cd9j5huR9/4od2ZOE0tkeSJC3buCZoPW+RujWu+xZJ0srPxLQkSZLUgAlaSV1w3yJJo2EcOxpNTEuSJEmSJGlK45g0k1oax45GE9OSJEmSJEma0jgmzSR1y8S0JEmSJEmSZixHa0ujqbfEdERsDhwNrAdcDeyamZf01R5JkiRJkiTNPI7WlkbT7B5jHwYckpmbA4cAh/fYFkmSJEmSJElSI70kpiNiA2Br4Li66Thg64hY0Ed7JEmSJEmSJEnt9FXK417A5Zl5C0Bm3hIRf6jbr1rGY1cBmD171lJ/YYO7rL5CjZvqby+LsY1tbGMb29jGNraxjW1sYxvb2MY2trGNbWxjG3uJ7atMvG/WokWLVijo8oiIhwKfyswHDm27ENglM89ZxsMfDZzeZfskSZIkSZIkSdPmMcAZwxv6GjF9GbBRRKxSR0uvAmxYty/LWZQncgVwS4dtlCRJkiRJkiQtv1WAe1ByukvoJTGdmVdGxHnATsAx9fu5mbmsMh4ANzIhuy5JkiRJkiRJmpF+NdnGXkp5AETE/YCjgbsA1wC7Zmb20hhJkiRJkiRJUjO9JaYlSZIkSZIkSeNpdt8NkCRJkiRJkiSNFxPTkiRJkiRJkqSmTExLkiRJkiRJkpoyMS1JkiRJkiRJasrEtCRJkiRJkiSpKRPTkiRJkiRJkqSmxjIxHRFH9hh7nb5iS6MsIuZExEMiYv2e4q/bR9yZIiIe3XcbJEnSnePxW1pxEbFKRKwxyfY1ImKVPtrUQkSsHREbT7J9k4hYu4cm9a6PfWpEPCoiPt46bo19z4h4Sx+xx9VMyDtExL2n8+/Nmc4/thJ5Uo+xfwZM64u4NBHxBOA+DL3OmXloi9hLac/qmXl9X/HVnYh4QmZ+Z1nbpjnm/sCnMvOCiFgd+AGwMbBqROycmSd0GPs1wEmZeVE92fwqsH1E/AXYMTO/31XsoTa8NDOPGLo9G3h3Zu7bdeyhmPcAXgTsAcwC7tsq9kwREY/OzDM6/PsPBO6RmadM2L49cFlmXthV7KW0ZwNg08z8Ycu44yYiHtHH/7juRx6Umee3ji2Nuoh4MTA7Mz82YftewMLM/GTDtjQ/fkfEg4DfZObf6+21gH/JzJ93HXumiYh7Z+bv+m5H1yLiKcBDgHmDbZn5rkaxnwjcPzMPjoi7Aetk5sUdhnwfkMDE5OBLgHsCb+gwdp8+AHwDuHTC9kcCjwVe1lXgiDgLWLS0+zPz4V3FnqQtfexT7w7sCuxO+T98puuYQ7FXBf6T8ny3Ab7cMPY6QLDkfuW0RrGb79NmQt5hqC2rAc8EXgw8DLjLdP3tcU1Mzxr12BHxaWBL4KfALXXzUnfcHbflEZQ377OZxjfvJHHeSDmxP2TC9jcAZOb+Hca+isn/v7OARZm5QVexJ7Sj9UnYwAeBrSds+wDw0A5j/juwT/15F+AmYAPgfsCRQGeJacpJ5uB99nxKZ9PdKc/3/UCLnvLn1s6nlwBrA58Dft110IiYAzyD8pl+BOU4sn3XSbQ+P9+TtKXlyed+wFsn2f4XykXQMzqMDUBEnE75vM0CzgX+GhFfz8zXN4i9BrAvJRn+goi4H3C/zDy+w5jPANbOzGMmbH8J8KfMPLGr2EMOi4hbKPuZz2TmDQ1ikpm3RsQnKBcZzS3lIvNvwJnA/pl5Xcfxnwhsxgzp0G+h7tP34PYXWnt0GHNp50yD2K3OmQJ4MEs+7091GPIVwOMn2f4p4BSg08R0X8fvIUfXuAM31W0PaxG8z2RGjd/ZBf0UMdehnCs/hCWf9xMaxH4f5VjyQMo5+Y6U93nn6jnj04B7AAcDq1KuDbo8P38a8MZJth9CuR7vPDEdEVsCh1P2a3MH2zOzyxHbj8nMPSduzMzPRMSbO4wL8Lr6/emU679P1Nu7A+d0HLuXfWpNTO4wFPPLlHPWjbqKOSH+Q2rs5wHnUd5rG2bmjY3iP4+Sd7gLcDllEOZPuX0eoovYfe3Tes87RMTWLH7dV68/T+s16LgmpntJ0DaOvQ3wwMy8ZZm/2YE6qm5Xypt2E+DtlB1Xl17A5BfTBwE/ArpMXDU5qZ5KHydhEXEfYHNg7Yh42tBd6wC3m842zW7MzMHn6XHAcZn5T+Bn9UShSzfXWABPpIzcvhL4RkS8t+PYA08G3gKcDawGvCMzj+4yYEQcAOxEmflxFKWz6cJGF7V9fr77vKDfNDN/OnFjZp4VEZt0HHtgrcz8W0TsAhxLufD6KdB5Yhr4KHAFi48fvweOA47vMOYbKaNAJvoa8H9A54npzHxIRDyGksh6T0QcA3w0MzvvfAJ+EREbZ+alDWJN9G1KR89gX/ZC4JfARpT3wgu7ChwRR1GO5efQuEO/p2TCwOGU/dnjKf/jFwBdJ+sG50wvBtYDjqB0fO1B+Yx3ro5S3pNyznQW8BjgVEqSuCurZua1Ezdm5l/r6LPO9Hz8Hlhl6NyJzLypwfka0Hsyo/ML+ikcCVxIOVd/K+Uzdnaj2E8HtgLOzsw9I+JdLE6udG0nyn7mxwCZ+fsGZSVuney6OzNviYhbO4498FHKtcEBwL8BrwQWdhxzqufW6TE0M08FiIh3AE8YXBdGxFcpCcPORrL2uE/9A+W86BDgOZl5Q0S0ODckIs4B1qSco21dP1e/aZWUrvalJGRPzsytIuLJlA6/Fvrap/WWd6jnSntQjl1HUZ7/aZn52emONbKJ6SmmdsyijKrsMvYDpri71f/8l5Q3UKejiyaqI832oCRDv0jp4TkmM9/fIv5kO8a6w+467m8HP0etcZyZf+406O31cRL2r8BuwN1YMkl1LYt7sbuySkTMB/5BmSp2wNB9cyd/yLSZExGr1oPEo1ncQw8lSdzCbEoHwM2UUTAtyuS8nFIyZb/M/C5ARDTr6Ovr893zBf1UyYpOExlDBp+nxwOfq6Nqb24Ue4vMfFEtXUJmXlfLTXRprcz808SNmXlFnXreRGaeDpxeR6d8Bfh/EfEN4PWZeVGHoRcA50fEGQydQ2TmczuMObBdZj5ycGPo4vKJlORKlx5F6dD/5zJ/c/r1kUwYeHhmbhER52fmfhFxKGUGTmcG50wRsV1mbjd0114RcSoddzRWLwUeDnw/M7evZSa6LoW15hT3ze84dq/H7+qfEbHpoIMtIjZjcSdQ15onM1pe0E/hPpn5rIjYMTOPi4gvUTpZW7ghM2+OiEX1nPnyiLhXo9jXZ+Y/J5wfdv1+Xy0i1sjMfwxvrOcNXV+XDMzLzG9HxOzMvAJ4S0R8jzKqsjMRsf7E696IWEC7Wer3ZMlrobmUDu0u9bVPPZVyTrQ9pZPt1AYxB26m/G/nsjin1fo4cnNmXjno1MzMb9WOiRb62qf1mXc4kDJoZM+hY3cnr/nIJqbpPik2lakO+E2m41KShKfVC8vbYmZm19OIjqe8ee+fmVdB0xPf1SNiTmYukTCpo1CmuhiYFlHq/7yRclFPRFwJvC8zP9x17Kr5SVgdoXt0ROyWmUd1GWsSh1FGffwV+H1mng231eS9quPYXwS+HRF/powUOLPG/hfaJRO+T0mUPpQy4uuzUep6d1bLrcbZGfhgRNyFMrKs1XGkz893nxf0V0XEVpl57vDGiNiKUs6jhe9FRFI6Q14eZcGNVsmEm4ZvRMQ8ul+4earZHp0fSwbqiOlXAttSalZ+HHgCJUm9eYehP1u/+rB+RMwbKl0yF9goMxdFRNedb5d1/Pen0ksyoRr8X2+pSZW/RUSTKcHAhsMJjdqxf49GsW/IzL9HxOyImJVlvYrNOo55RkS8ISeUnoqIvSnH9C71efweeCfw/YgYXCc9DfivRrH7SGYcSKML+ikMOvRvioi7AtdQkngtLIxSjusHlGuFKyiJrRYui7IA3aLamb0v0HUt889RnueLBzMjopRSORz4QsexBwb/379ExIMpM1D+peOYHwO+WJ/3L+G2GbVH1Pta+BxwZkQMOlWfS8cdrPS0T83M59Z4uwD/W39eZ7jTr8PYD68DMF8M/DAiLgLWmqxDpkM3RsQs4JKIeBWltvmCRrH72qf1mXcYvN5nRMTFlE7WTq7DRjYxPZjaMZmIeCcd9i5lZqvp1VM5iNKL9lfaJRCg1CHdHbgoIr7C4um4LXwDOCAi/t9gKlU9GdkfOKnLwFGmuL+MUnf2R5Qe4odTDhh/zsxju4xf9XESNvDriFirjmZ8MaXkwvsz8zddBczMQ6PMjNgI+ObQXTcDr+kqbo399oj4GeXk/hWZOZjGth7wti5jDzk4F9fA/U1NYnWaxMjMv1KmLB1ST3j3oCSMTwOOzczDOwzf2+ebfi/o/wc4Icp0sR/XbQ+nTMm9XU2/jrySUmLg13Xq9dq0SyacFhH7AnMj4nHAa+m2fjyU0cIvyMwlFpGJiOcDF3QcexDrZ5STzY8Auwx1yBxTjzed6bok0DJ8nnJx+XlKx+pzKBe8a3H7hZWmRUS8ov54MeXE/3iW7NBvUWO6j2TCwF/qfu0kyrTQPwN/bBT7QOC8CYnKVuWw/lE7Nn8KvD8iLqP7EmRvAE6NiB0p54pQ9ucLgO2W+qhp0PPxe9CGr0bEdpRF6GdRBm/8suu4VR/JjGYX9FO4uCakPwP8kHJdeF6j2DtRrkFfRzl2r0vZp7fwKsq52oMoMytPp5zHdeldlNf48oi4pG67L6Uz+R0dxx74XESsR1mf5AxgFTq+LsnMD9fR0edHxODYOQ84MDMP7DL2UBveEhE/opR2nAW8JTM7nRnQ5z41M6+hnB9+pA5UeTHw44i4ZHjWWUexLwT2joh9KLWu9wCuiLL2zE5dxq7eQllbaR/KbLN1KGXvWuhln9Zn3qHO0Hx9lJKx/055ve8WEZ+ivM9Pnq5YsxYt6rPccj8i4neZee++29GliPhFZt6/x/h3pdSC3J1yYvY+yps3O4y5FvB1SkH4wYIHW1NGQT01O1w0qR6EXpUTasFGqRt5cGY+tqvYQ7HuTjkJexylN+10YOdag6jr2OdTElcPoIwKOAZ4UjZYXKVvEbEmZYHLVj3FM0q9sP8PYPfMfNoyfn1F4qxFmY3yLzT+fE9ox+Dk8wXAL2hwQR9lBei3srgW5tnAe6bzZGAZ8ScrT/W3zLy8QexVKcmcZ1AuNr5CSWZ0NkIhIjandF5/h8XJo20po5W3ywYLykbEwzLzJ13HWUrs+1IWYdsoMzeJUh/1GZn5jkbxd2DxxeV3s+PFJiNiqgXnFmWHiwAOteG1lI78bSjH0FWAt2XmBxvEXiVLDdTZlMTNOpT6hberhdxR/C0pSdnB6/2zRnEfBPyGMgvivZQLzHdn5nkdx12dcvzYmvKcz6askdH8HKLV8XsmiLJY9NmUco6DZMabMrPzhauiLFY2uKB/CuUzPq0X9HewHY+mvM+/kT2tQdRaHd04u9U5Yo15H0rZllnAOQ07Xya2Y1XKbJwmMznr9dADKM/755n59xZxZ5I+96lRFlf9j8z8fMu4NfbdgV0nzgbS9KgDgu6aE9Z+ibLW0NWtzteG4m5AGYz5osx80HT93XFNTF+WmZ3Vg4lSwmFgFovLKcyiXOR0vtp4ncrymjoltFcR8VDKydjzMnP9BvGeyNAJf2Z+u0HMizNz0qnVEZGZ2W0R3CXj9XESdk5mbh0Rr6MsSviRiDg3M7fqMObS6shD+Zxt21XsGv8FlNERgxkSvwHe3vXo+Ih4f2buExFfYJLnnx3WgY1SJuUeEy/kIuLfgN/VXvRORcSTWHzC3+TzvZR2jNMF/aXAvYC/1U3rAH+ilNl4fna7+vhwWYdm6kn2K1kyeXRoq2NqHdm3B7B5/bxvTFn1/AcNYp9CWSTsfVkWYZwN/CwzH9h1bLVPJqidPi8uZ8jx+1GUWU6bUmYdNbsumim6uqC/A3FXY2imV4uOkIgI4M2UhSaHYz+869g1/mbAZhNif73DeEv7jG0PXNbiM1bjtX7ejwYWZOaXJ2x/LqXUYmfnLeN4TRRlZvLszPzYhO17AQszc6rO9hWN/Qxg7aEZu4PtLwH+1PVAghprdcrI5Yn7la7L1fa2T4uIwykdisdP2P4C4LHZYRnPiLgncPeJg2Ui4uHAHzJz2hasHtlSHsvQdTb+OuBqyoijk2hbSmNgXeCCiPg+S05J7XTxoslOujPz7Ii4hg5Xxq2xBx+cb1Nqug22b0P54HQ5um+qC8hmPcbDJyNRa013eTIyZE5E/CtlUbgX122rdBxzsjrym1Gm+HQaux6AXwP8N2Vq5CLKwln7R6mz1WVNtTPq9692GGNp9qOM3J3oasqsiM5Xma8ngKdExD2AR0XEFl2PsJvs5DNLPfeFdLyeQZ8noEOOB743OCGKMg19W0oJnQ/Xn7tyaUQcA3w0M3/VYZzb1NFt12bmWydsX2MwurRBMw6gLCq7NWW64kJK2YMWF/TrZOZJEbEfQJbFLm9a1oOmQz3pfwu3v6ju/HlHqT37UsrI+EWUEfMf63J0/oT4SyQTIqLJ8bseu9/H7f/nnSULI+LTmfnCpXUwN3q9N6AcwydeYHZ5nvwBSlmqSydsfyRlEecu14jo/fhNWbDpfyjnTU2vjfpIZkx2QZ+lzvWpwHFdxZ3QhmcD/wtsWDcNBkx1fY4OZWT4pynlLVq/3vsBL6HMbBvEXkSZWduVpX3G/kKjz1hE7E/p+EjaPe93Mnl5t/OAQymle7oyjtdEr6AsRj7RpyiLRXd5XfBG4D8n2f414P+AzhPTwJcoM8PPZnEN/Vb62qc9JjNvV74xMz8TEW/uOPb+lHW9JloXeDXTWCJpZBPTS+s5oxyQ79pl7MzcNEotzN0oyavjgaNa9ZRWn6lfrS3tpPsRdH/SvbQPzl0or0OXtcU2iMV1KifqfJQ49HYSNvBWSp2t72Tmz6NMhe906loO1ZGPiLtRaiz9B/Ch2pYuvQbYfkJnxzci4gJKZ1Rniemh3ujvZubvuoqzFJvmhHI1tU1n1RFfnakjLz5BqY/4asrJ7qXAfSPiLZn50Q7D93lB3+cJ6MDjMvM1gxuZeUJEvDEz960X+13akpIs/E5EXEj5bH8tM7vsYH4f5aLu4xO2v4RS363zURmU13wratmazLw6ysKPLdxSR+0uAoiyEN6tUz9k2nyWcuL/Sdp36h8CbEwpqTGLsrDQg+n2vAXoLZkw8EnKCKCzafc/P7B+73Oh8hMon69TaPe8+7y47O34PeT6nFC7v6E+khnNLuiX0YZnUmaYtdqPD9ycmR9oHHPgOcBmjae4z4TP2H8Cm7QYET9kQU6y6F5mXhyl9nRnBtdE2c/aGH293qtO9r7OzL/Wc7curZWZf5ok9hVRSi62cO8eZ/D1tU+bat/d9YDbB2fmaRM3ZuY3I+KA6Qw0solppu45u91OZLpl5veA70Wpt/T8+vPbO06eDMfva/GiPk+6m31wJnEKpTbkZFqVGujjJAwoiSqGFiTLUoP1mV3HrSP030iZ8n4EcP9Gz3/WZCPwM/OywUj1Bs6MiF9QkgpfbFTuYKoTnq5Pht5MGS26LuXz9tDMvCgiNqSM3O1y39rnxUafJ6ADsyPiUYPpmBHxSBYvEtbphW6WGvnvrh1vO1I6JG6JiIOBQzp63z+Nsl+Z6BDK+UOLxPQNmblosD+p5TRmNYgL5X/8ZWD9iHgHsCvl89fC7MxstfjdRI8FHjhI3kQpidak3jH9JBMGrsnML7QMmJln1++nwm21Scm2NUnXyMxXNowH/V5c9nn8Hvh6RDw1M7/RKN6wPpIZfV6XDFyRmWc1ijXRSRHxb5nZ9QLVk7mih+uhmfAZ+x2lzFpLUy0a2/WCsgBExPrAwcATKfvSU4BXZ+ZVHYbt6/Vec4r75ncYF6Z+Padq13S6ICLukf2Uq+1tnxYR62fmnydsW0D31wZT/f1pXcx3ZBPTExOzddr3iygJrFnAu7tuQ0TcjzJq+j8po4i/13XModgfopTO+DvwXcp04D0n1gTqQJ8n3c0+OBNl5u5d/v07qI+TsNtEWaDtIZSVmAHIzM7Kt0TE64H/Rxld96CJO+uOzYmIdTLzb8MbI2Jd2p183ht4KmUfc2BEfBn4ZGae2WHMqyJiq8w8d3hjlBWh/9JhXIBbM/MXNd7vsqwSTGb+ISL+2XHsPi82+jwBHXglZaX3f1D242sCL6ijI/636+BR6ua/kDJ6/JeUkcyPp4wm7WKB1VsnK9eRZYG4ViPOfhYROwOzotSXfhNlQdvOZeanIuLXlNXW16DUQm0Sm9LhtmVmnt8o3rDfA3OB6+vtVSmLq7bQRzJh4DMR8TLg8yxZ+q1FDdpNKbP7HgIsiohzgV0mG33XgR+1KAU1UY8Xl30evwf2BPatZbBupG2N6T6SGb1dlwz5SET8D6Wzcfjz3WIW7ynACfW42fr1PjMijqNcIww/7y5nocyEz9jewIkR8S2WfN6Hdhjz1xHxpLx9reUnAL/tMO6ww4GfU57/LEppkcPpdpBUX6/3GRHxhpyw0GBE7A18v8O4AOdHxAsmznyJiOcDF3Qce+CdlOP3eTQsV1v1tU/7GPDFiHhx1sVUoyyyegQdztKuboiITSeel9Xzt2kdHDSyiWm4rV7gMyjJ6EdSnu/22eFCTTXuyykjjG6gTAndqodRME/KzL0j4unA5ZRR218Duk5M93nS3eyDM1FEPGCq+xudAPZxEgZARLyPMmL8gZSR0ztSdt5dej9wBaW289cnjlTObmtUHg0cHxEvzcxLAGr5ksModac6VxNnXwW+GhF3pZSbOINu6wb+D+WA/C7gx3XbwyllLm43U2KaDXdsXT/FfV3o82KjzxNQADLz9Cj1b4OyH78oMwdJtE5n50TERyi1608AXpCZP693fSYiLuoo7GpRasUvcdyuifi5HcWc6LWUOtP3AH4EfIVywdW5iHhMTUSfscxfnn7bArtHRLLkcaxFbe3fUI6jn6u3nwOcFrVMV8cX9n0kEwaupFzYDEpgtaxBezjlwmpQkmi3uu3JDWIfRnl9L6Pde63Pi8s+j98DD2sUZzJ9JDN6uy4ZshHlePIiliwTtGmD2EcAu1NK5rQuzTSYxfqqoW1dl0eaCZ+xN1LOGx7Ckq93l95MuRb5OOV8Bcqx/CWUDu4WNsvMZw3dfnv9rHepr9f7DcCpUdZ7Gf5/rw9s12FcKO+vU2t+aTj2ExrEHvgU5Zy4j/1KL/u0zPxwzaWdHxGDY8c84H8z88COw38I+EpEvIYl3+cHUEpFTZuRTUzXKVI7UaZhHkW5wLiw66R0dQhwLmX0zdOApw0nzRr16Aw8FvhSZl4eEV0fmKDfk+5mH5xJXEB5vW/m9gn4VieAfZyEDTydUg/17Mzcsx6ku67z/BRKkui6CdvXovv6gftRLtrPi4hBrNUoyfL9Oo59m5qQfgHlgmMdSp3tzmTmyVEWfnwrZdE7KAfnl2bmyV3GpqyL9uNJfp4FbN5x7D4vNvo8AR02h/K5mgPcJ8rCbJ11uEXEvbPUUP8dcL/h2QkRsXVmnsPktbenw+eAo+tx7Noacx1KwqxJyYPMXEgZ8TPZgkJd+9/6fI8Cjs5pXHH7DnhNw1gTrUo5dxvsT35K2a9uQ/cX9n0kEwb2Ax4HnJPta9AuyMwjh25/MiJe3Sj2McB7aHiBOcXF5YFdX1z2fPwetKHV6MnJ9JHM6PO6ZGAv4D49TXv/S2b+Xw9xycyuzg+mitn7Zwx4KLB5drsOxxJqWbsnUc5X/4NyXn428OSGs59mR8QGtfzbYHHbrmdL9/J6Z+af6sCYF1BmxM8CjgSO63ogZJa64VtRZlJuz+LX+nUN9zGrZeZ/N4o1UZ/7tLdEKWv4AMr//ectyp9l5rFR1hM6ktLROYuS83r3dFdimLVoUbP9VlMRcT3wA8o/7bt1268zs/MEYUS8aIq775WZLcqIfIuyMNigvMJC4NzM3KJB7HdTeucn9uh0XqOyHiDeRvngQBkt/u7MPKLjuEdTRu5+mfYLXfYuIs7KzG1q7/Q2mfnPiDg7Mx/aYcwPAJmZH5+wfS/gntnhSutDsVYD7kvZSV+Smc1WB46ILwGPpowkPToz+xjd2ExETJmEzaHFMDuK/xTKyefWddM5lH1L5xcb9YRg+AT0bBqcgA7FfyVlQcC/sLhc06Iuj6cRcU5mbl1//vHwKMbh+zqKPYeSlN0RuKRuvi8lqfGizLy5q9gT2vFEYDOGBhE0GkFLRDyIMnp1J8r02E9m5nEtYo+jiLiExsmEodg/yMxHtY5bY58D7JSZWW9vTtm3dXbuMBy7y/3IMmKvSeOLy5kgIu5FScg+mCXLvrW4Njs/M7fsOs4kcYevS4Yv6Du9LhmKf1pmPrZFrEli70s5b2heJqjG3x54EqWT71uZ+a0WcfsUEV8DnpeZEwftjLSI2JXSyfo1yuv9NOBN0504m6ki4r6DGbyjLiKOAD6Sjctw1di97NMi4t4TNi0Crso260sNt2MBZZ2tK7v4+yM7Ypoy8mRn4IMRcRdKT3mT55szoL41JYmxM/CJzLwmSo3KDzWI21uPTkR8IzOfCny86w/ORJn5onqh8RzgkJpIOhr4TE6oQ9ylHk/CFkapA/sDykjDKyijx7vU2wJl9bkO/KZ+X2WwvdFJ95eAnTNzYlmLzkXELOClLH6vnQJ8rMukylSJ54h4J9BpYjozv0lZZLG5+hp/on4REeu2urCr9qbUcW852m145snEOt6dloWqiedd6myfrWq8cwazgFqIiKMo096HR/e1HAF1AfC6KIsWH0QZXdp5YjoizmKS59molMegJuZ9aN8ZcDGldnsfyYRvR8T7KTMFWteg3Rc4vXZqL6IMpHhhg7jQ4yJG9Zz4rCglkv6rDpz5SovYfRy/hxwJfJbyOu8MvBz4VYO4AD+MHmqK18ETza9Lhvw4eirzx+Lr3eF9aJMyQRHxBkpZzcFx64CIODozP9hhzPnAyyiJq09RZlE+mbJ/f01mtliz4Frg7Ig4mSVf7y6viR4H/HIwu6r+719AuT7675xksfjplmVtjHMos39mAR9uNUis533qwOdYPHCmc1EWm/wISz7nrhebHHg48JPop+RbX/u0s2uc4eufdSLiTOCFdYZpC1sDT6pVGKY9zzSyienM/CslQXVIRDyYkhRePSJOA47NzMO7jB891bceqDuGA4duX0qj2rc13t8j4u+UqdYPi4jvZl24rEN3H4rfYse4hHqhcRRwVEQ8lXJSMp9G0/X6OAkbshMlefI6ymj5dSlJ+i71uUDZddz+ALFo6Hun+9Z6EvT6HkcC7E9J2A3qgr6IkszpfJT6UuwOvL3rIH2cfNYpwCdl5kURsQpwIvBvEfEXYMfMbFFn+o89TMFetJSfJ7vdiZqI/mWURU0fF6XudKtpqY8CHpiZXS/sOakJI6YvpBxbWnjd0M/zavw/tAgcEccAW1A6Nlt3BjRPJgzZpX4fLjPXpARZZp5U32sPpxxPz8x2Cxn/F/DGaLgQX0ScAuydmT+NiHsCPwHOBDaJiAdl5nu7ij2kz+P3+pn5iYh4TWaeGRE/ovv1SAb6TGZAxxf0UxjMPmhe5i8zWy3wOJldgEdmKYtFRBxEWZejy2uiIynHjjUo1/8/B15PuRY+jFL2sGsX1a+WDgCeCBARj6c851dS9jMHAc9a+kOnT+1Qb7UA37CZcE3U9TpeEw0Wm3wd7RabHGhV7ut2+tqnZeaCidvqNeGelA6CHbtuQ4s808gmpodl5k+BV0fE64D/ZPHiKp2IfutbD9rQ23S5Gv+FlJ7ir9VN+0bEPpl5bIdhZ9WRypPunBtMs1iH0kM8WPjyDZSpHq30cRIGlHpXNeaCbFCqpuptgbKJB6aasNwFeAdlhGOnMnNRRPw6Iu6Smdd0HW8S2wNbD0oaRMTnKb25fSWmW52Q9XHy+RIW12t/PrAxpRPuoZR97KM7jD3wrYjYnzLSrdWIynkRcX/Kazv8Mwwd07pQE5T7Z+b5Ueq4/5SSOFw/It6cE8oHdaTFyKpJ1VFHawKfBh7RaJQXcPuZERHRcqbCwyidAa0X04F+kgkAZOYmfcQdin8lZSHf1vpYiG/Dek0CZcTwtzPz2bXz63SgRWK6z+P3YNHc6+rU5D8B/9IgLvSYzOhz4Ej2UGt5WESsBzyCkgz/YWZ2vWD0wKzB9RCUdRvquXqXHpCZD4yIVYE/Ao+uAxdOiogmCdPMfGeLOBPMGboWeQZwZGZ+PiK+QDl/6lxEPIpyjr4pJb/VeUfjkJlwTdRkMfQhfSw2CSw+T6wz1QcDA5vpcZ+2hHquemgtF9VC53mmsUhMD9SRR5+n+2ThyyklDfbLxfWtW9cN7HO6HJQetK0z848AEXF34GSgy8T0lpSRrBNHsXa+wnxEfI4y0urzlHqJl3YVawp9nIQBEBHbUp77bOBeEfEwyuIPL+0wbO8LlNWYO1AWUPoj8NzMPLtR6OuAcyPi6wxN/240wm7wmRqYOHq8tVb71z5OPm8eGjX7REo98SuBb0REiyQGLB4tOzwLousRlWuw5Iiu4Z+7fr23HhoZ/ULgF5n5lDrC8atAi8T0xZQSC8ezZGdAi7ISe+XMqVm/Nm0WDwb4JbA6PZTT6CmZcJuIeABlVN8i4DuZ2WmSPCKuYvLPcbNkQmb+ts5ujNqWi7P7+vHD9SD/FTi+tuWvEdGkdj09Hb9rJ9+1UcorHkI5dt5IuwVl+0xm9DZwpMbrpcxfjXsMcF7dtGVE7NIo/lkR8UngY5Tn/RLKDIUu3Qgl3xARv5swm+6mpTxmWkUpKfhWhl5v4D0dD84a3n88klruoA6i6TDsEj5BWaj8h7Rb3HRgJlwTvTYi7j7IuzTQfLHJgYjYFPgMJce1KCLOBXbJzF83iN3nPm1pOi+NVHWeZxqrxHRDvdW3HtLndDkAhneOmfnHBgenn2bmVl0HWYrnUGqKvRJ4xdBzbdljO/Ek7L/o/iRs4ADgqdSOh8z8SZQFIbv0LsqMhMujLBwFixcoe0fHsYmIx1AWhFuFUjvuO13HnOCX9asPJ1MSo0dR3mu7AZ3W6awjL5aWyLhrl7EnxGp98jknIlatyelHU+tMV6t1HBvoZ0RlZm7cOuaQ4eTRoymL2pKZv2/YyTyP0pk8vGBxp7EjYpPM/A3wl5qoXELHI+QHbRiuMT2bkpRusj4GZfrxaRFxBo3LafSUTBjE7mOGWx+jlZdQO9C/yOIyHnMi4lmZ2eWsp5si4oHAlcB2wF5D93U6E2RIH8fv51FmGi2k1J19FmXWz9p1+n3n+kxm0O/AkT7L/L0HeGzWUo4RcT9KUqdFEudVlEUnD6J8vr9FSVx2aZ0opRxnAfMj4mlD963dceyBj1ByDq+pt18CHEwpLdKVn0VZp+APwObAYFDe/A5jTnR9Zn6mYbxhzfepABHxWUoph5soI9PXj4j3Nvpsf5AyOGqJxSYbxIUyAO0IFs9e3a1ue3KD2L3s02LJta0G1qO8/q3K13Te2WdiugPZc33rqs/pcgC/irIg2eGUN+9Lga5P/pqvZj+k16mw1fBJGJSdZLOyGpl54YTOh05HB2SPC5TVA/H9KAnwL9Zttx00WiQTeh5h9wbKwfCZlP/7lyknCV0anuo9+KzPmuS+LvVx8vlFysjZPwO3UuqREhH/QrnI70xEzM3MG5dyQtRqkc9eRMSGwDWUhXSG65c3SR5l5u4t4kzwEeDfWZygHLYucJcGbRiuMX0zcCnlPf+eBrEPAi4H/kr7EVd9JBMGms9wy6Ga9RGxNnCfjhPCk/kwsPugUzlKbdSPUEYyd+VNwGmUGSEfH8yui4gnA9lh3GF9HL/fDDwqM8+r/+e3Z+bjOo45UZ/JjD5G7w70OVp71RxaXyjLWhkTFzPuRB0Rv0+LWEN+x+IZdJdROjsZut3CNpm55eBGRPyA7stpvIJyvfl44NlDsxG2pd36Vl+PiKdm5jcaxRvWxz4VIDLzbxHxbOA7lDWefkibEp69LTYJLMjMI4dufzIiWpVq6mufNnFtq0XAVZRcT6vn/irKAIrOOvtMTHcsG9e3HnJanTZ3KI2ny1Uvo7xxB9Ohv0XZaXfp0okbImLvzGwx2uoa4K4TS3hExCbA1V0GjlL8/pnANZm5T905P5kymrLVZ/zGKLWdF9U2PYAlRx12piaiW48cfmr9fjSLT7qGDxYtVhzfgDJS/d6Z+diI2JJy4XdY17Ez81bgo/Wricw8OiK2oZzoD0ZzXgAckJk/btSM5iefmfn2iPgZcE/gFfV/D6Wn/G1dxqYkBLdm6Yt9tpo+1tp+lGl6NwFnDE62I+IRlAvPzkTEK6a6v8tSHpn57/X77TpaI6LJRXVOqDFdY7eaEnvPzLx/o1gT9ZFMuE0PM9wAqCMKD6d0BGxcRzG/PTN3aBB+zeGZTpn53UGZh67UGBsA8+sgloEfUDsdu9bH8ZuyWPV5Nf53o6zF01qfyYzOL+in0NtobeCqiNgtM48CiIgXUZIpnaujdd8KPIFaogh49/D/Yrplz/W8q1kRseZQcngNOp7ZV/dl/z3J9lNoN1t7T8psn2aL2Q70tE8FGCREtwO+npn/iIhbp3rAdMr+Fpu8NSIiMxMgIjan3WCCXvZp2e9CsoM2/B14Y5cxTEw3ku3qWw/iDXppPx0Rp9JwulyNfyVloa5mMnOylWB3ps004A8A3+D2yfFHAo+lJOq7cijwIMoCYb+mjOj7KuVAdThtXof3UBao2rCOJv03yiiNkTQTDhCUkTffoIxUgLJw1jGUlb87VS+sXwVsxtBxJDOf22HMR1LqDB9GmY47C9iGsqjMUzPzR13FHujr5DMz/2/4dkTct8Xowszcun6fCe/3ZjLzCxFxOmWRyeHk4O8oJZK6tE39vj5lH/7tevuJlH1sixrTk+lzRlKr2OdHxD0y84pG8YY1TyYM6WOG28A7Ke/5b8BtZcA2axT7HxHx+Fy8Fsx2QIvZTrdQRuVT47YaQDGI1/z4TVmsengB27nDtxuNtOstmdHign4KfY7W3hM4NiIG50zn0e7a4EjKosV7Ud5nu1FGyz+7UXwAIuLUzNyuYchjgDNrmYdFlGvATzWMD/TyvHsrD9XTPhXgwigLRN8PeGNErN5xvNtEv4tN7gucHosXW3wwZT2YFgb7tMMon6/zGOF8x7CImEfJq018n09buTsT0yNmKVOu/wz8OSLWaDn1OiKeyO3fvK0vqltd2D0mM283IjwzPxMRb+46NvBAyoXsFZT64jdFxBEsHrHetR9QdszbU/7n725RUmMmiYjtJhvt16GNMvOwiNgToL7mrXrKvwj8gjISolUv9RuAPTLzy0Pbvhylfv6bgP/ougE9nnxO9DnKSOYmoqz4fMrEGSGjrI4gvW0UaUTslJnHTfGQ6Yq7e433ZeDBWWo+D2bf7Nd1/L7EJDWth7Q6V10XuCAivs+SNaZbfL77TCYMz3BbRNmvdz3D7TaTjNC+sVHoVwP/FxE3Up73XBonrapWAygG+jh+T1zMlqHbXS+kOzCczFhEqTXdJJnR4oJ+Cr2N1s7MXwGPqDMqlxi53cD9M/NBQ7e/HxF9jO5sVVsagMx8f0ScT+nMngXsk5md1zueRMv60kuUh+pBH/tUgBdRrrt/mpl/j4iNaNcB1ttik5l5UkQ8CHg45T1+Zmb+uVHsPvdpffsCZTb+j+joPM3E9OiZbMr1QLOp13XU7MOAc1i8w+p81FMta3H80DTQVvXFpkoIdv28b8yy8vPfI+JXmXkTlNGdEdH5KtB1SuBpmflg2k9jmkn+l4bJQkr91dtExLq064i5S2a+tFGsgQdOSEoDkJknRMQHGrWhr5PPiVqv9r0V8LqIWI0yHfbbwHcy80+N29Gn17N48agWNh4kpQEy8zfRcX2FnpPDk9W1HmhSFooyE6OXxZP6TCb0McNtyMKIuBuLy4A9jqHRxF3KzLOirFERlP/5RXV2Y2ut9+fNj9/Z72K2gzacFGXhyW1pnMygwQX90vQ5WjvKwqpfzcxr6u27Ak/NbhdWHfhtRKw/eI0jYj3azQQZ1vT1BshSZ7mPWsvDOr/+BIiIT2fmC2PJhZNvk5kPb9CMPq6JyMzrgeOHbl9OWSejhT4XmyQzr6yjxedAGZjZavBlndW1GWXB5EF7Jna8jqL7ZMfl7kxMj5gZNOX6UZREUtOT/My8JSJWj4jZmXlrZn6zVezhE6ChbQvo/qJjeErkEtMjabBQV2YuiohfR8RdBiefY6r1xeUXI+Jwysrfu1FKenxy6odMmwsiYsPM/EOjeDD1FOtWM0F6OfmcxPdbBsvMVwJExD2BpwPvBe7N6NaYnkzrz/fVEfFW4OP19h50vF4BPSaHc5K61j04pV7Y9aJ1MiEi/jUzv1/rPE/WnhYXWm+iPOdNIuJ7wH2BZzSIS0R8vo6Gv2CSbS21XqCtj+N37yLiwMx8DUOLJQ9t61rnF/RL0/No7ddl5qeHYv4lyppLnSWmI2L/+uN1wE8jYvB6P53FpbGaycxHtIxXO7Dfwu1f7xYJ2ts0fN4H1u+vm+qXOtZ0nxoR387MJ0bEVSyZjG9ZTqO3xSYj4lmU133DumkW7dZ32o9SDukXLDnwchwS07+OiPldjhI3MT3CImJ94BGUD8wPM7Pri9phrVYfnsyPgC9FxGcoJyZA5xdZH6MkCl88KGFRR+IcUe/r0sQpksM/t6rNeR1wbkR8nSX/5y1OfGeKJouL1lkBczPzAxGxM2X6+dOADwOfbdEG4C7AzxpPeZ9Yo3KJ+zqMO2xGXNBn5u0WmelSRDyUMpLzScA9gJPp4QKvZx9uHG9XytTrC1i8cNOuXQacIcnhPp0VEWcCBw/qDnctIt6fZdHiLzD5aK8u96m7UTq5Xj/JfU0utDLzRxHxeMpghlnAD3LJRQG7dJ9Jtt2vy4BLKbd3xmB7oxFffRy/Z4LHTrKtVQ3czi/op9DbaO2l6Dp5NKjTf2H9Guj6Wuw2PXcGfJbymn+SxjP7+njemXl2/d6ylOJErfepg5rGvdXVpsfFJinrej0TODsXLwjfynOAzTLz2sZxZ4K/AT+JiJNZ8n1ujWlNLSKeSUmKnkPZWTw4Il6amcc3asLFwLcj4niWfPO2qDH9qPr95UPbOr3IyswP19HR50fE4PnOA/43Mw/sKm6NvXGXf/8O+mX9gqWXkhlZETGH0nt8u1HzHXgfkMDH63TIY2sb9qLUoG1x4tvHlPfJalQOtOqA6e2CviYu3kpJDg/qwL67USLjLEod+Tdl5ukN4vVqKcmjz7dMHtXOjz7q3Y6zjYHnAe+NiHWAQ4BPdZxMOqN+/+qUv9WBzPyv+v3xrWMPRMQbgY+1HHUVEf9FWeBx84j48dBd61COrV2arNze4Harcnu9lazpQ0Q8B3gusHFEDC9Avw7tZlt1fkE/hd5GawN/jIhnZuaX4LaRjld2GTAz39nl37+D+uwMmJ2Z720cc6C35x0RZwA7TCgbc3xmTtYhNd2a7lNz8QLNz8vM/Yfvi4g3UBYl7FqfSfErMvOsHmOPY1IayvlRp+dIJqZH13uAR2XmxQARcV/gKwzVIurYPOBXwBZD25okj/q6yMrMt9QpHg+gXGT8vNZ2G1l19O4zge9n5ikR8WrgyZQd17t6bVyH6lTBT2XmBVFWQf4BJamxakTsnJkndBj+aUxeL/BgyuJVnV/oZObRXceYJObGrWNOos8L+o9QjtmvqbdfQnnN92gQ+xHAE4C3RVkA8vuUsgdfahC7D4Pk0dJ0ljyaIeUVxlKW9Rk+DXw6yorznwX2i4ijgf+ptZinO+aJ9XvzfeoyaoqTmRdOdf80uQdwYU3YHZKZP2oQ85vAJZT95/Bo8WvpeMHomVBur4/3Ws8uppQpejhLliu6lnYzfzq/oJ9Cn6O1Xw2cMFRe42Zgx9aNiIhTM7PV6HjotzPgzIjYMjM73ZctRZ/Pe63hcpK1bEyThSd73Kc+n9snoSfbNu0y87f1/3ufzDyn63gTfCQi/gf4Mkt29LU4ZzkzIo6jdMIMxx75c/MWnX4mpkfXXwZJaYDMvCQimpXyyMzdW8WaKMpifHsA983MN0bExsCGmfmDrmPXRPRZtR1703al9T4cCjyIUtv6N8DqlJFf2wGHATv12LYu/TuL60LuQlnkYwPKNOAjgS4T07dm5u2m52VZ7LLJlKba0fVJYKPM3CQitgaekZnvaBG/Lz1f0G+TmVsObkTED4CftgicmT8GfhwRn6bUaXwTZRrfSNaYHiSPIuLNlM/2EZTOxpfQ/YI+e7D08gr3YDzq2PUmIv4FeBnwAsqshI9TOmVOpiwC2lXcyUp5/A04Eziqo+mqU9UUXwRs2kHMJWTmqyPiTZQyNUdExD8pI9WPy8xO6ppn5m+B31LOXQCIsrDrXSc7to6acTt+Z+ZPKbWGv52ZvZQZ7HkUby+jtSNiNmUf8gCWXGC0j89YkwTlkD47A7YFdo+IZMnXu0WN6T6f9+yIWHMwICwi1qJRnqv1PjUingw8BdhwqNMHyiyQJurgicMp5WI2joiHAW/PzB0ahN8IeC3wIpas89z5OQuwTf3+qqFtY1Fjug5MOgC4d2Y+NiK2pAyCPWy6YpiYHl3frBfVn6CcDOwOfLnVVOQa503Appm5c0TcD7hfo1IiBwB3A7amjCxdSCmS33ThB0qdrVFPTD8GeCClzMIVwPqZeVNEHEHHI496dmNmDpIIj6NcRP+TUuah6/3qajHJ6sP1JGxux7EHPgq8m1JWBOA8ykjDdzSK34ueL+hnDZ90Uz5zTUrmRMTBlBrT8yi1jt9Sv4+6p2bmo4duf7BOFz2o68ATZ/5ExN2B73Udd5xFxImUZOXhwNaZeXVE/C4z7x0Rz+84/B8pU2OPq7efRzmmPhd4MGXk4bTKGVJTPDP/Uc8ZrqScq70J+J+IeG1mfn7KB6+AiPgspYPtJkon3/oR8d7M/GBXMYdiP5jSef9gho7bmdmis28sj9/Aj1rXkB9ocUE/hV5Ga9fBEm+pIwlbjGScSutyGn2WbnlNgxhL0+fzPo6S+/hovf1y4JgGcaH9PvUmFs/sG56ZfQWlpGML76Qkab8BkJk/iYjNGsXeizJS+4pl/uY067P02QzwMcrr/Yp6+yLKZ8zEtJbp7fX7/0zY/gHa1LH7KGUH+ZB6+/eUg8bxHccFeDxlZNM5APXicl6DuBONQ53lQYL27xHxqzoVenBC2vXIwj6tEhHzKfUJH0u54BjoOjn8OeDoKAttXgtQ66EeTqMFGIF1MvOkWrpmHF7vgT4v6I+hTCH7LGUf/nzgU10GjIh7Z+bvKJ1MB2Tmr4fu25qyjx9l60XEfXLxgrabAet1HHOjiDggM1872BARdwO+C4zbFPzWPgV8acKIvlkAmfmgyR8ybR4MPC4zbwSoidqvUGbnnNdxbCLiicD9M/PgmkRbd3jWXYdx70ZJDu8B/BjYJTNPi4hNgFOBzhLTQGTm3yLi2ZSOttcCPwQ6T0xTZpu9hXLu8G/AKymDKFoY1+P3xrSvIT/Q+QX90vQ8WvsnEfHwOuuqN5n5iNYh6al0S/a7CGCfz3u/iPgD8AzKcfvwzOz0HHlI031qfY1PjYgvZuYFXcW5A+34Y0QMb2rVAfTb1knpiNgkM3+ztBJojcqI9G2jzDwsIvaEUv5uumdqm5geUTOgjt0WmfmiiNi+tue6Oq2rhRsyc9FgZ1nj9pEk3mfZv7LSmxsR96f8f4d/hjK6clQdBpwN/BX4fdZVoSPigcBVHcd+F3AUcHlEXFK3DWrIv6Pj2AO3RMSq1KnnEbER0Hpl5D70dkGfme+PiJ9SFj+cBeyTmSd1HPZ4ysjRI6IsEjY86+TjlFkpo+zNwA8j4ux6eyvKomldeiZwckS8PTPfOTRS+ujMbDUSZixl5mQde60WVr0bS5aJ+Sdwr3ri3+nFXpQFCJ9GKRVzMGXxqiOBR0/1uGlyLuV49ujM/P1gY70A/GTHsVet37cDvl5Hbrc6js3LzG9HxOx6gf2WiPge8P4Gscfy+J091JAf0vkF/dL0PFr7McDL67nqdYONjcpKEBFPoQyQuu16JDM7X/+mz86A2umyD7d/3k/oOnZfzzvKekfH1zISfXTg97VPfUpEXFY7WD9NGcG8V2Z+s0HshbVjefCcH0e5Jm7hx9G+zvNHKAMFJiuB1qqMSN9uHr4REesyzfk1E9MjLCLWoyxatQj4YWb+pWH4JZI1dcRyq8T0zyJiZ8rU940p00JP7zLgUnrQfj/YPsI9aWuwZF2l4Z9bXdA3l5mHRsRZlDpXwycAN9PxNLrMvBnYJSLuQ0mUzQLOGYzqbORQyqIT60fEOyj1Qd/cMH5fer2gr4nok6LWQ20QcviEY9Up7htJmfmlWrpjW8rzPTMzO+14qsmxfwe+G2W9hOdRagy/bxkP1XJa2giYqtV58qnA1+rF5SLK2gVn1BJNXY9C2olSRuTHAJn5++h40aiIGIwcfS9lH/qM4ZFXmXloZr59ssdOowsj4puUtSHeGGUh41YGo/L/Ust6/B74l0axx/X43VsNeRpc0E+ht9Ha9FhWIiLeR0nUPZCy7suOlNe8y5jPycwvDO3flpCZh3YZvzqSUjplc+CtlNkoZ0/5iBXU9/POzFsiYvWImDVUZrGlvvapu2XmARHxeMo6R3tQSs21SEy/kbJf2aR2qt6XMlq9hYfW783qPGfmv9fvM6IEWk++GBGHA/MjYjfKMeXI6QxgYnpE1ZHKx7B4CuiWEbFLZn6rURNOi4h9KaNoH0eZItnlgnDDXksZHXAP4EeUkaR7dxzza5Sd4izg3pTVvqEsuPE7YCR3ZJm5cd9t6EtmnkVd6HJoW7MpbDUR3TIZPRz7UxHxa2AHSufEizKz086fGaK3C/ropx7qoqX8PNntkVRH0Z3YKt5QknRvShmDrwFfGYNOzj5NtQhgJwvwTeKVlITZsynnEScDh2VZu6DraejXZ+Y/J0zJ7frzfTDwE+ACbp+ga7VveRGwPfDTzPx77Wh8Y6PYn62DR/YDzqCU13tbi8DjevyOSWrI17t+EN3XkO/8gn4KvY3W7rmsxNMpnQ1nZ+aeEfEuSvmWLj2IMopzm0nua7Vfu09mPisidszM4yLiS0x9jJsOM+F5/4iyltZnWHJ0fueL0vW4Tx10cD4eODYzf9Bqdnpm/rgmxB9FOYb/IDP/2ih2b3WeI+JJwFmZ+bd6e13K8WTk193JzA/UgZ/rUmbZHZSZ01rH3cT06HoP8NjM/AVAlMUHjwFaJabfDLyBUjNvf0pyuMmIr1ov7r/qVxODHrSI+DBwxmBKcJTahaM+3X3s1NHSSzvZWpSZ27ZsTx8y8wzKBfXY6PmCvo96qPOGyvMM/wyjXaoHgDrl+XDaLlA2fAF5HaXMwHb19rhMF2xqJoyAqQnoj9Sv1i6LiEcDi+pF7b7AzzuO+WJKx94DKVOvj8vMazqOuYTMvJ6hdU8y83Lg8q7j1v/xKTUxelJE3JVS2qNVjemxPH4zeQ15oPsa8i0u6KfQ22jtPstKUMo63hwRiyJi1cy8PCLu1WXAoVkee9bSMbep//cWBjNsbqr7lmuAe3YZcIY870fV7y8f2tbpKNphPe1Tr4+INwM7A/9aZ9mt1mXAiFhj6OY/KbO9brsvM//RZfwa5yRK5/bXehgh/wGWzOtcS7kOG4tcT2YeCxzb1d83MT26Vh0kpQEy86I6Bb2JepH1nvrVxNKmEA00mkK1bWa+eijm/0XE6xrEVVuTvaabURYz6nph0d4sIyHfrG5gn3q8oO+jHupYluoZ8lEaL1A2E5Kkaq/WgX0V5Thy27l5Zj63QfhXUZJ2D6Is6Hs65UK3M5n5SeCTtdzabsD3I+JnwLsz82ddxh6oJTQOo23H02Btgk9QRxfW8+V/dhkTPH5TEnRrAb2MdOv6gn4KfY7Wbl5WYsjCmkT7AWXB8CuYkKTv0CcZ2odGWSz9JLqf/QJwcU1If4YyeOGvNFhAt+rtefcxinYG7FN3o3yeX59lIcLN6H4fcx1Tn/+3uAY+glIm6KC6b/v40AyYri1RLqYez0f2uh8gIr7A1O/zaTtPNTE9uq6KiN0y8yiAiHgR3S/KRkTsP9X9mfmGDsMPphCtT0nefLvefiKl3lKLxPQaEfGYwSjKOgppjWU8RiuZ4emJURZ/eBvwH8CH6H6qYJ8GCfmnU+pyfqLe3h04p5cWNTADTj6h1EP9FhA0qoc6zqV6qj4XKNN4+SLwC0oN1NuN6OxSZv6RsojSGsDszLxuWY+ZxtiXRsT/An+kLOz7LaBJYppyTti042nILyJi48y8tFE8GNPj95DmI91aXtBPEaPP0dp9lJUY2ImyL30dZYbZusBzGsX+U0Tsn5lvqPvVr9KoUyIzd6k/HlDPXdeh1AJuobfnDbeN0A+WHJ1/Woche92nZubFwGsiYkG9/StKeaguY84GqCO1b6IkiWcBL2HC+mIdtuFLwJei1B97JfDzKOtFfDgzu+74WhgR22bmjwAiYlvg7x3H7NtX6/eH16/B8eMFlMXZp42J6dG1J3BsRBxGOSk6j7KYTtcGH87NKMnhL9Xb/0mpmdiZzNwdICK+DDw4M39Tb29CxzvqIa8EjouIv1Onv1NOjjRioiwO9UbKCJAjgPtn5rVTP2rlNkjI1/rKTxj0GkfEVykJlc5XO+9JbyefEXHvzPwdk9dD/UKXsXXb6Ko+FijTeLlLZr60r+B1pNVmwJxBrekua3PWKcfbU/ahW1DqqW87OG9rpM+OpwXA+VEWVx2uh9pZonKMj98DfYx0a3ZBP5UeR2s3LysxkJl/Grr57hYxh+wNfD4iXkvp9PpaZjYv09RD7fjenndEPI/S0XQXSkmm+1DWY+ms46nvfWpNin4emA3cKyIeBry00bnEUzPz0UO3P1iPZwc1iD3RTZT1QD4VESdlZpfrir0BOD4iBuXOHgA8s8N4vcvMowEi4oWUMsHX19tHUEr1ThsT0yOq9po9IsqK7rNa1a7LzHcCRMTXGVpcJCLeTakj2MLGwxc3mfmbiCVX9elKZp4eEZtSemxnARdNrLellV9EvB74f5TE4IMy8889N6m1e1I6Xa6vt+cCG/XXnG71fPJ5PGVfen1E7DsYnV3rJT6LhuWSxtDnoqcFyjR2LoiIDTPzD60DR8R+lNFOv2DxaO2ua3P+HrgCOIqy/1wErB5tF/nss+Pps/VrsGh2S2N1/B7SfKRbywv6iWbCaG2WLCtxJqWMynkN4lKv+95MSVAOl0fqbIbbhPq7L6OMVP4ucHDX9Xcj4iomf71nUda+2aDD2L097yH7Ag8FTs7MrSLiybRLGPa1Tz0AeCq10ykzfxIRrXIt60XEfTLzl3Bb5/Z6LQJHxDOB/wbuRpml/IDMvC4i5gC/pHSQdBF3NuWY8QDgkSxe9LHp+hg9uieLOxuhdAhMa91+E9Mjqo5G2QO4b2a+sdbx2zAzf9CoCfcerveTmVfXNrRwdUS8Ffh4vb0H0Kr2EJSToMdSThBuAi5qGFttvJ9yUf0o4OsT+z3GoFbj54AzI+Jz9fZzKb32o66Pk8/hpMXEdQJaJzTGSmYeUH/sZYEyjZW7AD+LiO9TRv4AzZJHzwE2azzj55+Ui9i9KdPsh/dlrRb57KXjqZZ4eyGltvUi4HzgnQ1HN47r8Xt4pNss4P60TVx1ekE/id5Haw/KSkTEkZT63rfQbgbrF4BPUzq/WpVHGtTfnTX0/WHA6+vtLkfoP6zDv70sfT7vgZsz88qanCQzv1UHk7TQ1z51tcy8cMI1aKvBcG8GfhgRZ1Ne74dQZuu38GLg/Zm5xEz8LIudvqqroIP1ITJzGxotqjnDnErJeQw6P17I0OKX08HE9Og6gNKTtDWl3MBC4EDKyUkLv4iIj7PklPdWCdpdKVNJLqi3v123da6Oing/i2uo7RsR+9RpdBodT6EkJSfW4lyLJS8+RlJmviUifgQ8jnJC8pbMbFU3sE99nHwuWsrPk93WNBrq4N08M/eJiI0iYouGHbwaH5+pX324onUZqplQv76PjqeI2BE4mDLTZVAi6pGU0nt7ZebxXcaH8T1+Z+aZdUR+HyPdOr+gn6jn0drHAPtn5vn1s/VTSk3v9YE/sXjgUJduzswPNIhzm0H93YGIuAvlc/brzPxpx7F/OxR3bUp97ya14/t83kNurOdsl9Tk5KWUkkmda71PrcnRF1Oe81rUa4G6f7thygdPk8z8UkScTlnYchZlRkST9Sky8+lT3Hdix+F/Ee3Xh5gp/pvS+fBsymv+NeDw6QxgYnp0PR7Yilr/tI5Ynjf1Q6bViykjTw6mvHm/TUdTKyaqU2Gf3SLWJF5HmXb/R4CIuDultraJ6dGyPZCZucTJdUTsRRkZc0ovrWqoHvxPjIi5wLMj4pTMfFLf7epSTxf08yLi/jXe8M8wtMCLOjHcwbsP7Tt4NSYGSaSWIuJp9cczI+I4ygjD4dHaIzkiaFAuZCn3dV1G5G3Av2Xmz4e2nVcv8D9FKd3UuXE8flezWTyqc/Yyfnc6dX5BP4U+RmtvnZnn159fCPwiM58SEfekjORukZg+KSL+LTNPahALmDohHxFvnnjN0FEbnkZ5b90CbFzrDr89M3foMGbvz5uykO3alHO1j1IWfXxFg7hA833qVvX7e4FvAhtFxFGUut4v7Cjm7WTmVZTn/IjalmdTZn91qpbpeQt1XYyh9rQ4N2++PsRMkZn/pOT1DgaIiH8FDqOUgpsWJqZH1w2ZuWgwvaPWxWk27buOvhmMBiEi7gW8mg4XoIiIKQ9AmXloV7EnxPnj8M8TyzxoJDyNMhNhokMoJ2RvaNuc9urJ7h7A84Af066GfK96uKBfgyWnjA3/7IjpbvXdwasRFxGvzswPR8T+k92fmV0eS14/4fbwFNiua0z3aarOxK7LiKw+ISkNQGZe0HLfMo7H74jYnlLO4lzK9dCWEbFLZn6r69gtLuin0Hy0NkuO2nw08GWAzPx9RLQ6bzkFOCEibqUk5juvtQw8dAYk5N8JbEOp8zyoO7xZxzF7f96Z+Z3649+A5p1sfexTM/PrEXERZbAUwP9kWWOscxGxAWU2+ouBTYC3U8pTtfBZSkf6J2lXpmc49mcbx5wx6oDLXSmVEBYxzTP9TEyPrp9FxM7ArFrb+U1A09V5I2JV4D8pO+qH0f1IkG3q9/WB7SijtAGeSOlRbJGY/lVEvJPSW70IeCnw6wZx1datmXm7g2Fm3lJPgkdSrcf5QsqJyKqUEV5/z8yn9tqwhlqffM6EKe9jrNcOXo2FQQKn00XYJpOZj28dcybIzE16DL9aRKxaE5W3qR2dc7sM7PGb91BKWvwCICLuR0lUd56YrvE6vaCfQi+jtSNiQ+Aaygyztw/d1aoD5gjK//oc2iWvrh/6ua+E/GSDorouMdj7846Ig4B3ZOZf6u31gLdm5ms6jNnXPnWLiLhy6PbgvPSdddZPlwtdPoNyDfRo4IuUzrVjMvP9XcWcxOzMfG/DeLfpY3Zb3yJiFWAHyvv8EZTP99qZOe1rLJmYHl2vpUxDvgfwI0o9sSalNCLiIZQ37/Moqy8/GNgoMzs9MGbm7jX+l4EHZ+Zv6u1NaLfYxsso9a0HPcffot1iAGpntZhkpela66vTi8ue/YHSwbXnoM5uRLQY8dMrL+jHVu8dvBptmXl4/f7OvtoQEWdk5qOXtW0URcSDKImzRcB3Oy7jAXAC8KmIeFlm/q22YV3K1PMTOo49lsfvIasOktIAmXlRHUDTmZYX9EvT02jt/SjXfzcBZww+V3XK/+86jDvsL5n5f41i3WYGJOQXRsTdWFx3+HHAX7sOOgOe92MGSWm4bYbbdh3H7GufejFl5m4fjqcM/Lt/LeVBy06X6syI2HJolH4zURbX3IOy2ONt7+3M3KN1Wxr6A/BLyqzw52TmDRHRyaBLE9Mjqi7g8l/1q5mIOAdYkzKKcOvaW/qbrpPSE2w8SEoDZOZvolE9jcy8Enh+i1jq1eeAoyPixbVsDRGxDmUUyhd6bVm3PgzsDOwXZZX15if9PRn3C/pxNVkH72t7bZFGUi3jsDO3r5nYoizUGhPasgpw1wZxexURrwT2pYwgnQW8KSLek5kf7TDsmyhJ6Msi4pd1230o5w2TlQebTuN6/B64KiJ2y8yjACLiRcBVHcdsdkE/ldajtTPzC7Vu+t0p5e0Gfke769LjI+JllAWqh2vn/2PpD1lhMyEh/0ZKGY9NIuJ7wH2BZ3QccyY871Um2dZpxxP97VNvzKHFLhv7d8p+5KKI+AoNy0BFxI/rj6sCu0dEsuRnu0WN6cMp52iPpxzLXwCc1iBun06lVB/YHricDktBmZgeYRHxRG5/kdN1OYubKSNG5w7Fbd2TdnVEvJXFNa32AK5uETjKisAvpdS3WkQZMf3xzLQW7Gh5F3AUcHlEXFK33ZeSuHpHT23qXGa+ISLeROmp34OyENwqEfH4zPxur43r1rhf0I+ViHjs0M1PU6Z7Q9mnP5TRPwlVe18AVqN0gDTpyI+I11PWQ1hnwrTgNRiPBZtfDWxVBxQQEQuA71MuNjuRmTcBL64l37agJMR/1iLJMMbH74E9gWMj4jDKvvw8YJeOYza7oJ+o79Hadb2dP07Y9ocWsavBmkbD172LmDyBOS1mQkI+M38cEY8HHkXZv/wgM//acczenzdwVkR8GNif8rxfD5zVZcAe96k3dfi3p5RlUeSvR1nk8oWU53zPiHgXcGxmZofh16ckxfv08MzcIiLOz8z9IuJQymC1kZWZz42Iu1COl/9bf14nIjbNzGntaJ21aJH5slEUZXXWh7Fkba1FLaYaRFnx/MWURM5FwAMoo5i77KUejr8hpZzGoH7it4HXtDghiogPUBbL+mTd9CLgvEajntRYRNyH8nrPAs7JzF8u4yEjpV7IvwjYDVg3M+/Zb4u6Uy/yBiefj6Nc3Ow4Jhf0YyUihi9m7g8MpvcPFk9qMSpDYyQifpGZ928ccx3gLpQp/q8cuuvazLymZVv6EBGnZuZ2E7adlpmPXdpjRsk4Hb+H1ZJrs+rM0hbxBhf0u1M+b+sAD5vuC/pJ4v6JxaO1vzQYrZ2ZXS7uKfUiItamJEn/vW46EXjtoGRSozaM6z71odS1dzJz/Q7jnJuZW3X19+9gG36cmQ+PiHOBf83Mf0TEzzJziz7b1VJEbEXJ8z0fuCQzHzldf9vE9IiKiIuBB05cYKVxG+awuLf+0cA3MnOnvtrTQkScTylhcnO9vSpwdmZu2W/LpG5ExH0z85KIeHhm/njZj1j5jevJ5ziaCSfCGn0R8TXg+a2SZZPEnwMEZUThxYNzmFFUB09ASRZuAHyi3t4N+F1mvqePdvVh3I7fEbEZt59J+vWG8Tu7oJ8k1ucpo7W/ChyZmaeOW2K6rg/yCMp+7YfDNYhHzYRZL8MGHeqdLYinxcZtnwoQETtl5nERMbfL0q0RcU5mbt3V37+DbTgJ2Iky2+xRwJ8pM1Ge3Ge7WouINYF/Av+RmZ+frr9rKY/RdVnfDagXNl8GvhwR96BM+Wii1pR+MEsWpv9Ug9CzWLJ0ySIWr5YrjaLPUTpjxuIEDCAzr4qIEzLzgxHh6NnRZu+9Wvgb8JOIOJklayZ2Ptuqjnb6EqWEyCxgTkQ8KzPP6Tp2T7424fYTh35eBIxNYpoxOn5HxP6UDuVkaCYp0CwxnZnnRsQ+lLUK/qPjWM2mX89EEbE9pQzXeXXTlhGxS2Z+q79Wdeo6StnKTwInsfg9PnYi4rgeB8KNzT51yOuB4xqsJ7bFUjpgWna+PD0zb4mIN1PqS68LtMgvzTSn106CaUtKg4npUXYx8O2IOJ4lL3K6rjF9O0PTJfdvFG8vSi25e1DqSz2GUtetxY7jZOAbtZTKIsoInJMaxJX6Mq4dL+N48impG1m/+nAQsHtmfgeg1if9CPCvPbWnU5m5Sd9tmEHG6fj9n8AmrcoKTqGTC/rJ1JI8HwE+MjRa+8cR0elo7RniPcBjM/MXABFxP0qieiQT05m5aUQ8jnLd+RrgeOCowUKEYyZ6jD1O+9SBVs/5YkpJxT7dNSL+VteLOCYiVqOUZxo3nbzmJqZH1zzgV5TFVQb6Gvm1duN4LwUeDnw/M7ePiAdRVl5v4Q2UpPgzKR/aLwNHNIot9eH7fTegJ+N48jkWhqb6A8yLiPsz9HqP6YWeOpSZ7+wx/JqDpHRty3frNM2RVz/rj6ecH38nMy/quUmtjdPx+3f0uGjYkF7OHVqO1p4hVh0kpQEy86JaXnFkZeb3gO/V/ffz689vz8zOFnSdofo8Px+nferAhxvFubHFQsHL8FXKOcPgWLIqpZ75I3prUT9+08UfNTE9ojKz71VLhzVZYX7IDZn594iYHRGzMvOCWleuc5l5K2VF93E7CdAYqdMhjwHIzP+euG1MjOPJ57iYONV/eKr3ImBsanSqjYjYADgAuHdmPjYitgQelZmHNQj/j4h4/GAh14jYDuh7VGnnIuKFwPtZ/HnfNyL2ycxje2xW5yLijcDHMvPqwfF7TOwNnBgR36LfmaSdXNDfQc1Ga88AV0XEbpl5FEBEvAi4qt8mda+ODN+NMkPgG8D3+mxPT5647F/pxrjsU2ut5YOBrw0+Yw3MhI7FucOzbmq+ad5UDxhFmfnMLv6uiekx0EetpYh4RGb+ECAzW/ci/aP2iv8UeH9EXAas0WXAWrtuqVrUiZQaei1lSuSyto2scTn5HEdO9VcPPkZJIryi3r6Isj9tkZh+NfB/ETEYRLAa8KwGcfv2Oko5pj8CRMTdKeXYRjoxTSlzd2GtZ37wGJWjeiPluT+EJWtMdy4injCYlTC4oB/e1tA4zfTaEzg2IgYDhc6j1NseSRHxcmBXSqfL0cBWM6BsTTMRsQZldvSmmfmCmqC/X2Ye3yB2AG/h9gurjvIaNEdQSsYcFBGHAx/PzKu7DNhDPmlSEbEgM6+qP28AzO65SU1ExIeAdwF/B74LbA3sOZ2D0kxMj4c+ai0dFhG3AIcAn8nMG5b1gGn0CsqF1d7Aeymj27peePHvk2xz4UONlIh4GLAtsH5EvGLornUon7mRVk983wo8ifL5PgV49zid/EvqxEaZeVhE7AmQmTdFxK0tAmfmWRFxH8q54izgosz8Z4vYfRskpQc/l/zCaMvMV0fEmyhJrI9FxD8p5+rHNT5Xb+2hwOaZ2UdZww9SLuKHfYDSppb6HK3dVGb+CnhERKwFzMrMhX23qWOHAOcCv6fU4X3a8P4sM5/bU7ta+ShwBfDgevv3wHGUWttd+yzwBcrCk2Ox6GRmfgn4Uk3KvxL4eUR8E/hwZp7db+s6dRDw/YgYrFu2K7Bfj+1p6UmZuXdEPB24HHgeZUapiWndKc2To5n5kIh4DCVJ/J6IOAb4aIuVoDPzgvrj34GXdB2veg9l2tQ1mXlKRLwaeDJlMaN3NWqD1LWNgIcBawLbDG2/ljJ1cNR9hHLcfE29/RLKVLY9+mqQpJFw8/CNiFiXRuduEbE58Lta9mx74OkRcXhdOG2U/Soi3gkcTulofCnQ+TnqTJCZ/4iII4ArgQOBNwH/ExGvzcxRLfNwMeXc5bpWAWuHz+bA2hExvGjXOnQ8k3OoDTNltHZTtVTPVwf7sYi4K/DUES7VM5NKePZhi8x8UT2GkZnXRUSrkayzM/O9jWLNVDdRRut/KiJOysy9+25QFzLzyIj4NaXzZxbwksw8redmtfZY4EuZ+YeImNaOXhPT46GXWkuZeTpwekQ8BPgK8P8i4hvA67tYYKbnchqHAA8C5kbEb4DVKQXyt6NMxW1aSkXqQmaeAJwQEU/JzG/23Z4ebJOZWw5uRMQPKCWDJGlFfLFOh50fEbtROvWPbBT788A2EbEJJUn7TcpU8Gc0it+Xl1FGP53P4hkwe/baogYi4m6U57k7cBawS2aeVl//Uxnd+sPXAmfXEibDNaa7vDb4V0qn/d2A109oy+s6jDtspozWbu11mfnpwY3M/EtEvI4RLdWTmUf33YaeLVF/uNb9bZWYPjMitszM8xvF611EPBP4b8q+7RDgAbUzYA7wS8qs9ZE0tMjofTPzkr7b09CVEfEx4CnA++prPa25ZBPTI2ZCj/zwdgAy8+uT3d9RWx5Dmd6xLfDx+vUESpJ68w5C9llO4zHAAykjIK4A1q9TcY+gXPRIo2SriPhJZv4FICLWA/bIzA/03K6uzYqINTNzsK9ZA8v1SFpBmfmBiNgZWJcyEueghovJ3pqZ/6zTMw/NzP0j4rxGsXsREasAr8zM5/fdlh6cCxwFPCYzfz/YmJm/iYhP9taq7l1Uv5qpycKjhxfha2UmjNaegVbpuwEtRcSpmbld3+1o5LSI2JcyQOxxlHVvTugyYEScRckzrArsHhHJkp1eo1xj+sXA+zPz5OGNmXlzRLyqpza19jlu3+k3yl4A7Ax8IjOviYiNgQ9NZwAT06Pn9VPct4hSC6ZzEfEzYCFl6vsumTmYpnpMRHS1+ESf5TRurHXr/h4Rv8rMmwAy89aImAmryErTaafMfP/gRmZeHREvoIzCGWXHUEZGfJayP30+8KmpHyJJy1anmPcxmm9eRGxEGSG9b9020h1umXlLRDy273a0VhPy78rMSRfVzMy3N25SM5n5zh7D/zoi1qojCl9MKYX2/szssubzTBit3ac/RsQzay1cIuJZlNI142TtvhvQ0JuBN1ByD/tTBsG9r+OY4/A5mlRmPn2K+05s2ZYejfR50kR1wccDh25fSunknjYmpkdMZj6+7zbUmk67Z+ZPJrs/M/+to9B9ltOYGxH3p+ykhn8GmNdhXKkPkx2MR/54kpnvj4ifUhY/nAXsk5kn9dwsSSupnkuQDRwI/Bz4dmb+JCI2Bf7WIG7fvlan9n+KobrDo7yYbU3Iv4ByTjxWJlm8+FvAexq93gcDD46IB1KmuB8DfIIyi7QTfY7WniFeTSk9N9jH3gzs2GN7+nBj3w1opS7Y+5761Srmqa1izTR10cO3AJsxdP034qPEJ/p+3w1oKSKuohw7l5CZG0xXjJFPJIyziFiHssr6bYnRFgXa6yjhj7Lk4mgt9FlOYw2WHI0+/HMfK4BLXbokIl4L/C8lQfv/KDXFRl5NRJ8UEasBd+27PZJWaq8DfgKcBNzSRwMy8wjgiKFNv6Uk70bd/kPfB2XfFjH60/2/HRHPzsz/67shjfW5ePHNmbkoIp5KWQj+IxHxnAZxoZ/R2r2qA6Q2BR5AuQ6eBVyUmb3sY/uSmY/ouw2t1JrSO3P7RGnnnbsRcQaww4SFNo/PzFGelfNZ4AvAJ+np3KVvmfnffbehsYcN/Tz4vP1zOgOYmB5REfE8yoIXdwEuB+5DWaSrVS2cX0TExnWYfyu9ldPIzI27/PvSDLMXZcTPeykX8j8AXthrixqoJTz2pCyy8lNg/Yh4b2Z+sN+WSVpJPRF4EWVG15eBozLzwpYNqCNJ3wRsmpk7A/cF7gcc37IdrWVmq4WxZpr/BtaLiOspa7PMAhZN56inGarPxYvnRMS/As+m1GaFdh0gzUdr961e972lrqvUdH/atz4TtD37ArAa8CPajxRfa5CUhtsW2hz1MiqzM/O9fTeilYj4AlMMNMzM5zZsTi8y87cTNr0tIr4D/M90xTAxPbr2pay4fHJmbhURTwae2TD+AuD82os4PEWyyw+u5TSkBjLzD8ATImLNenuyhUdHUWTm3yLi2cB3KIur/JDSCShJd0pmfhf4bt2XPgc4OCJWB16fmWc0asZHKbPMHlJv/x44jhFPTNeE/O2McimP6mHL/pWR1OfixW+llBv8Tmb+PCI2p90ssz5Ha/fpJxHx8Mz8cd8NaazPBG2f7pOZ9+8p9uzhfUtErMXo59jOjIgtM7PrGekzxVf7bsBMU8u+bTydf3PUPzTj7ObMvDIi5gBk5rci4h0N43+2frVkOQ2pgYiYRZn+et/MfGNdmXfDzPxBvy3r3Kr1+3bA1zPzHxFxa58NkrTyy8y/R8SZlGnnLwDu0TD8Fpn5oojYvrblujoVftRdx5IlPAZGupTHJKOexkVvixdn5gnACUO3L6bdYKE+R2v36THAyyPiEpYcIDXqNXD7TND26dcRMT8zF/YQ+zjgm7WMKcDLKfubkRMRg46eVYHdIyKBGwb3j+rnq9bsH2sTakzPprwHXj2dMUxMj64ba/Lokoh4FXApZRRzE318gC2nITVzAGWl962BN1JWwT4QGMkTkiEXRsS3KMmjN9aRjZK0XCJiXUqCbFfK6LajgQc0noWyRKmzOhV85BPTw6U86nN+AbB+fy1qIyLuRamr/WCWXINm094a1UCfixdPsvDiKcC7G43O73O0dp9e03cDetJngrZPf6OMkj+ZJROlnZcwycz9IuIPwDMo+5bDM7NJp1cP1gd277sRrc2Qhar7Njzb6mbgj9Ndt9/E9Oh6C7A2sA9lmuY6wCtaBa8jtfegTA0dPvFtsciIpG49HtgKOAcgM6+uF/YjKSLunZm/o9SC3R74aR3huBFl2qQkLY8rgJ8DRwG/rtu2KwveQ62R2rXTImJfSgm0x1FKFJ0w9UNGS2beABwZEaeyeFHEUXUkZUbjQyi1aF8O/KrPBnUtIlYBfpiZ21AWGm2tt4UXex6t3ZvMPLXvNvSktwRtz7J+9RO8DMgbh1G1fxvTz9a4lKycVD2G/l89hnbGxPSIyszv1B//Rj+rqx9OeX89npIYfwFwWg/tkDT9bqg1C4HbVkBvVauxD8cDW2fm9RGx72CqWmZeHhHPAt7Ta+skrax+RBlB+axJ7lvEkiXJuvJm4A2UmS/7A18B3tcgbq8m1JieDWwDbNhTc1paPzM/ERGvycwzI+JHlBG8Iyszb4mIP0fEvNoJ0VpvCy/2PFq7NxGxDmVw1kNYcoDUyC76WPWaoO1LZr6zr9hjNhhvLEuj9vn+mglaHUNNTI+oGbAq78Mzc4uIOL9OcTkU+Fyj2JK69bOI2JmymNDGwJuA0/ttUqeGk+6rTnGfJN1hmfm4GdCGf1I618atg224xvQtlPIGe/XaojYGpVuui4h7A38C/qXH9rRyCWV2wP+xZM3hQxvE7nPhxd5Ga/fsSOBCYHNKYn4P4OxeW9TAuCXQIuI5mfmFiJh0Vnijz/c4DcbbIiKunGT7LGBRZm7QukEtRcQGlHKW987Mx0bElsCjMvOwnpvWQufHUBPTo6vvVXmvr99viYg1MvNvddq7pJXfaykH5ntQ9jEn1m2jatFSfp7stiQtt4jYOzM/1CDOlOXdGl3Q92a4xvSYOS0i7gocSknU3ch4lKSaTymbM7wwXKvjd28LL9LjaO2e3ScznxURO2bmcRHxJeBrfTeqKzMkQduHB1H2X5OVGGj1+R6nwXgXA0/ruxE9+hjwDRaXx72Isn8fh8R058dQE9Ojq+9Vef8SEXeh1HL7RkT8Gfhjj+2RNE3qoir/Vb8AiIgdKAnqUTQvIu5PGREw/DMMTduTpGmwM9B5YpoyavInwAXcfvTmWHS4RcQTgftn5sF1JNS6tQbvyMrM19cfP11raq+dmRf02aYWMrO3Bbv6XHiRfkdr92kwKOum2hFzDXDPHtvTtZmQoG0uM99ef3x1Zl47fF9ErN2oGeM0GO/GzPxt343o0UaZeVhE7AmQmTdFxK19N6qFFsdQE9Ojq+9VeZ9e69G8mXKRtQ7tRgdI6khEPAe4N3BiZl4cEf9GmQK+BqObmF6DJWu9Dv88sif8knrRKmn0YmBX4IGURZuOy8xrGsXuXUS8kTLy6x6UJP1qlOn/j+6zXV2LiE8AR2bm9+uivmOjdkRMLHHY6UjSGbDwYp+jtft0cU1IfwY4k7Lm0nm9tqhDQwnaPTPzpuH7ImLd9i1q7nvA1ndgWxfGaTDeTcv+lZF28/CN+tkah46+wXoFbwI2zcydI+J+wP0y8/jpimFienT1uipvZt5Sv98KfLpFTEndioiDgKdSpv/uERFfpSQ33kapsTaSMnPjvtsgaWzs0yJIZn4S+GRdJ2A34PsR8TPKwmg/a9GGnu0EPAz4MUBm/r7hCLs+nQt8uD7Xo4GjM/P3PbepcxFxNPBQ4BxKTXFo0LHc98KLPY/W7k1m7gIQEUcCa1Fe8/16bVQbn6QMCAMgIuZTEqaP6K1FHaoLD64GzI6I1VmcJFyHMqikhbEZjJeZI/k+uhO+GBGHA/MjYjdKSY8j+21SMx8FrqAs8gnwe+A44PjpCmBienT1sipvRHw6M18YEWcxyQlfZj68dZskTZunAFtl5nV12vPvgC1HfeqzJHUpIjYHflcTV7PqaN7DW4xgzsxLI+J/KSO83gV8CxiHxPT1mfnPiBjeNvIzYDLzYODgiHgQpUPihxHx88zcvt+Wde6RwAPrYp+t9bLw4gwYrd1cRBwD7J+Z59cR0z8FrgXWpyz0+fE+29fAnyJi/8x8Qx3h+FXg2L4b1aE3A2+n7Lv/PrT9WtqUxHIw3hjJzA9ExM7AupQZVwdl5jH9tqqZLTLzRRGxPUDNBUzrWh0mpkdUj6vyHli/v66n+JK684/MvA4gM6+MiItNSkvSCvs8sE1EbEKZffJNymjWZ3QVMCJmAdsDuwNb1DZsm5m/6SrmDHNZRDwaWFQTeG+iLOwzLi6kTHW/D/C4XlvSxmV9BK3J0U0po8uaLrzY92jtnmydmefXn18I/CIznxIR96QkaUc9Mb038PmIeC3wb8DXMvMjPbepMzXf8c6IODgz/7uPNkTEvwLv4/Zlgjbooz3qVmYey2h39izNxBJB8wAT01q2OprxAODemfnYiNgSeFRmdrpqaGaeXb+f2mUcSb1YMGHF73WHb4/wqt+S1KVb6+jdpwMfrdPvz+s45u8p0zKPooyUXgSsHhEPAMjMCzuO37dXUaZbP4gy0u50hqbAj6qI2IIyUnonSiL+qPrzSBo6R7kY+HZEHM+SJQ47O2+JiOdRSissBOYCz8rMb3cVbyl6Ga3do+EE/KOBL8NtpXpGdkZEHR098DLgG8B3KbMj1sjMf/TTsmb2jYjZmXlrnQ3yIOBLE+ttd+STlJHbZ7O4TJBGUER8EfivzPxLvb0e5Zztuf22rInTImJfYG5EPA54LXDCdAYwMT26PkY5KA1OyC6iLIDRaWI6Ir7AFKMAxuSDK42qU1hyxe9vD90e2RN+SerYvIjYiDJCet+6resFdf4JrEcZYffaCfEWUUZ5jpxB4r16DeVa6Nb6tT5wZQ/Naun/KAn5h49DbWmWPGf5FWV2wEDX5y1vpgwKOi8iHk8pOdAsMd3naO0+RcSGwDWUmQBvH7prXi8NauM6yus6a+j7w4DX19ur9Ne0Jr4LPLbW1D4ZuIAyYny3BrGvycwvNIij/m06SEoDZObVEXGfPhvU0JuBN1A6WvcHvsI01+03MT26NsrMwyJiT4DMvCkibm0Q96sNYkjqQWbu3ncbJGkEHUgZvfrtzPxJRGxKWcS6M2O8qOvXJtm2CJgP3JURTuDU0iWXURLyr46I84F3ZOYZvTasQz2ft9yamefVdnw3Ig5oFXiGjNbuw37AeZRp52cMZn5ExCMo66KMpMxcYkp9RNyFkpj/dWb+tJdGtTUrM/8eETsBH8vMd9TFfFv4TES8jFIOa3g2xqiPUh9HcyJilUFd8YhYlbJ/HQebZeZ7gPcMNkTE/SiDX6eFienRdfPwjYhYl+5H35CZR3cdQ1L/6uIHT6Jc0H8rM7/Vc5MkaaWUmUcARwxt+i1l/9pUROyUmce1jttSZm4yfDsi1qSMGH8lpQTeSIqIHYGDgXezeB2YRwLHRcSrMvP4vtrWQkTsQ0lYDU/B3iMzP9Bh2NUi4v4svv6aO3y743I5vY7W7ktmfiEiTgfuTln4cOB3wH/106ruTbXoY0S8OTNHvbb2vIiYS1k34aC6rVVZjSspM9UPqbcHo9ZHtpNzjJ0EfC4iDqy3X8OYLCwLfAbY+g5sW24mpkfXFyPicGB+ROxGKelxZNdBI+LVmfnhiNh/svsz8w1dt0FStyLiDcCuwCCBcUBEHJ2ZH+yxWZK0Uqr1Qd9EmSa6M3Bf4H7A8Y2b8noW79dHWkTMAV4O7AN8HXhoZl7eb6s69Tbg3zJzeIHH82oS71O0f6+1tlNmvn9wo07BfgHQZWJ6Dcp7a9jgdtflcnobrd23zPwj8McJ2/7QU3NaeeiYL/r4OeAqyujN70fE3Vmy3niX9qOMTj8nM1vMTld/9qWcqx1A6YA4kbLw5ciKiPWBDSidP8MdresAa05nLBPTIyozPxAROwPrAk8DDsrMYxqEHhwE/j60bVDrStJo2AV4ZGYuBIiIg4DvAyamJenO+yhlIcKH1Nu/pySIj2/cjrE4V4uIXYF3AGcBT8jMi/ttUROrT0hKA5CZF0TEKNfeHZjsvd3pdXDP5XL6HK2t9q4f+nlsFn0cyMx3RsSHgWvrAojXAc9qFP4PmfmTRrHUo8z8J2Wx6Hf13ZaGdqaMDN+QJTta/0apNT1tTEyPoIhYBTg+M3cAjm0c/hMR8Rzg+5l5SkT8//buPNqysszv+PcWCAUOOBBsoXUp068FsUFAVEgLmkCErDYtgbQLUWgmJSIJow0rMSgqqGmVSUG7FQRZgh2GZQ84gNqCUYagYNmPA7aIwTRJo0xdQsHNH/tcuHUpiqrinv3W3ef7Weuuc87eXN7foqh77n7Ou5/naOBfA8Vk/SWWhmxqpigNUFX3JpmIgoYkjcF2VfW2UYskquq+JIue7JvG4OMN1uzVqK/yM+gK0zfQ9Yx8dCDigAt26yV52ujC+lGj298noUfmj5McA3yUrjj7n4GftI00Vi13a6uBCR36CMDoGmRfYGu6u2A2piuk9XEXzNeSnE63a3t2j+mhvpcISPKNqnpt6xzjVlUfBz6e5KSq+sA417IwPUBV9XCSDZJMVVXfn5KeDbyM7pP5nwEb0N1C9Frgk8Cbe84jaf5dn+QzdD3VpoFD6S7wJUmr78HZL0Y7WHstTCdZD7hk1FZkyIObnkX3vnUKj7+jb8gFuyuAC5K8vap+A4/On/nE6NzQvQu4EPgA3Z/zdXR3fw3SBA83nVQTOfRxlj8Dnk/X7/ZEuqGfHwNe2cPaMz9H9p91bMjvJeo8q3WAPiR50ejphaPn08BdVTXvrXIsTA/Xd4DLknweuG/mYFXN/fR8vv1LYFu6T+rvBDauqgeTnAd8f6XfKWmhOIquX+UZdBf1XwHe1zSRJC1c30xyEt2H+rvTDePrpViYZF+6C/hNR4cGPbhpggt2f0pXhP5FkpmdwlsClwLvbpaqJ6Mew68bDbukqu5/km+RFoxJHfo4yx7ADsBN8GgP+V52is8dqKuJ8dvWAXpyI4//EH+jJN8GDqyqefvgy8L0cL1m9PiOWcemefxtXfPtt6Nd2vcn+WlVPQgw6vf04JN8r6QFYHRBd2LrHJI0ECcDJ9Dt8voQcCX9DdT5MPAm4EYHNw3X6PfxQ5KcAmxHd5F5S1X9vG2y/oxa5fwrYDrJV6rqK60zSfNlQoc+zlhaVdNJABi1wuqtxeCoHdQedLWWq6vq7/taW21U1ataZ+hDVf2LucdGbYOPAM4E3jhfa01NTw++H756lGQJXY+nKeCLs54DfLGqtnmi75W0dkty5MrOV9U5fWWRJD11Sa6tql1b55DGKckJwFvphooC/DFwflU5tFla4JJ8Cvg6cDzw7+juEHm4qlZ63TJPax8InA781ejQG4ATq6rvOV8aE69/VyzJTVX1ivn697ljemCS7L2y8z208pg7bGP2cz8FkRa2nVdyzr/fkrQGkqxosvlvgG9X1dVjXv7MJO8DLsPBTRqutwCvnhncnOQM4FrAwrS08B1D12f6BXTtTK8Eju1p7eOAV4x2rJPkd4CrAAvTw+H174rNa8s3C9PDc/zocTHdX6JbRq+3A77NmFt5THDvPmnwqurg1hkkaYCeTzej4/LR6zcC3wL2T3JJVb1/jGtvRndR/zbg4dExBzdpaKZmitIAVXVvkt5u9Zc0VlNVdRiz+mkn6W043UxReub5TEsRDcMkX//ODMSe43l0rTxunc+1LEwPTFXtAZDkc8B/qqrvjF6/EjikZTZJwzC6mDucUa9GuuGHnx71l5ckrZ5NgR2r6m6A0Q7mC4Dd6HZ/jbMw/S5gy6q6c4xrSK1dn+QzwKfofm85FLihbSRJ8+TrwNyWAis6Ng4/HfXuP5fuZ8vhwG09rKsG0n3q8Pt0m0ABqKoL2iUau/tYfvjhNHAX3bX/0fO5kIXp4XrpTFEaoKq+m2Qi+99Imncfopt+/ZnR67cBW9EN75IkrZ7NZorSAFV1d5IXj3Z1jnvy+88tSmsCHAX8V+AMugvsrwDva5pI0lOSZF1gPWBRkg14rHi2EV170T68ne7nyvfpinZfpdtNqoFJ8i66P9sXANfT3en2DbqNBINUVYv6WsvC9HAtS/KWqroQIMkBwLLGmSQNw150/dSWASS5BLgRC9OStCaWJDmP7sO+aeAg4EdJ1uex9hrj8t0kFwOXsnyP6XHPJJF6U1X3Aye2ziFpXp0MvIfuffP+WcfvAf57TxmWVtUfzz7QZxsR9epw4JXAtVW1V5KXASc1zjQYFqaH60+AC5J8GniErgfMMW0jSRqIKZYf9jD7Fh9J0ur5E7rdnGfR/Sy9hq6I9jDwhjGvvePo8ahZx6YZ80wSqU9JNqEbjvaiqvqDJC8HXlNVn2wcTdIaqqpTgFOSnFVV72wU4+u0ayOifi2tqvuTLEoyVVW3JtmidaihsDA9UKNp6jsleRHdbfYH0u3E2appMElDcBXwN0k+y2O7+65qGUiSFqqqugc47glO3zXmtfcY579fWkt8Cvgb4MjR678HLgQsTEsL3ExROsl6zKpvVdUD41pzJW1Enk1/bUTUrweSPA34HnB6kl/gn/W8sTA9QKMflH9ItwPn1XR/znvO7jktSasryTrA+nQtOw4H3kT3i9iVwHkNo0nSgpVkMXAAsAXLX1SPvT1Skr1XdNxWHhqYzarqk0mOAKiqB5M80jqUpKcuyR8BZ9INEp65i3MaWGeMy66ojcg0cC/9tRFRv46k+zDiWOADwOZ0mz81DyxMD0ySPwPeDNwCfBbYD1hiUVrSPDgNqKr6NN0uo0/Co8Mg3o89piVpTVxKd7HzHWDcww7nOn7W88XA9sBN2MpDw7LcnJ0kz8YWZNJQfBjYH/ifVdXLB05z24gkeQ6wO3BbVX2vjwzqV1XdOnp6P3BoyyxDZGF6eN4BXAd8sKquAUgyvfJvkaRVsjfw7hUcP4tuGrWFaUlafVtW1UtbLDy3lUeSbXAmiYbnL5OcCzwzyUF0O9/+om0kSfPkn6rquj4XTHIh8KFRUfq5dO0d7gE2TnLyaBOPBmQ0q+AoHn932/7NQg2IhenheQHd7aAfGX1ydwH+OUuaH49U1cNzD1bVI94SK0lr7LYkz6yqe1sHqaolo8Fw0mBU1YeTHEDX/3Vv4IyqurBtKknz5LIk7wC+ACydOTjOHtPAjlX1/dHzA4EfVtWeSX4X+BJgYXp4/hL4IfBVuuHUmkcWLAemqn4NnA2cneT36fpMb5Dkm8BFVXVuy3ySFrT1kmw49xe9JM+g6z0tSVp9vwFuSHIVy19U991jehGw8+hRGpSqugi4qHUOSfPu/aPHs+mvx/Q/z3q+G3AZQFXd4d3qg/Wcqjq8dYihsjA9YKP+RkcnOQ74I+AgwMK0pDX1BeD8JIdU1T0ASTai+7lyadNkkrRw1eirhdk9ppcBP6WbTyINhrdgS8NVVU0+TE2yKXA3XW/p98w6tbhFHo3drUk2rar/3TrIEFmYngBV9RBwyehLktbUe+mGqv4yyY9Hx7YCrgT+W6NMkrSgjYYotVp7jyf/p6QFz1uwJc2nDwI3Aw8C36qqJQBJXgXc3jCXxuc5wC1JrmX5u9v8gHMeWJiWJK2SqloGvCXJlsAOdLfK3VRVP2mbTJIWniT7VdWlSY5c0fmqOmeMa+9aVdfOaeUxe+2/HtfaUgPegi0NTJK76Fp2zDUFTFfVJuNae/Te/XfA79ANPpxxO3DYuNZVU58ffWkMLExLklbLqBBtMVqSnpqX0bVB2nkF58bdo/Ig4FqWb+Uxe20L0xoSb8GWhmenlotX1a+AX8055s+Ygaqq81tnGLKp6Wl7s0uSJEmShiPJpXQftGxEV8TyFmxpwJJsVVU/fvJ/Ulo9STYGzgJeT/e+8lXg6Kq6q2mwgXDHtCRJktRQktfz+MFs42zlsc3Kzs/0y5QWuC8Bz6O7tf+vgV83TSNp3L4AvKJ1CA3SucAPgGPp3lMOGx17U8tQQ2FhWpIkSWokyfnAjsBNPDaYbdy3NP7VSs5NA5uPeX2pD0uBU4F7gfWBfavqa20jSRqjqdYBNFhbVNW+s16/J8nNrcIMjYVpSZIkqZ1XA9tW1UN9LVhVL+lrLamhk4HXVNXNSfYA3gNYmJaG69rWATRYi5JsUlX/CJBkE2BR40yD4X9ISZIkqZ1ftFw8yeuTvHP0fJMkW7fMI82jR6rqZoCquoau17Skgaqqd7bOoMH6CPC/kpyX5FzgRuBDjTMNhjumJUmSpHZ+BHwtyeUsP5htbD2mZyR5N7A38AK6oT7rAX8B7DbutaUerJfkpTx2e//6s1/bS11auGYNN10hh5tqPlXVBUluAnanew/5uO8h88fCtCRJktTOYuCnwHazjo27x/SMNwM7Ad8FqKo7kjyrp7WlcduQbujhbDOv7aUuLWxfah1Ak6WqbgVubZ1jiCxMS5IkSY1U1cENl//nqnooyexjfRXFpbGqqhe3ziBpPKrq/NYZNHxJPldVBya5nhX8flRVr2wQa3AsTEuSJEmNJNkQ+FNg86o6IMnvAb9XVZf3sPwvkuwGTCdZBJwE/KCHdSVJWmNJVtrft6pO6CuLBu1jo8fjWoYYOgvTkiRJUjufAO4Eth+9vgO4GLi8h7WPAi4AXgY8APwdcEAP60qS9FTc3zqAhq+qbhw9fWFVXTj7XJK3NIg0SBamJUmSpHa2q6q3JdkLoKruG+1eHruq+hWw52jX9qKquq+PdSVJeiqq6pTWGTRRjgEuXIVjWgMWpiVJkqR2Hpz9IslioJfC9Gi9LYAtgHVnek1X1dyBcZIkrZWS7El319HimWNV9d5mgTQYSXYCdgE2TnLkrFMbAeu1STU8FqYlSZKkdr6Z5CRg/SS7A8cCV/SxcJIPAocCPwQeHh2eBixMS5LWeklOA3YGtqV773wj8NWmoTQkmwE7AU+n+/9sxj3AQS0CDZGFaUmSJKmdk4ETgHuB04ErgdN6Wns/YIuquqen9SRJmk/7ADsAN1bVEUneC5zdOJMGoqquAK5IsmdVfbl1nqGyMC1JkiT1bM4toXfTDSGEbsfyEcA5PcS406K0JGkBW1pVy5JMJ3laVf0yyQtbh9IwJNm1qq6la3e299zztj6bHxamJUmSpP6dBdwA3ApMzTk3Pc6FZ11cfTvJxcClwNKZ815oSZIWiHtHA3yvA85PciewrHEmDcdBwLXA8Ss4Z+uzeTI1PT3W33slSZIkzZHkYOCtwIbA+cDFVXV3T2tfs5LT01X1uj5ySJL0VCR5PvBrYB3gGODZwBlVdXvDWJJWg4VpSZIkqZEkL6bbkbM/cAtwalXd0jKTJEmSOkn+ALipqu5LcgjdIMTTq+pnjaMNwqLWASRJkqRJVVX/AHwUOAPYA9ilr7WTfGtVjkmStDZK54Ik1yX57sxX61wanLOA+5NsCxwL3A78edtIw2GPaUmSJKlnSaaAvYCDge2AS4Bdet59s+GcTOsAz+1xfUmSnopLgc8BnwUebhtFA7asqqaTvAH4RFWdmWS/1qGGwsK0JEmS1L87gDvpLqbfSzdEZ4Mk2wBU1ZJxLZzkeOAEYKMk/zjr1IbAReNaV5Kkebasqj7cOoQGb90kuwL/HjhkdGydhnkGxcK0JEmS1L+HgOfR3RJ6DDA169w0sPkY1z6PbpfZWcB/nHX8nr4GMEqSNA/+Nsm/qaq/bR1Eg/ZfgLOBq6vqB0m2Bn7SONNgOPxQkiRJmlBJ1gVCVwz/UVUtaxxJkqRVkuR1wBXAI8Bv6T7kna6qTZoGk7TK3DEtSZIkTaAkOwL/g8cu5tdNsm9V3dQ2mSRJq+Q8ulkNN2GPaY1JksXAAcAWzKqjVtUJzUINiIVpSZIkaTKdARxcVVcDJNkDOBPYtWkqSZJWzT9V1Rdbh9DgXQqsB3yH7sN8zSML05IkSdJkevpMURqgqq5J8vSWgSRJWg2XJ3k7cAmwdOZgVT3QLpIGaMuqemnrEEO1qHUASZIkSU08MNolDUCS1wJezEuSFopTgXOA/wvcC9w3epTm021Jntk6xFC5Y1qSJEmaTEcDX0wyc1vqesC+DfNIkrTKqmoRQJLnALsDt1XV95qG0hD9BrghyVUsvzPfHtPzwB3TkiRJ0gSqquuBLYE30RWkt6qqG9umkiRp5ZJcmOTlo+fPBb5Pt3v6y0kObRpOQ1TA54H/B9w/60vzYGp6erp1BkmSJEk9S7I1cHtVLU2yF7ADcG5V3d04miRJTyjJkqraZvT8aGCfqtozye8CX6qq7ZsGlLTKbOUhSZIkTaZLgJ2TvAQ4F/gycD7wh01TSZK0cktnPd8NuAygqu5I4u5LzbskewLbA4tnjlXVe5sFGhBbeUiSJEmT6ZGqegjYBzinqg4HXtQ4kyRJTyrJpkk2oOst/Y1Zpxav+DukNZPkNOBE4BhgM+BIYOumoQbEwrQkSZI0mRYn2Yxuh/TVo2NTDfNIkrQqPgjcDPwY+FZVLQFI8irg9oa5NEz7AHsB/6eqjgB2BJ7RNtJwWJiWJEmSJtPHgB8A91bVDUk2p5s8L0nSWquqLgVeDvxbugG+M24HDmsSSkO2tKqWAdNJnlZVvwRe2DrUUDj8UJIkSRJJ1gHWqaoHW2eRJElaGyS5mu5DkI8AzwbuBHarql1a5hoKd0xLkiRJEyjJhknel+Si0aGtgL1bZpIkSVrLvBlYBhwHLAGmgf2aJhqQdVsHkCRJktTEJ+h2/Ww/en0HcDFweaM8kiRJa43R3WSnVtVhwIPAqY0jDY47piVJkqTJtF1VvZvuQouqug+vDyRJkgCoqoeBLVrnGDJ3TEuSJEmTable0kkWY2FakiSJJH9eVYcAVyc5C7gAuG/mfFUtaRZuQCxMS5IkSZPpm0lOAtZPsjtwLHBF20iSJElrhR1Gj4eMHveZdW4a2LzfOMNkYVqSJEmaTCcDJwD3AqcDVwKnNU0kSZK0Fqmql7TOMGRT09PTrTNIkiRJ6kmSI+ccmho9TgNU1Tn9JpIkSVq7JHkIuPuJzlfVJj3GGSx3TEuSJEmT5SzgBuBWHitKz3DXiiRJEvwI2Lt1iKGzMC1JkiRNlkOAtwLbAucDF1fVE+4IkiRJmkC/raqftw4xdE7dliRJkiZIVX2mqvYA/gOwCXBtki8k2a5xNEmSpLXFg60DTAIL05IkSdIEqqp/AD4KnAHsAezSNJAkSdJaoqpe1TrDJLCVhyRJkjRBkkwBewEHA9sBlwC7VNXPmgaTJEnSRJmanna+iSRJkjQpkvwSuBP4LHANcwYeVtWSBrEkSZI0YdwxLUmSJE2Wh4DnAccCxwBTs85NA5u3CCVJkqTJ4o5pSZIkSZIkSVKvHH4oSZIkSZIkSeqVhWlJkiRJkiRJUq8sTEuSJEmSJEmSemVhWpIkSZIkSZLUKwvTkiRJkiRJkqRe/X8nMb95fGITMAAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 1800x360 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.figure(figsize=(25, 5))\n",
jpronkko's avatar
jpronkko committed
    "sns.set_theme()\n",
    "profile_mut_all[\"tumor_types\"].value_counts().sort_index().plot(kind=\"bar\")\n",
    "#sns.countplot(x=profile_mut_all[\"tumor_types\"], palette=sns.hls_palette(2))\n",
    "plt.xticks(rotation=90);\n"
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
jpronkko's avatar
jpronkko committed
    "### Check activites data content"
  {
   "cell_type": "code",
jpronkko's avatar
jpronkko committed
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
jpronkko's avatar
jpronkko committed
      "Some content from the full act set:\n"
jpronkko's avatar
jpronkko committed
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>SBS1</th>\n",
       "      <th>SBS2</th>\n",
       "      <th>SBS3</th>\n",
       "      <th>SBS4</th>\n",
       "      <th>SBS5</th>\n",
       "      <th>SBS6</th>\n",
       "      <th>SBS7a</th>\n",
       "      <th>SBS7b</th>\n",
       "      <th>SBS7c</th>\n",
       "      <th>SBS7d</th>\n",
       "      <th>...</th>\n",
       "      <th>SBS52</th>\n",
       "      <th>SBS53</th>\n",
       "      <th>SBS54</th>\n",
       "      <th>SBS55</th>\n",
       "      <th>SBS56</th>\n",
       "      <th>SBS57</th>\n",
       "      <th>SBS58</th>\n",
       "      <th>SBS59</th>\n",
       "      <th>SBS60</th>\n",
       "      <th>tumor_types</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>mut_tri</th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>ALL::11</th>\n",
       "      <td>0.066667</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.066667</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>ALL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>ALL::2211636</th>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>ALL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>ALL::2211638</th>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.333333</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.666667</td>\n",
       "      <td>0.0</td>\n",
       "      <td>ALL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>ALL::2211640</th>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>ALL</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>ALL::2211642</th>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.250000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>ALL</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>5 rows × 66 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "                  SBS1  SBS2  SBS3  SBS4      SBS5  SBS6  SBS7a  SBS7b  SBS7c  \\\n",
       "mut_tri                                                                         \n",
       "ALL::11       0.066667   0.0   0.0   0.0  0.066667   0.0    0.0    0.0    0.0   \n",
       "ALL::2211636  0.000000   0.0   0.0   0.0  0.000000   0.0    0.0    0.0    0.0   \n",
       "ALL::2211638  0.000000   0.0   0.0   0.0  0.333333   0.0    0.0    0.0    0.0   \n",
       "ALL::2211640  0.000000   0.0   0.0   0.0  0.000000   0.0    0.0    0.0    0.0   \n",
       "ALL::2211642  0.000000   0.0   0.0   0.0  0.250000   0.0    0.0    0.0    0.0   \n",
       "\n",
       "              SBS7d  ...  SBS52  SBS53  SBS54  SBS55  SBS56  SBS57  SBS58  \\\n",
       "mut_tri              ...                                                    \n",
       "ALL::11         0.0  ...    0.0    0.0    0.0    0.0    0.0    0.0    0.0   \n",
       "ALL::2211636    0.0  ...    0.0    0.0    0.0    0.0    0.0    0.0    0.0   \n",
       "ALL::2211638    0.0  ...    0.0    0.0    0.0    0.0    0.0    0.0    0.0   \n",
       "ALL::2211640    0.0  ...    0.0    0.0    0.0    0.0    0.0    0.0    0.0   \n",
       "ALL::2211642    0.0  ...    0.0    0.0    0.0    0.0    0.0    0.0    0.0   \n",
       "\n",
       "                 SBS59  SBS60  tumor_types  \n",
       "mut_tri                                     \n",
       "ALL::11       0.000000    0.0          ALL  \n",
       "ALL::2211636  0.000000    0.0          ALL  \n",
       "ALL::2211638  0.666667    0.0          ALL  \n",
       "ALL::2211640  0.000000    0.0          ALL  \n",
       "ALL::2211642  0.000000    0.0          ALL  \n",
       "\n",
       "[5 rows x 66 columns]"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "print(\"Some content from the full act set:\")\n",
    "act_mut_all.head(5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABaYAAAHACAYAAABZBb/GAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAADIUklEQVR4nOzde3zO9f/H8edlzPm45lCUrGSp8KUip5pOtLWNkI3iKwpRmCw0cmxOfeObQ3TSV5LNNkb0jW9SOXZCI+WsGIZsjJ2u3x+7Xddvs41in/eH7XH/J/tcXXt9rl3X9fm836/3+/16O5xOp1MAAAAAAAAAABhSwu4TAAAAAAAAAAAULySmAQAAAAAAAABGkZgGAAAAAAAAABhFYhoAAAAAAAAAYBSJaQAAAAAAAACAUSSmAQAAAAAAAABGkZgGAAAAAAAAABhV0u4TuFKnTp1VVpbzbz/Py6uCkpJSLDgjYhOb2MQmNrGJTWxiE5vYxCY2sYlNbGITm9jEJrZLiRIOVa1aPt/HrtvEdFaW84oS067n2oXYxCY2sYlNbGITm9jEJjaxiU1sYhOb2MQmNrGLe2xKeQAAAAAAAAAAjCIxDQAAAAAAAAAwisQ0AAAAAAAAAMAoEtMAAAAAAAAAAKNITAMAAAAAAAAAjCIxDQAAAAAAAAAwisQ0AAAAAAAAAMAoEtMAAAAAAAAAAKNITAMAAAAAAAAAjCIxDQAAAAAAAAAwqqTdJwDg+lKxUlmVKX3pS4e3d8UCHzt/IUPJZ1IL+7QAAAAAAABwHSExDeBvKVO6pAKGxl3x85dPC1RyIZ4PAAAAAAAArj+U8gAAAAAAAAAAGEViGgAAAAAAAABgFIlpAAAAAAAAAIBRJKYBAAAAAAAAAEaRmAYAAAAAAAAAGEViGgAAAAAAAABgFIlpAAAAAAAAAIBRJKYBAAAAAAAAAEaRmAYAAAAAAAAAGFXycv9DZGSkVq9erd9//13Lly9X/fr1dfjwYQ0YMMD9/yQnJyslJUWbN2+WJPn5+cnT01OlS5eWJIWFhal169aSpH379ik8PFynT59WlSpVFBkZqbp161rw0gAAAAAAAAAA16LLJqbbtWunZ555RqGhoe5jtWvXVlxcnPvnCRMmKDMzM9fzZsyYofr16+f5faNHj1ZISIgCAwMVFxeniIgILViw4GpeAwAAAAAAAADgOnLZUh7NmjVTrVq1Cnw8LS1Ny5cvV6dOnS4bLCkpSQkJCfL395ck+fv7KyEhQSdPnvwbpwwAAAAAAAAAuJ5ddsb05axdu1Y1atRQw4YNcx0PCwuT0+lU06ZNNWTIEFWqVElHjhxRjRo15OHhIUny8PBQ9erVdeTIEVWrVu1qTwUAAAAAAAAAcB1wOJ1O51/5H/38/DRnzpw85Tn69Omj1q1b65lnnnEfO3LkiGrVqqW0tDRNmDBBZ8+e1dSpU7Vjxw4NHz5cK1ascP+/HTp00JQpU/IktgFcuwKGxl3+fyrA8mmBhXgmAAAAAAAAuB5d1YzpxMREbdmyRZMnT8513FX6w9PTUyEhIerXr5/7eGJiojIzM+Xh4aHMzEwdO3bskqVCCpKUlKKsrL+UU8/F27uijh9P/tvPKwzEJnZRiO3tXfGqf4eV51YU/+bEJjaxiU1sYhOb2MQmNrGJTWxiE5vY12PsEiUc8vKqkP9jV3NSMTExatu2rapWreo+du7cOSUnZ5+o0+nUypUr5evrK0ny8vKSr6+v4uPjJUnx8fHy9fWljAcAAAAAAAAAFCOXnTE9fvx4ff755zpx4oR69eqlKlWquEtxxMTEaOTIkbn+/6SkJA0cOFCZmZnKysqSj4+PRo8e7X58zJgxCg8P16xZs1SpUiVFRkYW8ksCAAAAAAAAAFzLLpuYHjVqlEaNGpXvY6tXr85zrE6dOoqNjS3w9/n4+GjJkiV//QwBAAAAAAAAAEXKVZXyAAAAAAAAAADg7yIxDQAAAAAAAAAwisQ0AAAAAAAAAMAoEtMAAAAAAAAAAKNITAMAAAAAAAAAjCIxDQAAAAAAAAAwqqTdJwAAAIDipWKlsipT+tLNUG/vigU+dv5ChpLPpBb2aQEAAAAwiMQ0AAAAjCpTuqQChsZd8fOXTwtUciGeDwAAAADzKOUBAAAAAAAAADCKxDQAAAAAAAAAwCgS0wAAAAAAAAAAo0hMAwAAAAAAAACMIjENAAAAAAAAADCKxDQAAAAAAAAAwCgS0wAAAAAAAAAAo0hMAwAAAAAAAACMKmn3CQDAX1WxUlmVKX3py5a3d8UCHzt/IUPJZ1IL+7QAAAAAAADwN5GYBnDdKFO6pAKGxl3x85dPC1RyIZ4PAAAAAAAArgylPAAAAAAAAAAARpGYBgAAAAAAAAAYRWIaAAAAAAAAAGAUiWkAAAAAAAAAgFEkpgEAAAAAAAAARpGYBgAAAAAAAAAYRWIaAAAAAAAAAGAUiWkAAAAAAAAAgFGXTUxHRkbKz89Pd9xxh3bv3u0+7ufnp8cff1yBgYEKDAzU+vXr3Y/t27dPXbt21WOPPaauXbtq//79f+kxAAAAAAAAAEDRd9nEdLt27bRw4ULddNNNeR6bMWOG4uLiFBcXp9atW7uPjx49WiEhIVq9erVCQkIUERHxlx4DAAAAAAAAABR9l01MN2vWTLVq1frLvzApKUkJCQny9/eXJPn7+yshIUEnT5685GMAAAAAAAAAgOKh5NU8OSwsTE6nU02bNtWQIUNUqVIlHTlyRDVq1JCHh4ckycPDQ9WrV9eRI0fkdDoLfKxatWpX/2oAAAAAAAAAANe8K05ML1y4ULVq1VJaWpomTJigsWPHaurUqYV5bpfk5VXhip/r7V2xEM+E2MQm9t9VVP8uRfV1EZvYxCb2tYjrObGJTWxiE5vYxCY2sYl9fce+4sS0q7yHp6enQkJC1K9fP/fxxMREZWZmysPDQ5mZmTp27Jhq1aolp9NZ4GN/V1JSirKynH/7ed7eFXX8ePLffl5hIDaxi0LswrgQXem52Rn7corq+01sYhOb2Fb97qvF9ZzYxCY2sYlNbGITm9jEvvZjlyjhKHCC8WVrTOfn3LlzSk7OPhmn06mVK1fK19dXkuTl5SVfX1/Fx8dLkuLj4+Xr66tq1apd8jEAAAAAAAAAQPFw2RnT48eP1+eff64TJ06oV69eqlKliubMmaOBAwcqMzNTWVlZ8vHx0ejRo93PGTNmjMLDwzVr1ixVqlRJkZGRf+kxAAAAAAAAAEDRd9nE9KhRozRq1Kg8x2NjYwt8jo+Pj5YsWfK3HwMAAAAAAAAAFH1XVMoDAAAAAAAAAIArRWIaAAAAAAAAAGAUiWkAAAAAAAAAgFEkpgEAAAAAAAAARpGYBgAAAAAAAAAYRWIaAAAAAAAAAGAUiWkAAAAAAAAAgFEkpgEAAAAAAAAARpGYBgAAAAAAAAAYRWIaAAAAAAAAAGAUiWkAAAAAAAAAgFEkpgEAAAAAAAAARpGYBgAAAAAAAAAYRWIaAAAAAAAAAGBUSbtPAAAAAOZVrFRWZUpfuino7V2xwMfOX8hQ8pnUwj4tAAAAAMUEiWkAAIBiqEzpkgoYGnfFz18+LVDJhXg+AAAAAIoXSnkAAAAAAAAAAIwiMQ0AAAAAAAAAMIrENAAAAAAAAADAKBLTAAAAAAAAAACjSEwDAAAAAAAAAIwiMQ0AAAAAAAAAMIrENAAAAAAAAADAKBLTAAAAAAAAAACjSEwDAAAAAAAAAIwiMQ0AAAAAAAAAMKrk5f6HyMhIrV69Wr///ruWL1+u+vXr69SpU3rllVd08OBBeXp66pZbbtHYsWNVrVo1SZKfn588PT1VunRpSVJYWJhat24tSdq3b5/Cw8N1+vRpValSRZGRkapbt651rxAAAAAAAAAAcE25bGK6Xbt2euaZZxQaGuo+5nA49Nxzz+n++++XlJ28njp1qiZOnOj+f2bMmKH69evn+X2jR49WSEiIAgMDFRcXp4iICC1YsKAwXgsAAMB1pWKlsipT+tLNMW/vigU+dv5ChpLPpBb2aQEAAACA5S6bmG7WrFmeY1WqVHEnpSWpcePGWrRo0WWDJSUlKSEhQe+//74kyd/fX+PGjdPJkyfds60BAACKizKlSypgaNwVP3/5tEAlF+L5AAAAAIApl01MX05WVpYWLVokPz+/XMfDwsLkdDrVtGlTDRkyRJUqVdKRI0dUo0YNeXh4SJI8PDxUvXp1HTlyhMQ0AAAAAAAAABQTV52YHjdunMqVK6fu3bu7jy1cuFC1atVSWlqaJkyYoLFjx2rq1KlXGyoXL68KV/zcSy2JtRqxiV0cYl9OUf27FNXXRWxiE5tranGLXVRfF7GJTWxiE5vYxCY2sYl9LcW+qsR0ZGSkDhw4oDlz5qhEiRLu47Vq1ZIkeXp6KiQkRP369XMfT0xMVGZmpjw8PJSZmaljx465//+/IykpRVlZzr/9PG/vijp+3J5Fr8QmdlGIXRgXois9NztjX05Rfb+JTWxic00tarEvp6h+1ohNbGITm9jEJjaxiU1sO2KXKOEocIJxiXyP/gVvvvmmduzYobfffluenp7u4+fOnVNycvaJOp1OrVy5Ur6+vpIkLy8v+fr6Kj4+XpIUHx8vX19fyngAAAAAAAAAQDFy2RnT48eP1+eff64TJ06oV69eqlKliv71r39pzpw5qlu3rp5++mlJUu3atfX2228rKSlJAwcOVGZmprKysuTj46PRo0e7f9+YMWMUHh6uWbNmqVKlSoqMjLTu1QEAAAAAAAAArjmXTUyPGjVKo0aNynP8l19+yff/r1OnjmJjYwv8fT4+PlqyZMlfP0MAAAAAAAAAQJFyxaU8AAAAAAAAAAC4EiSmAQAAAAAAAABGkZgGAAAAAAAAABh12RrTAAAAQFFRsVJZlSl96Sawt3fFAh87fyFDyWdSC/u0AAAAgGKHxDQAoEAkcAAUNWVKl1TA0Lgrfv7yaYFKLsTzAQAAAIorEtMAgAKRwAEAAAAAAFagxjQAAAAAAAAAwChmTAMAAAAACgVlwAAAwF9FYhoAAAAAUCgoAwYAAP4qSnkAAAAAAAAAAIwiMQ0AAAAAAAAAMIrENAAAAAAAAADAKBLTAAAAAAAAAACjSEwDAAAAAAAAAIwiMQ0AAAAAAAAAMIrENAAAAAAAAADAKBLTAAAAAAAAAACjStp9AgAAAAAAXM8qViqrMqUv3b329q5Y4GPnL2Qo+UxqYZ8WAADXNBLTAAAAAABchTKlSypgaNwVP3/5tEAlF+L5AABwPaCUBwAAAAAAAADAKGZMAwAAAAAAXAcoGwOgKCExDQAAAAAAcB2gbAyAooRSHgAAAAAAAAAAo0hMAwAAAAAAAACMIjENAAAAAAAAADCKxDQAAAAAAAAAwKjLJqYjIyPl5+enO+64Q7t373Yf37dvn7p27arHHntMXbt21f79+6/6MQAAAAAAAABA0XfZxHS7du20cOFC3XTTTbmOjx49WiEhIVq9erVCQkIUERFx1Y8BAAAAAAAAAIq+yyammzVrplq1auU6lpSUpISEBPn7+0uS/P39lZCQoJMnT17xYwAAAAAAAACA4qHklTzpyJEjqlGjhjw8PCRJHh4eql69uo4cOSKn03lFj1WrVu1vnYOXV4UrOXVJkrd3xSt+7tUiNrGLQ+zLKap/l6L6uq4Wf3NiE9taxfXvUlRjF9XXRWxi/x1F9Tt2OUX1dRP72sNnjdjEJva1EvuKEtPXgqSkFGVlOf/287y9K+r48WQLzojYxC4esQvjQnSl52Zn7Mvh/S4Yf3NiE/vSv/tqXY/X1OIa+3KK6uec2MUrdnH9jhXX101s87H5rBGb2MS+3mKXKOEocILxFSWma9WqpcTERGVmZsrDw0OZmZk6duyYatWqJafTeUWPAQAAAAAAAACKh8vWmM6Pl5eXfH19FR8fL0mKj4+Xr6+vqlWrdsWPAQAAAAAAAACKh8vOmB4/frw+//xznThxQr169VKVKlW0YsUKjRkzRuHh4Zo1a5YqVaqkyMhI93Ou9DEAAAAAAAAAQNF32cT0qFGjNGrUqDzHfXx8tGTJknyfc6WPAQAAAAAAAACKvisq5QEAAAAAAAAAwJUiMQ0AAAAAAAAAMIrENAAAAAAAAADAKBLTAAAAAAAAAACjSEwDAAAAAAAAAIwiMQ0AAAAAAAAAMIrENAAAAAAAAADAKBLTAAAAAAAAAACjSEwDAAAAAAAAAIwiMQ0AAAAAAAAAMIrENAAAAAAAAADAKBLTAAAAAAAAAACjSEwDAAAAAAAAAIwiMQ0AAAAAAAAAMIrENAAAAAAAAADAKBLTAAAAAAAAAACjSEwDAAAAAAAAAIwiMQ0AAAAAAAAAMIrENAAAAAAAAADAKBLTAAAAAAAAAACjSEwDAAAAAAAAAIwiMQ0AAAAAAAAAMKqk3ScAAABgp4qVyqpM6Us3iby9Kxb42PkLGUo+k1rYpwUAAAAARRqJaQAAUKyVKV1SAUPjrvj5y6cFKrkQzwcAAAAAigNKeQAAAAAAAAAAjCIxDQAAAAAAAAAw6qpKeRw+fFgDBgxw/5ycnKyUlBRt3rxZfn5+8vT0VOnSpSVJYWFhat26tSRp3759Cg8P1+nTp1WlShVFRkaqbt26V3MqAAAAAAAAAIDrxFUlpmvXrq24uP+vyThhwgRlZma6f54xY4bq16+f53mjR49WSEiIAgMDFRcXp4iICC1YsOBqTgUAAAAAAAAAcJ0otFIeaWlpWr58uTp16nTJ/y8pKUkJCQny9/eXJPn7+yshIUEnT54srFMBAAAAAAAAAFzDrmrGdE5r165VjRo11LBhQ/exsLAwOZ1ONW3aVEOGDFGlSpV05MgR1ahRQx4eHpIkDw8PVa9eXUeOHFG1atX+cjwvrwpXfK7e3hWv+LlXi9jELg6xL6eo/l2K6uu6WvzNiV0UYl9Ocf27EPv6+t3EJva1Evtyiup37HKK6usm9rWHzxqxiU3sayV2oSWmo6Ojc82WXrhwoWrVqqW0tDRNmDBBY8eO1dSpUwsrnJKSUpSV5fzbz/P2rqjjx5ML7TyITeziFrswLkRXem52xr4c3u+C8Tcn9rUeu7he14htPvblFNXvGLGLV+zi+h0rrq+b2OZj81kjNrGJfb3FLlHCUeAE40Ip5ZGYmKgtW7YoICDAfaxWrVqSJE9PT4WEhOj77793H09MTHTXos7MzNSxY8fc/z8AAAAAAAAAoGgrlMR0TEyM2rZtq6pVq0qSzp07p+Tk7Cy60+nUypUr5evrK0ny8vKSr6+v4uPjJUnx8fHy9fX9W2U8AAAAAAAAAADXr0Ip5RETE6ORI0e6f05KStLAgQOVmZmprKws+fj4aPTo0e7Hx4wZo/DwcM2aNUuVKlVSZGRkYZwGAAAAAAAAAOA6UCiJ6dWrV+f6uU6dOoqNjS3w//fx8dGSJUsKIzQAAAAAAAAA4DpTKKU8AAAAAAAAAAD4q0hMAwAAAAAAAACMIjENAAAAAAAAADCKxDQAAAAAAAAAwCgS0wAAAAAAAAAAo0hMAwAAAAAAAACMKmn3CQAAAAAAAADXooqVyqpM6Uunz7y9Kxb42PkLGUo+k1rYpwUUCSSmAQAAAAAAgHyUKV1SAUPjrvj5y6cFKrkQzwcoSijlAQAAAAAAAAAwisQ0AAAAAAAAAMAoEtMAAAAAAAAAAKNITAMAAAAAAAAAjCIxDQAAAAAAAAAwisQ0AAAAAAAAAMAoEtMAAAAAAAAAAKNK2n0CAADg/1WsVFZlSl/69uztXbHAx85fyFDymdTCPi0AAAAAAAoViWkAAK4hZUqXVMDQuCt+/vJpgUouxPMBAAAAAMAKlPIAAAAAAAAAABhFYhoAAAAAAAAAYBSJaQAAAAAAAACAUSSmAQAAAAAAAABGsflhIapYqazKlL70n9Tbu2KBj52/kKHkM6mFfVoAAAAAAADAX0aOCyaQmC5EZUqXVMDQuCt+/vJpgUouxPMBAAAAUPyQTAAAXC1yXMWLXW0HEtMAAAAAUISQTAAAAH+HXW0HakwDAAAAAAAAAIy66hnTfn5+8vT0VOnSpSVJYWFhat26tfbt26fw8HCdPn1aVapUUWRkpOrWrStJl3wMAAAAAAAAAFC0FcqM6RkzZiguLk5xcXFq3bq1JGn06NEKCQnR6tWrFRISooiICPf/f6nHAAAAAAAAAABFmyU1ppOSkpSQkKD3339fkuTv769x48bp5MmTcjqdBT5WrVo1K04HAHAdYuMmAAAAAACKrkJJTIeFhcnpdKpp06YaMmSIjhw5oho1asjDw0OS5OHhoerVq+vIkSNyOp0FPkZiGgDgwsZNAAAAAAAUXVedmF64cKFq1aqltLQ0TZgwQWPHjlXPnj0L4dQuzcurwhU/91Iz7Oxm5bnZ+bqJXbxiX05R/bsU1dd1tYrq36W4/s2L6vt5tYrr34XY19fvJjax/46i+ncprn/zovp+EvvK8Fkzr6j+zS+nqL7u4hr7cq7k3K46MV2rVi1Jkqenp0JCQtSvXz+9+uqrSkxMVGZmpjw8PJSZmaljx46pVq1acjqdBT72dyQlpSgry/m3z9fbu6KOH7dmDl1hfDisPDerfjexi1dsOz/nfMfMx+b9zl9R/ZtfDp/zgl2Pn3Nim499OUX1O0Zs87H5juWvqP7NL6eofs6La2w+a+ZjF9e/eXF93cU1tpXvd4kSjgInGF9VYvrcuXPKzMxUxYoV5XQ6tXLlSvn6+srLy0u+vr6Kj49XYGCg4uPj5evr6y7VcanHcP2hDiyAoobrGgAAAAAA1rqqxHRSUpIGDhyozMxMZWVlycfHR6NHj5YkjRkzRuHh4Zo1a5YqVaqkyMhI9/Mu9RiuP9SBBVDUcF0DAAAAAMBaV5WYrlOnjmJjY/N9zMfHR0uWLPnbjwEAAAAAAAAAirYSdp8AAAAAAAAAAKB4ITENAAAAAAAAADCKxDQAAAAAAAAAwCgS0wAAAAAAAAAAo0hMAwAAAAAAAACMIjENAAAAAAAAADCKxDQAAAAAAAAAwCgS0wAAAAAAAAAAo0hMAwAAAAAAAACMIjENAAAAAAAAADCqpN0nAAAAAAAAAAB2q1iprMqUvnS61Nu7YoGPnb+QoeQzqYV9WkUWiWkAAAAAAAAAxV6Z0iUVMDTuip+/fFqgkgvxfIo6EtMAAAAAiiRmPQEAAFy7SEwDAAAAKJKY9QQAAHDtYvNDAAAAAAAAAIBRzJgGrhBLQwEAAAAAAIArQ2IauEIsDQUAAABQnDFZBwBwNUhMAwAAAACAv43JOgCAq0GNaQAAAAAAAACAUSSmAQAAAAAAAABGkZgGAAAAAAAAABhFYhoAAAAAAAAAYFSR2/yQXYEBAAAAAAAA4NpW5BLT7AoMAAAAAAAAANe2IpeYBoCihpUgAAAAAACgqCExDQDXOFaCAAAAAACAouaqEtOnTp3SK6+8ooMHD8rT01O33HKLxo4dq2rVqsnPz0+enp4qXbq0JCksLEytW7eWJO3bt0/h4eE6ffq0qlSposjISNWtW/eqXwwAALhyzM4HAAAAAJhyVYlph8Oh5557Tvfff78kKTIyUlOnTtXEiRMlSTNmzFD9+vXzPG/06NEKCQlRYGCg4uLiFBERoQULFlzNqQAAgKvE7HwAAAAAgCklrubJVapUcSelJalx48b6448/LvmcpKQkJSQkyN/fX5Lk7++vhIQEnTx58mpOBQAAAAAAAABwnSi0GtNZWVlatGiR/Pz83MfCwsLkdDrVtGlTDRkyRJUqVdKRI0dUo0YNeXh4SJI8PDxUvXp1HTlyRNWqVSus0wEAAAAAAAAAXKMKLTE9btw4lStXTt27d5ckLVy4ULVq1VJaWpomTJigsWPHaurUqYUVTl5eFQrtd13sUvUzrXalsdPSM+VZyuOKf/dfeb6VrPyb2/l+Xg6vu2jF5m9ObGLzHSM2sa/l303sK1NU3+/LKaqfh+L6N+d1m8ff3Dz+5tceXvf19buv1pWcW6EkpiMjI3XgwAHNmTNHJUpkVwepVauWJMnT01MhISHq16+f+3hiYqIyMzPl4eGhzMxMHTt2zP3//1VJSSnKynLmOV4Yb9Dx41dWIdPu2FdbF/R6fN2X4+1d0dLffbV43ddP7Mvhb05sYl9d7MvhO0bsohD7cqz8nBfX2MX1/eY7lr+i+je/HF63efzNzeNvbs3vvlq87sJ1vb7uEiUcBU4wvqoa05L05ptvaseOHXr77bfl6ekpSTp37pySk7NPxul0auXKlfL19ZUkeXl5ydfXV/Hx8ZKk+Ph4+fr6UsYDAAAAAAAAAIqJq5ox/euvv2rOnDmqW7eunn76aUlS7dq1FR4eroEDByozM1NZWVny8fHR6NGj3c8bM2aMwsPDNWvWLFWqVEmRkZFX9yoAAAAAAAAAANeNq0pM33777frll1/yfSw2NrbA5/n4+GjJkiVXExoAAAAAAAAAcJ266lIeAAAAAAAAAAD8HYWy+SEAAAAAAIApFSuVVZnSl05pXGozr/MXMpR8JrWwTwsA8DeQmAYAAAAAANeVMqVLKmBo3BU/f/m0QCUX4vkAAP4+EtMAAAAAAADANYaVASjqSEwDAAAAAK57JHAAFDWsDEBRR2IaAAAAAHDdI4EDAMD1hcQ0rmvMigAAAAAAAACuPySmcV1jVgQAFA0MNAIAAABA8UJiGgAA2I6BRgAAAAAoXkrYfQIAAAAAAAAAgOKFxDQAAAAAAAAAwCgS0wAAAAAAAAAAo6gxDQB/ARuzAQCAv4O2A1B08f0GgMJBYhoA/gI2ZgMAAH8HbQeg6OL7DViLwZ/ig8Q0AAAAUMTRwQMAANcLBn+KDxLTAAAAQBFHBw8AAADXGjY/BAAAAAAAAAAYRWIaAAAAAAAAAGAUiWkAAAAAAAAAgFEkpgEAAAAAAAAARrH5IXAdqliprMqUvvTX19u7YoGPnb+QoeQzqYV9WgAAAHnQbgEAAEB+SEwD16EypUsqYGjcFT9/+bRAJRfi+QAAgMsrrgla2i2AtYrrtQUAcP0jMQ0AAAAYQIIWgBW4tgBA0VAcBxpJTAMAAAAAAOCSimPSDDCpOA40kpgGAAAAAADAJRXHpBkAa5GYBgAAAAAAwDWL2dpA0WRbYnrfvn0KDw/X6dOnVaVKFUVGRqpu3bp2nQ4AAAAAAACuQczWBoqmEnYFHj16tEJCQrR69WqFhIQoIiLCrlMBAAAAAAAAABhkS2I6KSlJCQkJ8vf3lyT5+/srISFBJ0+etON0AAAAAAAAAAAG2VLK48iRI6pRo4Y8PDwkSR4eHqpevbqOHDmiatWq/aXfUaKEo8DHqlcte1Xnd6nffTnEJjaxiU1sYhOb2MQmNrGJTWxiE5vYxCY2sYlN7Eufk8PpdDqvKuoV2LFjh4YPH64VK1a4j3Xo0EFTpkxRw4YNTZ8OAAAAAAAAAMAgW0p51KpVS4mJicrMzJQkZWZm6tixY6pVq5YdpwMAAAAAAAAAMMiWxLSXl5d8fX0VHx8vSYqPj5evr+9fLuMBAAAAAAAAALh+2VLKQ5L27Nmj8PBwnTlzRpUqVVJkZKTq1atnx6kAAAAAAAAAAAyyLTENAAAAAAAAACiebCnlAQAAAAAAAAAovkhMAwAAAAAAAACMIjENAAAAAAAAADCKxDQAAAAAAAAAwCgS0wAAAAAAAAAAo0hMAwAAAAAAAACMKpaJ6VdffdW22MnJybbFBoqyjIwM7dy5UydPnrQl/pkzZ2yJe63YunWr3acAAAD+Ju7fwNXLzMxUampqnuOpqanKzMy04YzMSElJ0eHDh/McP3TokFJSUmw4I/vZcU39/vvvNXLkSONxJeno0aOaNWuWLbGLq2sh7/DHH38U6u8rWai/7TqxYcMG22IHBAToyy+/NBJrw4YNOnjwoDIyMtzHQkNDjcTOz/nz51WmTBnb4sM6GzZsUIsWLS57rDBNnjxZQUFBql+/vs6fP6+nn35av//+uzIyMjRlyhQ9/PDDlsX+4IMP1Lp1a/n4+CgzM1PPP/+8vv76a1WuXFmzZs1S06ZNLYvtsnjxYnXt2tX9c1ZWlv71r39pyJAhlsd2OXbsmGJjYxUdHS2n06nPP//cWOxrxdatW9WsWTPLfv+vv/6q48eP64EHHsh1fP369apVq5Zuu+02y2LnJykpSYcOHVLjxo2Nxi1ufvzxR1v+xllZWdq9e7caNGhgPDZQ1C1ZskROp1NdunTJdXzBggUqX768OnXqZOxc7Lh/7969W7Vr11a5cuUkSWfPntUff/yh22+/3fLY15o//vhDN954o92nYbmvv/5aO3fu1IULF9zHXnzxRSOxN2zYoD179qh79+46ceKEkpOTdeutt1oWb+rUqapXr546d+6c6/iSJUt09OhRvfLKK5bFttPkyZPVpk0b1a5dO9fxH3/8UVu2bNHYsWMti92pUyc5HI4CH4+KirIs9sXsuKYeP35csbGxWrp0qRwOh/z9/S2P6ZKenq7//ve/io6O1o4dOyztd18sOTlZ+/bty3Vduffee43EtuOadi3kHVzS0tL03//+V1FRUdqxY4e2bNlSaL+7WCamnU5nkY89bNgw/fLLL2rQoIE8PDyMxCzIjz/+qKioKK1evbpQP7wXe+edd1S+fPk8yfd58+ZJkvr06WNZ7ObNm+d7Y3Q6nXI4HMYGQ0w3wlwmT56smJiYXMemTJmipUuXWhbzyy+/1LBhwyRJy5YtU6lSpfTtt99q7969GjFihKU3yKioKPfnbMWKFTpy5Ii++eYb7dixQ1OnTtWiRYssi+3y2WefaePGjRo/frxSUlI0ePBg1alTx/K4GRkZWrt2raKiovTTTz8pIyND7777ruVJNDu/3xcz2ficNm2aXn755TzHK1eurKlTp2rOnDmWxXYJCQnR3Llz5XQ6FRQUpEqVKqlNmzYaPny45bFTU1M1Z84cHT58WNOmTdOePXu0b98+S7/fa9asUUpKigIDA3MdX7Jkiby8vOTn52dZbJfRo0fLw8NDISEhCggIUOnSpS2PKUklSpTQyJEjFR0dbSTexfLrZFasWFGNGzfWc889p/Lly1sa/1ob0DchIyND0dHReTpakyZNsixmQW0mF1Ntpr1792rXrl1KS0tzHwsKCrIs3qJFi7RgwYI8x4OCgtSzZ0/LE9N23b9dwsPDtXjxYvfPpUqV0vDhwy1tK+ZkZzJDsrZDX5Dk5GTNmzcvz/c7v89hYZs6daq2b9+u3377Te3atdOaNWssnbCS0zvvvKN169bp+PHj6t69uzIyMjRixAhL2+dfffWVwsLC8hwPDQ1VYGCgkcT0rl27NHr06DzXtZ07d1oWc+vWrfkmnwMCAixvo7raoV9++aX27t2rp556SpK0dOlS3XnnnZbGluy5pmZmZup///ufoqKi9OOPP+qRRx5RSkqK1q9fb1nMnHbu3KmoqCitXLlSvr6+2rVrl9avXy9PT08j8VeuXKnIyEidOXNG1atX18GDB9WgQYM8eQgr2HVNuxbyDj///LP7fb9w4YImTJig2bNnF2qMYpmYvlRjuKjE3r59u1asWGFbUjopKUmxsbGKiorS4cOHNXDgQMXFxVkac/ny5fl2pp955hl17tzZ0sSVXZ34nOxohB04cED79+9XSkqK1q1b5z6enJyc73K2wuTp6en+Pm3atElPPPGESpUqpTvuuMPyJXMeHh4qVaqUpOwOdGBgoLy8vNS2bVu9+eablsZ2ef/99zVr1ix17NhR6enpGjhwoIKDgy2NOWnSJK1YsUL169dXcHCwZsyYoQ4dOhjp1Nr5/Zbs69AfPnw439mr99xzj37//XdLY7ucO3dOFStWVFxcnAICAhQWFqbAwEAjiekxY8bI29tbu3btkiTVrFlTQ4cOtTQxPW/ePP373//Oc7xt27YaNGiQkcR0XFyctm7dqo8//lj/+te/FBAQoJCQECODTz4+Pjp8+HCe2U8mtGjRQgcOHHAnB+Pi4nTLLbcoMTFRY8aM0ZQpUyyLHR4erh07dujOO+803nayI5ngEhERoczMTG3atEndunVTfHy8patApP9vM0VFRen06dPq2rWrnE6noqOjVaNGDUtjuyxYsECLFy/W8ePHdffdd2vr1q269957LU1Mp6enq0KFCnmOV6pUKddgiBXsvH+7ZGZmuttOUnY7zlSJAzuTGSY69AUZMWKEfHx8tH//fr300kuKjo5Ww4YNjcRet26dYmJi1LFjR40dO1YDBgzQ66+/biR2fHy8oqOj3bOXa9asaXlZiRIlSuR77/Dw8DDW/x8zZoxefvllTZo0SfPnz9fChQstH9AtUaLgyrBWv+777rtPkjRz5kwtWLDAHe+hhx5Sz549LZ3Jatc1tXXr1rr55psVGhqqt956S6VLl1a7du0sjekSHBysc+fOKTg4WDExMapZs6b8/PyMJaUlac6cOVq6dKl69+6t2NhYffPNN8ZW7Np1TbMz77BgwQJFR0fr/Pnz6tixo2JjYxUaGqonnnii0GMV2cR0QUs7nE6nkpKSLI3922+/FfiY1Q1Pl1tuuUXnz5+3/GZ0sTVr1ig6OlrfffedHnvsMY0fP17Dhg1T3759jcTP78JoYqbZTTfd5P63q8ZxtWrVLI+bkx2NsO+//15Lly7ViRMnNH/+fPfxChUqWJ60yszMVEpKisqWLautW7eqV69e7sdyduytip2enq5SpUrp+++/d4/QS9kdTxOysrKUkpKikiVLKi0tzcjnfNGiRWrSpIn69u2r5s2bSzI70GfX99vODv2lPk+mPmuu79OmTZvUoUOHAjtfVti9e7ciIyP19ddfS5LKly+vrKwsS2OePXtWN9xwQ57j1atX17lz5yyNnVOzZs3UrFkz7dy5U/369dOHH36oNm3aaNiwYfLx8bEs7smTJ/Xkk0+qadOm7iX3kvTWW29ZFtNly5YtuWZUujqXH374oTp06GBp7B9++EHx8fG5Emem2JFMcNm+fbuWL1+ugIAAPf/88woJCcl3lUZhcrWZtmzZov/85z/u46NGjVL37t2NrID59NNPtWTJEnXr1k3vvvuudu/erblz51oa81ID9mfPnrU0tt33b0kqWbKkDh065B5gO3jwoLF7iR3JDJMd+oIcOHBAM2fO1Jo1a+Tv769HH33UaJ+sZMmScjgcSk9PV40aNXT06FEjscuUKZPnWm715z0tLU2pqakqW7ZsruNnz561vF+S8xxatGghp9Op6tWra/DgwerRo4fl7/nJkyfz9HtPnjxpbKV4YmKiLly44C4ZmpaWpmPHjlka065r6r333quNGzfq66+/Vo0aNdzJeRM8PDyUnp6utLQ0d07LjvuIl5eXe1CzZcuWmjlzppHYdl3T7Mw7TJw4US1atNDYsWPd926r3vMim5g2MZOrIJe6+JtajvvKK6+oe/fuatq0aa5kjtXLiAYMGKAWLVros88+c9+gTF2wLly4oIyMDJUsmftjnZ6ebvnsXSm7/s+8efPciWkvLy/16dNHzz77rOWxJXsaYcHBwQoODtbSpUvVsWNHS2Nd7Omnn1anTp1UsWJF1axZU3fddZek7Jq8Vg8KPProo+rZs6eqVq0qh8OhJk2aSJJ+//13Y8mEbt26qX79+lq6dKmOHTumIUOGaOPGjZbWcvv666+1fPlyTZ48WX/++aeCgoKMzXay8/ttZ4e+WrVqSkhIyLMkMSEhQVWqVDFyDvfdd58ee+wxOZ1OjRkzRmfOnLnkDJnCdPE17cKFC5Z3dM6fP1/gYybuJS5bt27VwoUL9dNPP+mpp55S586dtXHjRvXv31+rV6+2LO4TTzxhNHGS06lTp3ThwgV3WyktLU2JiYlyOByW71FRs2ZNS3//pdiVTJD+v13q4eGh1NRUVaxY0fIOvcuxY8dyJTROnjyp48ePG4nt6empcuXKKSsrS06nU/Xr19fBgwctjdm0aVPNmzcvT+L9vffe0z/+8Q9LY9t5/3Z58cUX1a1bN7Vt21ZS9uyz8ePHG4ltRzLDZIe+IK4+YKlSpXT69GlVrlzZWHK4fPnySk1NVZMmTRQeHi5vb29jAxE1a9bU1q1b5XA4lJWVpTlz5lhey7xDhw4aPny4Jk6c6F4ZkZycrIiICD3++OOWxnZx/X0rV66sXbt2qUaNGpavruvcubMGDRqkCRMm6JZbbpGUPSDy2muv5am3bZX27dura9eu7gHszz77TO3bt7c0pl3X1Lfeekt//vmnli1bpkmTJunPP/9USkpKrkE/q0RFRem3335TVFSUunbtqnr16uncuXP5DshYxdPTU06nU7fccos++ugj3XTTTTp16pSR2HZd0+zMO6xYsUJRUVHq1q2bbr31VgUHB1vWDyuyielLjR7NmDHD0tGltWvXWva7/6rx48erRo0aqlixotElqXPnzlV0dLTat28vPz8/S5dEXqxNmzZ644039Oqrr7pfc1ZWlqZMmaLWrVtbGjsuLk6ffPKJ3njjDTVq1EhOp1Pbtm3TpEmTVLVqVT355JOWxpfsaYS51KlTR2fPnlX58uW1ZMkSbd++XX369LH0BhkaGqq7775bx44dU8uWLd3HPTw8NGLECMviStKgQYO0atUqHT16VKNHj3Yn6U6fPq1BgwZZGtvFVbNOyv77L1y4UFOnTrU0ZqVKlRQaGqrQ0FDt2rVLUVFROn/+vEJDQxUQEKCnn37asth2fr/t7ND3799f/fv314ABA3T33XdLyp7hOGvWLGNLYl0lBurUqSNPT0+lpKQYSyY0a9ZMc+bMUVpamjZt2qT333/f8lIad9xxh3sGaU4rVqwwdk0NCAhQ+fLl1b17d02ZMsU9IBMYGKhly5ZZGtvqkkCX4upctm/fXg6HQ6tWrdJjjz2ms2fP5lqZVJgWLlwoSapbt6569uyphx9+ONeAvoka03YkE1wqV66sP//8U61bt1afPn1UtWrVfFcMWOHZZ59VUFCQHnzwQUnZicrnn3/eSOyyZcsqPT1dDRo00JQpU1SrVq1LDkoVhmHDhql79+5as2aNGjVqJEnatm2bTp48mWvmuBXsvH+7PPTQQ/roo4/07bffSsqeyONKZFnNjmSGyQ59QerWravTp08rICBAXbt2VcWKFeXr62sk9vTp0+Xh4aHhw4fr/fffV3JyspGVN5L02muvafjw4fr111/VqFEjNWvWzPI28oABAxQeHq7WrVurbt26kqT9+/fLz89PAwcOtDS2S4cOHXTq1Cn17dtX3bp1U1ZWluX9kmeffda90so10HnhwgU9++yz6tmzp6WxXQYPHqxGjRpp8+bNcjqdevnll933FavYeU2tXLmyevTooR49eighIUFRUVF66qmnVLdu3Vyrzqxw2223KTw8XGFhYfrf//6n6OhotWrVSm3bttX06dMtjS1JL730klJSUhQWFqYxY8YoOTlZo0ePtjyuZN81zc68g4+Pj4YPH57r/T5x4oReeeUVBQQEFGof3OG0cydAmzz44IP68ssv7T4NS7Vv316fffaZbfFPnz6tuLg4LV26VHv27FGfPn0UEBCgevXqWRbz7Nmz6tu3r44cOeKeXZiQkKCaNWtq3rx5lo4ohYaG6rXXXstTC3bXrl0aN26cu+NrpePHj2v48OHavHmzHA6HuxHm5eVleeyAgAAtW7ZMv/32m1566SU9+eST+vbbb41srmK3c+fOyeFwGBspvtakp6friy++0NKlS90bEVrh7Nmzev755/XHH38Y/37n5Gp8xsfHy8fHx0iH/uuvv9asWbOUkJAgSWrYsKFeeOEFyxPyLvmVp6pYsaKRWrDp6emaP3++1q5dK6fTKT8/P/Xt2zfPzPnCtG/fPvXo0UP333+/O3n0008/adOmTfroo4+MbCi7fft290CEafv379err76qxMRErV27Vj///LPWrl1rrGO9du1ad+fy/vvvt3wg4tVXX73k41ZuAujy/vvvKygoSNu3b9dLL73kTib07t3b8tiZmZny8PBQVlaWli1bppSUFAUFBeVbC9kKu3bt0pYtW9zv9x133GEk7u7du1W7dm2lpqZq+vTpSk5OVr9+/SxP2p0/f17Lly9XQkKCnE6nGjZsKH9/f1vaEKbu39eCDRs26K677lJSUpI7mTF06FA98MADlsd2bVYWHR2tb775Ro8//nihd+j/iq1btyo5OVlt2rSxbQ8i01JTU5WVlWW0tOWBAwdyfb9NDb5cLD09XRcuXDB2LT937py7vXjbbbflKgVWXNh5TU1LS9MXX3xhedmz/Bw/flyxsbFGN6IvTlJSUnT69Ok8e78cOnRIVatWNfYdd0lKSlJMTIxiY2MVHx9faL+3WCam27Ztm2ujtsKWc3dOp9PpXrbl+reJ3cZffvlljRgxQtWrV7c81uXs2LFD0dHRWrlypTZt2mR5vA0bNujnn3+W0+nUXXfdZWS31Mcee6zApdWXeswKdjTCXJsgvPvuu/L09FSPHj0UFBSk2NhYy2IWVEdeyl4quWTJEstiS9mb8c2YMUOHDx+WJNWuXVsDBw60fHb8lClTNGzYMA0aNCjf12/lyO2vv/6q48eP5+nIffXVV7rxxht12223WRbb5dtvv3U3+E19v/NTnDr0fn5+OnLkiCpWrCgpe2mql5eXPD09NX36dEtrbecs62DS8ePHtXDhwlydy5CQEGP3VKfTqaioKO3fv1/Dhg3T4cOHdezYMcuX+0tSz5499c9//lPTpk1TXFycsrKyFBAQoBUrVlgeG+aTCTDHzs7ltXD//v777zVlyhQdOnRImZmZRvtF1wqrOvSXk5aWlmull4mBkL1792rOnDk6ePBgrj2WoqKiLI8tZdcwP3jwYK7X7SojY4WCvmPr169XrVq1jHzHJPOve+vWrTp16pQeeeSRXMdXrlypmjVrWtpuKY59oiVLlsjpdKpLly65ji9YsEDly5dXp06dLIkrZe8llpKS4l6xm/OcvLy8jGwOfv78ecXHx+e5rlhdrlay75oWERGhNm3a5Nn4ffny5dqyZYulZTyPHj3q3iQ6p23btql69eqFWgavyJbyuBSr63uVK1dOVapUUceOHdWmTRtjtThzSk5OVkBAgJo0aZKrU2/1coP8Gt133XWXKleurAEDBlga2/XFadGiRa5k1bZt21SjRg1LZ/ddKglscsTYdGPEJSMjQ999951Wr16tCRMmSJLlpQ7yqyN/8OBBzZ492/LN0ZYsWaIPP/xQr732mho3biyHw6Hvv/9eU6dO1fnz5/M0FgpT06ZNJWUviTVt2rRp+W6KVaVKFU2dOlVz5syx/BweeOABPfDAAzp27Jh++OEH/fLLL5bPsMuv8VmqVCmVL1/e8v0M7GyAurRr107333+/u0H0xRdfaNu2bWrZsqUmTJhg6SCQn5+fnnzySXXr1k0333yzZXFyyszMVIUKFfJ81lNTU92zS602adIkJSUl6eeff9awYcNUvnx5TZw40UiH3jWjzrUks0SJEsY2BNy7d69mz56tQ4cOGU9kZGRkaPHixe4B9ObNm6tLly6Wzs7Pya7793fffadp06bliW1lsnDYsGGaMmVKgQPMJt7vpKQk/ec//8nTwbSynTx58mS1adMmT2L6xx9/tLxzeS3cv0eOHKn+/furcePGxvtGdiQz8uvQe3l56b777pO/v79lcXNatWqVJk2a5K4b7xoM2Llzp+WxX3rpJQUGBio4ONj4DO1p06ZpyZIl8vHxcX/WHA6HpdfUgr5jlStXNvYdmzx5smJjY3Xrrbcae90zZ87Mt7ybr6+vXn/9dX3wwQeWxS6OfaJFixbluyI5KChIPXv2tLRfMG/ePP373//Oc7xt27YaNGiQkcT0iy++qBIlSqhhw4a5yq6ZYNc1bevWrfm2DwICAiy/rkyZMiXflcFnzpzRhx9+qGnTphVarCKbmC5o5MzpdOrPP/+0NPaaNWu0adMmxcTEaMGCBWrXrp06duxobKRUkvz9/Y01enKys9Ft8otzsaSkpALLdZgqyG9HI8zlpZde0tixY9W8eXPdfvvt2rdvn+VL13LWiT9x4oTefvttffHFF/rnP/9peU3QDz/8UO+++26uwY62bduqfv36eu655yxNTLtu+vfff79uvPFGy+Lk5/Dhw3nK1UjSPffcY3k91JUrV2rkyJGqVKmSRo4cqddff1033XSTDhw4oJdeekkhISGWxbazQ29nA9Rl8+bNGjlypPvnhx9+WPPmzdOQIUMsr8m6bNkyLV68WM8++6x8fHwUGhqqBx980NIB5qlTp6pevXp5Nu1ZsmSJjh49amRWxqZNmxQbG+uu91y1alVduHDB8rjS/++67vobJyYmGksiDRkyRI8//rg6duxoPJExduxY/f777woKCpLT6dSyZcu0a9cuS9stLnYkE1xGjBihl19+WXfddZex99m1KbSdG5X3799fd955p1q0aGHss2Zn59LO+7dLmTJl8tTuN8WOZIad/ZKc5zBz5kyj32+XkiVL6rnnnjMa02XVqlX64osvjK48uRa+Y1988YXWrFljtDTQyZMn891T6NZbb9XJkyctje3qE9mxN4Zd73d6enq+n+tKlSrlGnSzwtmzZ/Pdg6J69eo6d+6cpbFdjhw5YtsKPruuaZe6dls94XbXrl2699578xxv1aqV3njjjUKNVWQT05caOcvvIlLY7r//ft1///06d+6cVqxYoR49emjgwIGWJk9ysmvzIjsb3Sa/OBd74IEHtGPHjnwfM1VqwI5GmMvDDz+ca3nJrbfemu+IamFLSUnRO++8o+joaHXp0kWfffaZkdfvdDrznYFfq1Yty2O7dO3aVT4+PurYsaMee+wxI+UO0tPTr+ixwjBnzhxFRUXpzJkz6tWrl6Kjo+Xj46PExET17t3b0murnZ0NOxugLllZWfr+++/dyzF/+OEHpaamSrp0Y6kweHl5qX///nr++ee1Zs0avf766xo3bpy6d++u0NBQSz73X331lcLCwvIcd204aiIxXbp06VyNTatXgeQUEhKiF198UadOndLMmTMVGxurwYMHG4mdlZWlF154wUisi23ZskUrVqxwf6Y7dOhgLIlmRzLBpVKlSmrfvr3RmHfddZek/x9gdnVoTa4wS01NNbZhkoudnUs7798ubdq00bp164wMuFzMjmSGnf0SF29vb91zzz1GYl2sdevW+uqrr9SmTRvjsb29vY33h66F71itWrWMrXByudQEBasnL7icPHlS48aN04YNG+RwOPTAAw9o5MiRqlatmmUx7Xq/Xe3v/Jw9e9ayuNKl389LnVdhuv3223Xs2DFbytXaeU07efJkns/zyZMnLd9Q91K/v7D7JkU2MX1xYvbYsWOKjY1VdHS0nE6n+vfvb/k57NmzRzExMfrvf/+rNm3a6P7777c8pssbb7yhAQMGqGzZsnrmmWeUkJCg119/PU9NoMJmZ6Pb5BfnYiY2R7ocOxphOX399dfauXNnrll9L774omXx5s+frw8++ECPP/64li9fbmnj42IZGRlKTk5219x1OXPmjLFk4ZdffqmvvvpKMTExmjhxoh555BF17NhRTZo0sSxmtWrVlJCQ4N580CUhIUFVqlSxLK6UfW3x8fGRlN3wdv27Ro0ali+1t7OzYWcD1GX06NEaPHiwypQpI4fDodTUVE2bNk1nz541suN6amqq4uLi9PHHH+vmm29W586dtWnTJvXp08eSDVZLlCiR7wxKDw8Py+9jLvXr19eyZcvkdDp1+PBhvfPOO+4lq1YLCgpS7dq19b///U+pqamKjIxUs2bNjMRu3Lixdu3aZWQCwcVq1qyptLQ0lSlTRlL2dd7UYKMdyQQXf39/LVq0SO3bt8810GMiSX7o0CENHTpUO3fulMPh0J133qkpU6bkO/uusDVq1MhIKaiL2dW5tPP+7bJ48WLNnTtX5cuXl6enp9Ea03YkM+zsl7j06NFD//rXv/TII4/k+n6bWMXbokUL9e/fXyVKlDD+fjdu3Ni9Aifn67ZyUORa+I6Fh4frhRdeUMuWLXOtDLByJWmdOnX07bff5qm1vGHDBmMrO0ePHq3bbrtN4eHhcjqd+vTTTxUREWHpJCm73u+mTZtq3rx5eTYafO+99yzfh+SOO+7Q8uXL8wzar1ixQrfffrulsV1efPFFdenSRQ0aNDBarlay75rWuXNnDRo0SBMmTHCvSD9w4IBee+21PKs7C1vp0qV16NChPO2yQ4cOFfrkoCKbmJayOxVr165VdHS0fvzxR2VkZOjdd9+1dKMmSfr4448VFxcnT09PBQcHKzY21vgsmG+//Vbh4eH68ssvVaNGDb355pvq27ev5Ylpyb5Gt8kvzsVcuxAXxEQD0I5GmMvUqVO1fft2/fbbb2rXrp3WrFlj+UzxqVOnytvbWz/88IP69u2b53Era1QGBwerf//+GjdunOrWrStJ2rdvn0aPHm1stYKHh4ceeughPfTQQzp9+rSmT5+ukJAQS+sG9u/fX/3799eAAQPcNRO3b9+uWbNm6fXXX7csrpR7YMuVOMrvMSvY2dmwswHq0qxZM/33v//Vvn375HQ6Va9ePXeHx+rP+7hx47R69Wr5+flp2rRp7oZvQECAHn/8cUtipqWlKTU1Nc99++zZs0pLS7Mk5sXCw8P1xhtv6Pjx4+rSpYv8/PyMlT3YunWrmjVrZiwZndO2bdu0dOlS3XrrrbnuYyZqDteuXVtdu3Z172i/atUqNWvWzF2my8qOvR3JBBcvLy+99tpr7tVuJmvQRkREqEuXLu6SREuXLlVERITef/99y2M//fTT6t69u2rWrGnss2Zn59LO+7dLdHS0kTj5sSOZYWe/xCUxMVEffPCBYmNjc5UJWrNmjeWxIyIiNGnSJDVs2NB4GZHt27dLkj766CP3MavLI10L37F33nlHx48f186dO42VKHr55Zf1wgsvqHPnzu7Z+du2bdOSJUuM1NWWsvdomDlzpvvnQYMGWZ7zsOv9HjZsmLp37641a9aoUaNGkqSffvpJp06d0n/+8x/L4krS0KFD1aNHD3355Ze5Ym/atCnXd81Kr7zyivz8/HTnnXcaL/lm1zXt2Wef1cmTJ/Xkk0+67x0XLlxQz549LZ8g1KtXL/Xr108jRozI9f2eNGlSoZc1cTitzhbaZNKkSVqxYoXq16+v4OBgPfLII+rQoYPWrl1reewGDRrozjvvVO3atY3vEOvy5JNPatmyZZoyZYoaNmyoDh06KCgoSLGxsZbG/fDDD/Xf//4330a3n5+fpV+eZcuW6Z133inwi2PlDapBgwaqWbOmPDw88iTgTTUAe/TokeeYw+GwZEbhxQICAhQTE6OOHTtq2bJlSkxM1Ouvv65Zs2ZZFvPbb79VWlpanqW/586dk6enZ56R+8LkdDo1a9YszZs3z51ESE9P13PPPaf+/fsbm1V5+vRpxcfHKyYmRikpKQoKClK/fv0sjfn1119r1qxZSkhIkCTdeeed6tevn1q3bm1p3MaNG7sHeH777Tf3v51Op/bu3asffvjBstjr16/Xa6+9VmDj08olXSdOnFD37t1VpUqVfBug3t7elsXOKTU1VUePHs21OZqVA25//PGHbrzxRs2fP19du3bNtTrh559/VsOGDS2b/fbWW29pz549mjhxonsVSnJysiIiInTzzTcbK2thl44dOyolJUXBwcEKDg4u1B23L2fz5s35Hs+5p4BVXn311Us+buXKqMGDB2vv3r264447cnW0TKzG8vPz01tvvWVL8igwMFBxcXGXPWaFDh06qFOnTnk6t1Z/1t5880198MEHuTqXzz77rIYMGWJpXMm++/e1oGPHjmrcuHGe99vKwVU7+yUuDz30kBYvXmzLsvennnrKyKDitcTu79ijjz6q1atXG+uHuPzyyy+aP3++EhIS5HQ61bBhQ/Xu3dvY6qeAgAB98MEH8vLykpS991PPnj21fPlyS+Pa9X6fP39ey5cvz/X39vf3NzIR8vjx41q4cGGu2CEhIcauMQEBAZa/rwWx+5p27tw592TI2267zVj5syVLlujtt99WYmKinE6natasqX79+qlr166FGqfIJqbvueceNWnSRP369VPz5s0lyT2T02oxMTEFPnbkyBEjZUR69eqlm266Sd98841iY2NVvnx5BQcHG/ki59fo7tmzp5HOfM4vjpS9zN+KL87Fhg8frh9++EEPP/yw8Y0urwWdOnVSdHS0AgMDFRUVpVKlSqljx45aunSpZTEjIyPz3aBswYIFxjYoS0tL04EDB+R0OlW3bl2juwO/+OKL+u6779SuXTsFBQXZMrvRpIISVi5WJxPs7GzY2QCVpIULF2rq1KmqUqWKu7Nj9YBbcHCw+156cUMw52NWyMjIUHh4uNasWeNeEbF//375+fkpMjLS8tIxLhs2bNDBgwdzlQcyMYNWknbv3q2YmBjFx8fr9ttvV8eOHW3ZULm4sCuZIGXPHP7kk0+Mx5Wyv8vTpk1TvXr1JGWvPBo6dKilbYecsa28jlyKXZ1Lux05ckRTpkzRrl27cpV9M9E3syuZYapDX5DQ0NACN2e32pw5c1S5cmVbygRJ2ZMKvv32WzkcDrVs2VItW7Y0EtdOffv21Ztvvqny5cvbfSpGxcbGatq0ae7NsdetW6chQ4YYGfy5Fuzfv9/dXi3qXnvtNXXv3t14GS7JvmvaH3/8ketnh8OhatWqGVt54+KqgOAaACpsRTYxfebMGS1fvlzR0dH6888/FRQUpOjoaH355ZfGz+Xi+taff/655TFPnjypZcuWqXHjxmrcuLEOHz6szZs3q2PHjpbHluxpdD/33HOaP3++JOu/OPk5d+6cVq1apZiYGF24cEFBQUEKCAjIU4fYSnY1wp555hnNnTtXkZGRSk5Olre3t7777jstWbLEsphPPPGEli1blmcZT2ZmpgIDAxUfH29Z7Mtt8GCi0R0XF6fHHnssT1kLE5xOpxYvXuz+rD3wwAPq0qWLLUkVSZoxY4YGDRpkS2w7nDlzRpUqVTIWr127dlqwYIFuuukmYzFzrvC5eLWPidU/UvZqn5yDAa5VQCaEh4drx44deWb3md7PIC0tTePHj9eSJUuMlHbo1KlTvtcRUzNU7BoMsDOZ8K9//Uvp6enq0KGD8Rq0X331lYYPHy5fX193+ZDJkyerVatWlseePn26mjVrZssmRi4HDx7U2rVrVadOHbVr185ITDvv37169VKHDh303nvvaeLEiVq0aJFuvvlmS/cjcbEzmSHZ0y+RsidxJCYm2lLmL7/ZsqbKBM2bN09xcXF64oknJEkrV65UUFCQevfubVnMlJQUffLJJ6pcubKCgoI0depUffvtt6pbt65GjBhhZM+CIUOG6Oeff1br1q1zTZaxcrLOpk2bdMstt7hXV82bN0/x8fGqXbu2IiIi8t0s3gq7d+/W5s2b5XQ61aJFC2OTxK6FPpHpgdaTJ09q/PjxuV6z1ZtNugQGBmrPnj22lHyz65rWvHlzORyOXKvyU1JS1LhxY02ePNlYLXer80xFNjGd065duxQVFaX4+Hj5+PgoICBATz/9tKUx7apvfS357bfftGnTJknZXyjXZmVWMZWs+CvWrVun4cOHq3fv3nlqw1rFjkaYy4kTJ1SpUiVlZmbq/fffV3Jysnr06GHphfJSs1+snhnToEGDPDeInDNJXbNqreJ0OhUYGKhly5ZZGqcgkZGR2rlzp3ugKzY2Vg0aNDAySz0/Dz74oJFBRzsanx988IFat24tHx8fZWZm6oUXXtD69etVuXJlzZo1y8iGeHbMqMzZyL64wW26AX7mzBlt3rxZtWvXNrYs9bHHHlN8fLxtG+LlnDF92223KTg4WE8++aTlcXOujLhw4YJWrFih6tWrGylzEBYWpt27d6tBgwbGBwPsSCa4+Pn55TlmqgSZlL3ketu2bXI6nWrcuLGxjYybN2+u06dPG92Ir2fPngoPD1eDBg109OhRBQQEuCePBAYG6oUXXrAstoud929XO93VRsvKylLPnj2NlJyzM5kh2TdxxM4yf3YKCAjQokWL3OW4UlJS1K1bN0v7BoMGDZKHh4dSU1N1+vRp3X777XrkkUe0adMm/frrr3rnnXcsi+1S0GZ/Vg7+BAcH64MPPlDlypW1ceNGvfzyy4qIiNDOnTu1f//+XLWfi6JroU9kOgcycOBA3XbbbXr66afdm03u3r3b0s0mXews+XYtyczM1CeffKKvv/5as2fPtjyeiTxTkd780KVBgwYaNWqUhg8frv/+97+KiYmxNDF9cX3rt956Sx06dDCalLZzuZyUfVGeOnWqHnzwQUnS3LlzFRYWZmnH1ul06vz58wVusmj1LNbk5GQtX77cvfHlsGHD1L59e0tj5rRs2TJ98skn7kZYjx491K1bNyOJ6RtuuEFS9giqiVI1kr0blO3atSvXz06nU3Fxcfr3v/+dZ4M8KzgcDtWpU0d//vmnKleubHm8i3399deKiYlxlzRo3769OnbsaFti2tT46uTJk/M0Pg8cOGDp646KinLP2FyxYoV+//13ffPNN9qxY4emTp2qRYsWWRbb5YEHHtDkyZP1xBNPGJtReeHCBe3Zs0dOpzPXv12PWSksLEzPPfecGjRooNOnTyswMFAVKlTQqVOnNHjwYMs3KZNktK7zxYKDg3Xu3DkFBgbq008/NTLLy+XijkWrVq30z3/+00jsHTt2aMWKFcY305GkevXquctZmGZi75VL8fLy0kMPPWQ8rh0b8R07dsw9uLVs2TK1aNFCM2bM0JkzZxQaGmokMW3n/ds10FauXDn98ccfuuGGG/IsUbbKyJEjjcTJz8Ud+jfeeMPYxBFTG5IV5NSpU/rpp5/kcDjUqFEjyzeMzsnVH7r431bZs2ePVqxYofT0dLVq1UqLFi2Sw+FQmzZtjJXCMrH64GIZGRnuvsjatWvVqVMndejQQe3btzcyoC1J33//vaZMmaJDhw4pMzPTyECjy7XQJzK1GbqLHZtNurjaiefOnZMk46Ww7Lym5eTh4aHQ0FBjg6sm8kzFIjHtUqpUKXXo0MG947pVFi1apCZNmqhv377u+taml7iPGDFCHTp00M6dO93Ji5tvvtlY/Pfee08xMTHujbmOHz+u3r17W3qD+uWXX9SkSZM8s1hN7DD/8ssva/fu3Wrfvr2mTZum2rVrWxbrUkw3wlx++uknvfzyy8rKytK6deu0fft2ffrppxo3bpxlMTt06KDhw4fnu0HZ448/blnci61du1ZvvvmmvL299a9//Ut33XWXkbjlypVTcHCw2rRpk+umbKohlPOaZlcJD9Px7Wh8enh4uDvzGzZsUFBQkLy8vNS2bVu9+eablsXNyTULY9WqVe5jVs+oPH/+fK7VJjn/bfX7nZCQ4E4excXFycfHR++9956OHj2q559/3khium7duurZs6cefvjhXDNoTZSVGDly5DVTsz4lJUWHDh0yEuuWW27R+fPnbSmnYUcyISfTK9xcy1IvZjKZcNNNNykjI0P79u2Tw+FQ3bp1La8fn3Ng7/vvv9fDDz8sSapUqZLRARE77t+nT59WhQoV9OeffyokJEQdO3aUp6ensfaanckMOyeOSPbN1l6/fr2GDRsmX19fSdn9tClTphiJf9ddd+nVV19V586d5XA4tGTJEsvb5657dalSpVSrVq1c3y1Tq59SU1M1a9asXO/3Cy+8YKyu948//ujehN1k32DkyJHq37+/GjdubHwTX8n+PlF4eLiOHz9ubEP0rKwsJSUl5dpsMisry0jsQ4cOaejQodq5c6ccDofuvPNOTZkyRXXq1LE8tp3XtILk3JTealbnmYpVYtqUr7/+WsuXL9fkyZPd9a1Nfmik7NGczp07a8GCBWrSpIkaNWqknj17Gj2HnBdHExfKBg0a2FbKY9WqVapcubIWLlyojz/+2H3cZCfr4kbYp59+aixJOmnSJM2bN09hYWGSpLvvvlvh4eGWxhwwYIDCw8PVunXrPBuUDRw40NLYkrR161ZNnTpVWVlZGjFihFq0aGF5zJxuueUWozVvc2rVqpX69Omj4OBgORwOxcTEWF4TdNCgQQUmMv78809LY+dkuvGZmZmp9PR0lSpVSt9//72eeuop92Pp6emWx5fsmVFp5yzOnMmj7777zp08qlmzprEOR1pamm6++Wbt3r3bSDwpu7Ffp04dValSxb1HRE4m6jXmrDGdlZWlw4cPq1evXpbHlbIH9bp3766mTZsaL6dhZzLBjhVudsxWvtj27ds1aNAgdxmPjIwMzZw5Uw0bNrQsZqlSpfTrr7/Ky8tLW7Zs0ahRo9yPWb0SxMWO+/fKlSv16quvqnz58mrXrp1mzpyppUuXKiUlRfXr17c0toudyQzJvokjds7WfvPNN7Vw4UL3QNeePXs0bNgwI0mc1157TW+//bbGjx8vKXvll9UrOpOTk7Vu3TpJ2as3Xf+WsgdZTRg3bpwyMzM1YsQISdmr7saOHWtpSar69etrypQpql69uvbv36/7779fkrnXLEllypRRQECAsXg52XFNlaTBgwdr7NixKlWqlAIDA3Xq1Ck9//zzRr7bvXv3VlBQUJ7NJk2IiIhQly5d1KlTJ0nS0qVLFRERoffff9/y2HZd0/Lb2+r06dP65JNPdPvtt1sa28XEYB+JaQtUqlRJoaGhCg0Ndde3Pn/+vEJDQ43Ut5bsXS4nSTfffLNmzJihrl27upOkVjf+7Jy1aapEyqVc3Ahr2bKle9Taaunp6XmSFlbPDihZsqSmTp1qywZlffv21d69e/Xiiy/qsccek5T7pmEimWDnDLthw4bpk08+0X//+185nU49/PDDlu8wn3Opt+u77lodYWoZuB2Nz0cffVQ9e/ZU1apV5XA41KRJE0nS77//bvnMzrS0NHl6eha42aepGTh2SExMVOXKlbV58+ZcG2uaSh6Z3uRQksaPH6+5c+eqb9++eR5LTk7Wli1bLD+H4cOHu//t4eGh2rVrq2vXrkbuZePHj1eNGjVUsWJF4+U87EgmuNixwi3nRqopKSk6cOCApQnh/EyYMEETJ050Dypv3LhR48aNs7Se/pAhQ9S9e3elpqaqc+fO7tV133zzjW699VbL4uZkx/179uzZ+uSTT+Tr66uNGzfq7bffNl5iws5khh2zd13snK2dkZGRa/WFj49Pro1lrVSuXDkNGzbMSCyXWrVqaf78+ZKyB7Jd/3b9bML27dtz1dH+xz/+YXk5jdGjR+tf//qXNm3apLfeesu9GmHbtm3u0ndWa9OmjdatW2dkU8+L2XFNlaR9+/apYsWKWrVqle6//369+uqr6tKli5HvdlBQkO688073ZpPPPPOMsc0mT548mWuSTqdOnYzVzLfrmtakSZNce1s5HA5Vq1bNvemkCa+99ppmzZpl6WAfiWmLma5v7dKsWTOdPn1a3bp1M75cTpJef/11jR8/3n0zbNmypcaOHWtpzJwdHZf33nvPSH3KypUr6/Tp03lKeBw6dEhVq1a1NHZmZqY+//xzVa5cWcOGDdOHH36ob7/9Vunp6cZm6nt6eurs2bPuhOFvv/2Wa9ahleyYOfzVV19Jyl469eqrr0pSrpuFiR3Hk5KSNGnSJB05ckQLFy7Url279MMPP6hbt26Wxy5RooRCQkIUEhJieSyX4OBgbdu2Te+++6727NkjSbr99tvVq1cv3XPPPUbOwY7G56BBg7Rq1SodPXpUo0ePdi9RPH36dK6EqRW6du2qmJiYPA0iydzn3A59+/ZVUFCQSpUqpaZNm7ob2z/++KPlO18vXLjwko9bWcpj7ty5kvKfrW6qs5ff5jWmasgfPXpUn332mZFYF7MjmZCT6RVuLuvWrVNERIQ8PDy0du1abd++XW+//bbmzJljeezU1NRcK52aN29e4CBcYWnevLm+/fZbnT17VpUqVXIfb9KkibF9aOy4f5coUcK99Ll58+Z64403jMV2sTOZYaJDfyl2zdauVq2ali5d6k5OxsTEGNvcNCUlRbNmzdLGjRvlcDjUvHlz9evXz9LXb3c9b5dz5865k8NWX9Ok7Al5EREReY4/8MADeuCBByyPL0mLFy/W3LlzjW5m62LHNVWSOyG6ZcsWtW3bVmXLljVaxqR+/frGVrzkVKJECe3du9e9L8e+ffuMTSaw65p28d5WdihXrpx7ZbxVSEwbYqq+tYtr1lFQUJDuu+8+o8vlpOzNbEzVP3XJbyfY5cuXG0lMT548WW3atMmTmP7xxx+1ZcsWS5Pyr7/+unbv3q20tDTVrl1baWlpevDBB7VlyxZFREQYeR9eeOEF9e7dW8eOHVN4eLjWr1+vKVOmWB7XLtfCDWLUqFFq06aNu3RMvXr1NGzYMCOJ6aSkJH300Uc6dOhQrpHit956y7KYP/zwg/r27aunn35aAQEBcjqd2r59u5577jnNmzdPjRo1siy2i12Nz4sHFffv329kdmFMTIyka+PzblL79u3VrFkznThxwl1rWsqeDWVl3XwpewM+Kbsc1+bNm92Jsw0bNqhVq1ZGakznx84VSaZi33HHHTp27JiqV69uJN7FTCcTXOxY4eYyY8YMRUVFuWvI33333Tp48KCR2GXLltXGjRvde8Fs3rzZyCoQDw+PXElpUxMoXOy4f6enp+fawDYtLS3XzyZm2tmZzDDRoS+InbO1x44dq7CwMI0ZM0aS5Ovra6xvMGLECFWoUEGjRo2S0+lUTEyMRowYoRkzZhiJ79K9e3f95z//MRYvICBAXbt21RNPPCGHw6EVK1YY25QuJ9Ov287yUHZcU6Xs2br//Oc/tXfvXg0dOlTnz5+3NF5Odm42OXjwYIWGhroHO3ft2qXJkydbHlf6/2va6NGj5XA4jF7T7HbhwgUtW7Ysz+e8MMvdkZguYvLrzFStWlVVq1ZVamqq0aXXGzZs0MGDB3N9eE13qk3NtNq6dWu+yeeAgADLZ/5s3bpVK1asUGpqqlq1aqWNGzfK09NTXbt2NTbj6h//+IemTJmi9evXy+l0ql+/frbVP7bL5s2b853tZ5XExER169ZNixcvlpQ9a93USPnAgQPl4+OjFi1aGOvYzZ8/XxMnTtQjjzziPvbII4/onnvu0dy5czVr1izLz8GuxufFBg8e7E4am7BkyRK1aNHCtk1d7eDt7Z1r5mh8fLz8/f0tj+sq3TBgwADFxcW5E4SHDh3S9OnTLY9vl/xqWruYWvqdnJysgIAANWnSJNeKHxPfbzuTCTlXuDkcDj3wwAOWr3DL6eIZ2jnre1tpxIgReumll9zx0tPTjV/LJXMTKFzsuH9fvJmt9P8b2lq9ka5LzmSGa8WPqWSGiQ59QeycrX3zzTfr008/1dmzZ+V0Oo3O1t67d6/i4+PdPzdt2tTIPfxiJussS9krvu644w5t3LhRTqdTYWFhatOmjdFzkLJrbJuU36ppU+y4pkpSZGSkvv76a91xxx0qV66cEhMTNXToUCOx7dxssk2bNoqPj9e2bdvkdDrVuHFjYysx7Lym2e2ll15Senq67rnnHsvaaSSmi5j8lly7mFx6HR4erh07dujOO+80epHOzMzUgAED3MlgUzMULnVRtnq2l6enpxwOh8qVK6ebb77ZfbEoUaKEkV2gnU6nQkNDtWzZMuMzSa8lkyZNMposLFky9+X7zJkzxgZizpw5Y/nM0Yv99ttvuZLSLg8//LCx0Wq7Gp8XM/U+uyQkJOjdd99Venq6mjdvrhYtWqh58+a64YYbjJ6Hnd59912jndrff/8916zVOnXqaN++fZbGtDM5nF9daxdTZaH8/f1tSVxI9iYT7Fjh5lK+fHmdOHHC3U7atGmTKlasaCT2Pffco88//1z79u2T0+lUvXr1jLSZLmb6em7H/dvOzWxd2rRpoxUrVuinn34ynsww0aEviJ2ztWNjY/XQQw+pcuXKkrJLkH311VdGJs3ceOONOnnypPs9PnXqlC2D66bfbym79JYdtZZzMnUtHTZsmKZMmZJr4+ScoqKiLD8HO66pUvaGj67NuSWpRo0aqlGjhrHYdm02KWW3W1q2bOkuWWpy8uXBgwd18ODBXOVS7f6+mXDgwAHLy92RmC5irpUl1z/88IPi4+ONN/I9PDx0/vx5ZWVlqUSJEkZ2xXXJ2QDKeczqTkfOJZEXL480sVGXw+FQnTp19Oeff7obn8WR6c7lo48+qoiICJ09e1ZLly7Vxx9/bGyTkdtvv12JiYnGGkBSdiPoSh4rTHY1Pi/2j3/8w2i80aNHS8quwfvll19q+vTpOnLkSJGtMZ0f09/vKlWq6O2331bnzp0lZS9TrVKliqUx7UwOXwuJqwceeMDoNe1ippMJ3333nZo2bap169YVeD5WGzp0qPr06aPDhw+rR48e2r9/v2bPnm15XCk7WfjWW2/lKnPnOmaS6aShHffva8GECRM0cuTIXJslu45ZzUSHviB2ztZ+7733FBQU5P65SpUqeu+99yxNTLtmwZcrV06BgYHu9/vLL7/MVVPelE8//dRovL1792r27Nl53m8TCdqcTL3uZ599VlLujZNNM31NffbZZ/Xhhx+qefPmuZLxJstp2LnZ5OrVqzVx4kQdO3ZM0v+/bhN9kmnTpmnJkiXy8fFxT0p0OBzFIjFdp04dpaSkWDpLnMR0EXby5En99NNPcjgcatSokeWb8OVkavfh/DRq1Egvvvii/P39Vb58efdxKy8anTt31qBBgzRhwgR3CYsDBw7otddecycWrHLxEsmc/zZVm7NcuXIKDg5WmzZt3DUyJTMN32uFqc1FMzMzlZaWpueee07Lli3TmTNntG7dOj3zzDN64oknjJzDmTNn9OSTTxpd8n5xjcqLHzPhWunQ57fJjJV27NihDRs2aMOGDTp+/LhatWplSwfPTs8884zReJGRkZowYYJ7Rkrz5s0VGRlpacxrITlsp06dOqlJkyYKDQ111x222pQpUzRs2DANGjQo3/u1ldfUmJgYNW3aVPPnz8/zmKmOVqNGjbRgwQJ9//33krJX/eWsv2yl/GpZ792719KY+ZXba9q0qfu4iRlfdty/rwVbt27Nc2zLli1GYpvo0BfEztna+bF6U3ZXH+S2227LVbu8S5culsbNyc7BgCFDhujxxx9Xx44dja/ss+N1u+qlmyyleDHT11TXKlE762rbudnk5MmTNXPmTN11113Gy4isWrVKX3zxRbEq4eFSsWJFderUSa1bt851L6HGNC7r888/12uvvaaGDRvK6XRq165dGjduXK4lH1aqW7euevbsqYcffjjXh9dEjWlXB2fRokXuY1Z3sp599lmdPHlSTz75pPumdOHCBfXs2VM9e/a0LK50bSQTbrnllmJXUzqnjIwMtW3bNt9Z84Vt6tSpqlevnjp37qwnn3zSPfNkwYIFmjZtmpGGrx1L3vOrUeliagDGzg59amqqZs2apW+//dZdB7Zfv35GEhlPPfWUmjRpoqFDh6pZs2aWx7Nbfsmj9u3bG00e1ahRw/gmTcXd2rVrtXLlSr355ptKTk5WaGioAgMDLe2ANG3aVJJyzeI0xVVz9qOPPjIe2+Wdd95R586djc42+vTTT7V48WLt379fTz31lPt4cnKybr31Vktj51duz/WzqRlfdpasscNnn32mzz77TL///rteeukl9/GUlBRjq61MdOgLYudsbW9vb33++ed69NFHJWXPdPTy8rI05osvvmjp7/8r7BwMyMrK0gsvvGA0poudr7tbt26aM2dOrrIxAwYM0MKFCy2Pbfqa6tqgeeXKlXn6RfPmzSuwr1SY7EyKe3t765577rEtdnFMSkvSrbfeankbyeE0vT4VRrRv316zZs1yf4D279+vfv36GWucvPrqq/ked23sVFSdO3fOXafztttuyzV7uCjKzMzU559/rsqVK+uBBx7Qhx9+qG+//Va33nqrBgwYYKxWpGmTJ09WUFCQ6tevr/Pnz+vpp5/W77//royMDE2ZMsXSAaAnnnhCy5YtyzMTIisrS08++WSuzV5QuAqqIR4cHGx57BEjRigzM9M968e1LNPENXXbtm3auHGjNmzYoKSkJP3jH//QAw884O5sFjUNGjS45GCHlcmja6G8ArIHuIcMGaIzZ84oODhY/fv3tzyhYtqlaopLyjXb0Crjx4/XypUr1apVK4WGhqpRo0aWx/z99991+PBhjRs3LtfqkwoVKuiOO+6wdf8AFL5du3YpISFBM2fO1KBBg9zHK1SooBYtWhhJMvz73//O97iJJGrfvn01ffp0W5Ipe/bsUf/+/ZWVlSUpu9zirFmzVK9ePaPn0b17d/3nP/8xFq99+/a2DQZEREQoJCREDRo0MB7bztcdGBiouLi4yx4rSoKDg/P0S/I7ZpWUlBQdOHBADRs2NBLPZcWKFfr111/1yCOP5JokZKLNMnnyZB09elSPP/54rti0zQsHM6aLqMqVK+ca1ahbt67l9SlzsjMB7XQ6FRUVpQMHDigsLEyHDx/WsWPHjNRlLVeunHsU77333jO607odXn/9de3evVtpaWmqXbu2Lly4oAcffFBbtmzR6NGjNX36dLtP0RJffvmlhg0bJklatmyZSpUqpW+//VZ79+7ViBEjLE1MlyhRIt+Oc4kSJYzNHN6/f79effVVJSYmau3atfr555+1du1aDRw40Eh8u5hIQBdk+/btWr58ufvnf/zjH0Y2EJKyNwm75557FBgYqC+//FJz587V4sWLi2yNaddeDbNnz1apUqXUtWtXOZ1OLVmyxPJ9E6Kjowssr3D8+HEavxb7/fff9cknnyg+Pl4tWrRQ586dtXHjRvXu3VuxsbGWxc2vlEfFihXVuHFjdezY0ZLlqpeqKe5wOLRmzZpCj3mxUaNGaejQoYqNjdVrr72mkiVLKjQ0VP7+/pbVNb/pppt000035RrETUtL059//lksktLF7f7doEEDNWjQQC1atFCtWrVsOQc7Z/HaNVs7KytLhw8f1sqVK3NtMGrHdywlJcVoPDtLt2zbtk1Lly7VrbfemusaaqLGtJ2vOysrS+fOnXNPCDt79qzlZWNcTF9Tv/nmG3399dc6duyYu6a6ZPZzvm7dOkVERMjDw0Nr167V9u3b9fbbb2vOnDmWx05MTNQHH3yg2NjYXHWeTbRZtm/fLin3SrPiUmM6KSlJkyZN0pEjR7Rw4ULt2rVLP/zwg7p161ZoMUhMF1GtWrXS7Nmz9dRTT8npdGrp0qV65JFHjC1FTk1N1dy5c3Xo0CFNmzZNe/bs0b59+4yUEpk0aZKSkpL0888/KywsTOXLl9fEiRONb/ywfPnyIp+Y3rp1q1asWKHU1FS1atVKGzdulKenp7p27WosaWYHT09PdxJh06ZNeuKJJ1SqVCndcccdljeE0tLS8t19+OzZs0pLS7M0tsuYMWPUr18/TZs2TZLk6+urV155pch2bF3s7tDnbHTnV27CKmPHjtWGDRt04cIFNW/eXC+//LKxGrx2+uqrr3KVhOrdu7e6detmpN70xeUVjh8/rh49elgetzh74YUXtHv3bj399NNaunSpqlatqgcffFBffvmlVq5caWlsb29v7dixw71PwMqVK+Xt7a3PPvtMu3bt0qhRowo95rVQBkzKbo927dpVXl5emjhxot555x299dZbCg8PV4cOHSyLO3jwYI0dO1alSpVSYGCgTp06peeff169e/e2LKbLrl27NHr0aO3atSvXfdvEYF9xvX937tzZeA15FxMd+oKYWH6dnxIlSmj27Nlq27atkZmMl2K6rISdpVtGjBhheYyC2Pm6/f399c9//tP9nVq0aJGxfqjpa2qpUqVUvnx5ORyOXCuzq1evfskB58I0Y8YMRUVFucuG3H333fnu22CFjz76SJ9//rm7pIlJdpY+s9uoUaPUpk0bffzxx5KkevXqadiwYSSmcXmuZWMX1z6dPHmykTp2Y8aMkbe3t3vmWc2aNTV06FAjielNmzYpNjbWPbuxatWqunDhguVxL1YcquS4ErTlypXTzTff7G6IlChRwvKZhXbKzMxUSkqKypYtq61bt6pXr17ux6xODnfo0EHDhw/XxIkT3bMSkpOTFRERYWwDxuTkZLVp08Y9I76ov98udnboAwIC1LVrVz3xxBNyOBxasWKFAgMDLY35xx9/6MYbb9Qdd9yhXr16qU6dOu7Hfv75Z1sahSadPn1aBw4ccNfPP3jwoE6fPm1pzMTERE2aNClXOawTJ07omWeesXXGfnEQGBioRx99NNeMPtd93OoSSbt27dJHH33kvod27dpV/fr105w5cxQUFGRpbEnasGGD9uzZo+7duyspKUlnzpwxksw6ceKEPvnkEy1dulR33323pkyZonvvvVeHDh1Sjx49LE1M79u3TxUrVtSqVat0//3369VXX1WXLl2MJKbHjBmjl19+WZMmTdL8+fO1cOHCXJt1W6m43r/tqCHvYqJDXxA7Z2vfdddd2rZtm231YF0+/fRTo/HsGgyQ7N0E0M7X/fzzz6t69epau3atnE6nnn76aSP3Tsn8NfW+++7Tfffdp0cffVT169e3LM7leHt75/rZ1ADQjTfeaLz/cejQIdWpU6fAEmh2D76ZkJiYqG7dumnx4sWSst/vwl7NR2K6iHIlhO2ye/duRUZG6uuvv5YklS9f3l1jzGqlS5fOtSTWVNyLhYWF2RLXpLS0NO3Zs0dOpzPXvyXZMhhgytNPP61OnTqpYsWKqlmzpntX6F9//dXyzQ8HDBig8PBwtW7dWnXr1pWUPZPXz8/P2IwnDw8Ppaenu79niYmJxndGtoOdHfq+ffuqQYMG2rBhg5xOp8LCwtSmTRtLYw4YMEAxMTHq2rWrnnrqqVyrTkaNGmWsjp1dBg8erC5duri/3wkJCRo3bpylMf/973+rd+/e+ve//60XX3zRPVM6ODhYzz//vKWxi7v27dvnOWaqPNKJEydyXUtKliypI0eOyNPT0/LO3jvvvKN169bp+PHj6t69u9LT0zVixIhcqwWsEhQUpI4dO+rjjz9WzZo13cfr1Kmjjh07Who7IyNDkrRlyxa1bdtWZcuWNXYfS0tLU4sWLeR0OlW9enUNHjxYPXr0MDLbrbjevz09PRUUFKSgoCB3Dflp06YZqSFvokNfEDtna2/dulWLFi3SLbfckmtmp6kVrF9//bV27tyZqz9iIlFv52BAcnKy5s2bl+d1L1iwwPLYdr3uzMxMDRgwQHPmzLFlAN+ua+o333yjWrVqqWLFiho2bJi2b9+uUaNGqVWrVpbHLl++vE6cOJFr9bCpfaXuueceDRkyxGid5/Hjx2vu3Ln53qNNlRGxW8mSudPGZ86cKfRJmCSmi7BTp07pp59+ksPhUKNGjYzWmL44WXPhwgVjM4jr16+vZcuWyel06vDhw3rnnXfUtGlTS2PmN4JWs2bNXBshFkXnz5/Ptftvzn+b6tDbITQ0VHfffbeOHTumli1buo97eHhYvoyuZMmSmjp1qg4cOKCEhAQ5nU41bNjQPavThJCQEL344os6deqUZs6cqdjYWA0ePNhYfLvY3aFv06aN2rRp466HarWc12xXEie/x4qqRx99VE2bNtVPP/0kp9OpJk2aWD7wVLZsWc2dO1fPPPOMnE6nVq5cqY4dOxpbnlkcXWoTwIs/91a577771LdvXwUGBsrhcGjZsmVq2rSpzp49a3liOj4+XtHR0ercubOk7LaL1bUqFy5cKCm7fEp+nbrQ0NBcG9VZwcfHR//85z+1d+9eDR06VOfPn7c0Xk6u+0blypW1a9cu1ahRQ7///ruR2MX1/i3ZV0PeRIe+IHbO1razrMTUqVO1fft2/fbbb2rXrp3WrFmjFi1aWBrzs88+U/v27d3Xt4uFhoZaGl/K/pv7+Pho//79eumllxQdHW355nR2v24PDw+dP39eTqfTlr6nXdfUpUuXqlevXtq4caNOnjypiRMnavz48UYS02FhYerTp48OHz6sHj16aP/+/Zo9e7blcSVpx44dkszWeZ47d66ka6cEmh0effRRRURE6OzZs1q6dKk+/vhjderUqVBjkJguotavX69hw4bJ19dXkvTLL79oypQpuZJoVmrWrJnmzJmjtLQ0bdq0Se+//778/PyMxA4PD9cbb7yh48ePq0uXLvLz89Pw4cMtjdm3b185HA45nU4dOXLEvTQwJSVFtWrVKrIXsqL6uv6K/JYmmtxp/JZbbjGajM4pKChItWvX1v/+9z+lpqYqMjJSzZo1s+VcTLKzQ29HPdScDfyLG/tFeeApJy8vL2P3Lun/k6TDhw/Xyy+/rAcffFB+fn5FfpDTTpdK+lu1Ad/FIiIi9Mknn2j16tVyOp1q1aqVnn76aZUqVcryZehlypTJM5nA6u/3uHHjdNddd+n222+3NM6luFb13XHHHSpXrpwSExM1dOhQI7GfeOIJnTp1Sn379lW3bt2UlZVleSLepbjev/OrIS9lbyRsdQ15Ex36gtg5W9vOshLr1q1TTEyMOnbsqLFjx2rAgAF6/fXXLY3566+/qn379u7EmR0OHDigmTNnas2aNfL399ejjz5q+cD2tfC6GzVqpAEDBsjf3z9XWSQTm9LZdU11lR3btGmTAgIC9I9//MPYgNc999yjBQsW6Pvvv5ckNWnSRJUqVTIS2846z99++63uvvtu9+zwM2fO6Oeff7Z80Ota8Nxzz2nZsmU6c+aM1q1bpx49ehR6SUkS00XUm2++qYULF8rHx0eStGfPHg0bNsxYYnrw4MGaP3++ypcvrylTpsjPz8/YjK8KFSpo/PjxRmK5uBK048ePV9OmTd1LgletWqWEhASj5wLrderUqcCOu8Ph0JIlSwyfkXnNmjUrFp3ZnOzs0NtRD/XChQvu8jw5/+16rKizY4OynPfJcuXKafPmzdq8ebOk4rNc0LRrYYC1VKlS6tGjhy0bXNasWVNbt26Vw+FQVlaW5syZY3nCeMKECYqNjdVvv/2moKAg+fv7q3LlypbGvFiZMmVy7XtSo0YN1ahRw/K4WVlZatGihapWrao2bdpo8+bNunDhgpFaxy7F8f6dXw15F6tryJvo0BfEztnadpaV8PT0VMmSJeVwOJSenq4aNWro6NGjlsZ0DS69/vrreVa6nDlzxtLYLq64pUqV0unTp1W5cuVi8bpdCdKcJaisnkWbkx3X1DJlymj27Nlavny5Fi1aJKfTqfT0dEtj5tx4vWTJkrkGn1JTU1W2bFlL40vZG5F3795dDz74oPFJMpMnT85VxrBChQp5jhVlTz75pKWbipKYLqIyMjLcSWkpe8miqSWpUvYNsV+/furXr5+xmAUtIXIxsYRq27ZtGjVqlPvnxx9/XO+9957lcWFWfjPwDx48qNmzZ9tW09yESyXkJXN1A+1kV4fejnqoxbVUj4sdG5RdC0lSmJeUlKSPPvpIhw4dytVWu3gDayu89tprGj58uH799Vc1atRIzZo109SpUy2N2alTJ3Xq1EmHDx9WTEyMunXrpvr166tfv3664447LI3tYsfAk5RdxmPkyJGKjo6WlN1eNrFXQXG/f1euXFnnzp2zbaab1R36gtg5W9uOshIu5cuXV2pqqpo0aaLw8HB5e3vnOyhhhVdffdW9SbaUvXr2ueeeM7IJY926dXX69Gn3htkVK1Z0r562mp2v245ZtHZfUydNmqSPP/5Yr7zyiry9vXXw4EEFBARYGrNJkyaXfM1W3z+l7M2hP/zwQ40fP15du3ZV586d3StgrHZxuZgSJUooMzPTSGy7DBo06JLveWG2U0lMF1HVqlXT0qVL3ZvHxMTEWF4bU8oeSbqUV155xbLYriVEp06d0ubNm92NzQ0bNqhVq1ZGEtOpqanaunWrO3G1devWXKOLKBpyjhCfOHFCb7/9tr744gv985//NPI5s4srIf/ll19q7969euqppyRl1zm788477Tw1S9nd+JSyBxd79eqlffv2GauHWtyTpHZuUIbiZeDAgfLx8VGLFi2MJU9cvL299d577yk1NVVZWVmWD77kVLt2bfXs2VM33HCDZsyYoZYtWxpLTNsx8OTi4+Ojw4cPq3bt2kbiScX3/u1ix0w3kx36gtg5W9uOshIu06dPl4eHh4YPH673339fycnJRv7eknTDDTdo8uTJeuWVV5SamqoXXnjB8oShi2tQsVevXrr77rvdm3abYOfrlrJn6O/bty/X7Px7773Xsnh2X1NvvfVWjRw5UidPnpQk3XzzzZZvkr1r1y5J0uzZs1WqVCl17dpVTqdTS5YsMbYZ/KOPPqpHH31Ue/fu1ccffyx/f3+1bNlSzzzzjHuzcquUL19eP/30kxo1aiRJ+umnn3Jt7FoUPfTQQ5KyJ19u27bNPcAaHx9f6OWaSEwXUWPHjlVYWJhGjx4th8MhX19fTZkyxfK4ri/nwYMHtWXLFj3yyCOSpC+++MLyYvyTJk2SJA0YMEBxcXGqU6eOJOnQoUOaPn26pbFdRo8erSFDhriXsly4cCHX6DGKjpSUFL3zzjuKjo5Wly5d9NlnnxldimsH1w1o5syZWrBggbvD9dBDD6lnz5627kRuJTsbn3/88YduvPHGfOuhPv7445bGLu5cCUI7NihD8XLmzBmNGzfOtvgHDx7UwYMHc838sXIJtNPp1Pr167V06VLt3r1b7du316effuput5lg58DTyZMn9eSTT6pp06a5OrVWJs6K6/3bxY6ZbiY79Jdi12xtO8pKuNxwww3uf/fv399ITJfw8HC99NJLev/997V+/Xq1bdvWljJNplf32fm6V65cqcjISJ05c0bVq1fXwYMH1aBBA0sHnuy+pv700096+eWXlZWVpXXr1mn79u369NNPjbQlvvrqq1xlU3r37q1u3brpmWeesTz2xUqVKqXSpUtr+PDhat26tcLDwy2LNWzYMA0YMMC938tvv/2mf//735bFuxYEBwdLkuLi4rRw4UKVKVNGUvbM9cKujEBiuoi6+eab9emnn+rs2bNyOp3GEmaui3CfPn1ybS7Sr18/Sy8UOf3++++5Ojd16tTRvn37jMRu1qyZvvjiC+3bt09Op1P16tXLU28L17/58+frgw8+0OOPP67ly5cbWY1wLUlMTNSFCxfcN6e0tDQdO3bM5rOyjp2NzwEDBigmJkZlypTRnDlz3LOza9Sooc8//9xouaTipkOHDrZtUIbi5fbbb1diYqKRGscXmzZtmpYsWSIfHx93eSCra3O2adNG3t7e6tixowYMGCCHw6ELFy4Y3eTTzoGnJ554Qk888YR702yTitv928WOmW4mO/QXuxZma9tZVmLv3r2aM2eODh48mKs8kpUr3HKukH399dfVp08f3X///erevbvl9XebN2+e7/vtGpDZsGGDZbHtfN0uc+bM0dKlS9W7d2/Fxsbqm2++0eeff255XMm+a+qkSZM0b948hYWFSZLuvvtuY7mW06dP68CBA7rlllskZQ9unz592kjszz//XP/5z3+UlJSkkJAQrVixQuXLl1dGRoYeffRRy/4GWVlZKlu2rFasWKEff/xRTqdTTZo0Mb4/hl2OHj2aK6dVqlQpHTlypFBjkJguopxOp6KionTgwAGFhYXp8OHDOnbsmP7xj38YiX/kyJFc9X6qVq1qrMFfpUoVvf322+rcubMkKTo6WlWqVDESW8q+OG/dulVS9pc2Z61vFA1Tp06Vt7e3fvjhh3xnVxX1Wo3t27dX165d1aFDB0nSZ599Vixm79rR+MyZtLh4nwDTCY3iplevXpJk2wZlKD7OnDmjJ598Uk2aNFHp0qXdx00kj1atWqUvvvjC6GfbNYPyvffe0/vvv5/rWmZqk0+7Bp62bt2quLg47dq1Sw6HQ3fccYdefPFFY7Mbi+v9O+dMN6fTqT179hib6WaiQ3+xa2G2tqusRKdOnXT27Fl5eHhYXmrA5aWXXlJgYKCCg4ONlUdy1d91JYOdTqd27Nihd999Vw6Hw9L6u66a9Xaw83W7lCxZUl5eXu5VEC1bttTMmTMtjyvZd01NT0/PM4hrqpzG4MGD1aVLF911111yOp3auXOnxo4dayR2VFSU+vTpo9atW+c6XrJkyVz7fBW2nPtDmNpU81py3333qU+fPrkGXCnlgb9k0qRJSkpK0s8//6ywsDCVL19eEydONJYwq1evnkaOHJlryXu9evWMxI6MjNSECRPcda2aN2+uyMhII7FjY2M1depUPfjgg5KkuXPnKiwszJYldLDOe++9p7S0tDyzbc6dO1csZsgPHjxYjRo10ubNm+V0OvXyyy+7P/NFmR2Nz5wzYC6eDVMcNiC0k2uAd//+/Ro2bJgSExO1e/duYwO8KD78/f3l7+9vS2xvb2/jAy7XQv16OwaevvjiC40bN04vvPCCu0TUDz/8oLCwMI0aNUoPP/ywpfGl4nv/btKkiW0z3Ux06C9m52ztsLAwPffcc2rQoIFOnz6twMBAVahQQadOndINN9zgnjhkpZIlS+q5556zPE5Orvq7Ln/++ac2b96sOnXqqEGDBpbGvummm9z/TklJ0YEDB4xtNGnn63bx9PSU0+nULbfcoo8++kg33XSTTp06ZSS26WvqiBEjNHHiRHl6eurs2bPuvsBvv/2Wa2DbSo8++qiaNWuW63pqqtbyO++8U+Bjfn5+lsa2Y3+Ia8Vrr72mxYsXa/Xq1XI6nXrwwQfVtWvXQo3hcDLlqkgKDAxUbGysgoODFRsbK0kKCAjQ8uXLjcRPSUnR22+/rU2bNsnpdKp58+YaMGBAkZ9t9uSTT+rdd9+Vt7e3JOn48ePq3bu3li1bZvOZoTBFRkaqXr16eRrXCxYs0NGjRy3d5PNak5aWplWrVmnp0qX64IMP7D4dy61du9bd+GzRooXlHfoOHTpo5syZcjqdGjRokPvfUvZS3ZUrV1oavzibOHGie4B31apVOnXqlPr06VPkV0SgeFi3bp0kadOmTTp69Kgef/zxXJ3aojojyFUupCBWlhHp2LGjIiMjdfvtt+c6vnv3bg0fPtzSeqj5KW7371OnTumnn36Sw+HQPffck2tlp5XS09O1ePFid5+oRYsW6tq1q0qWtH5+2OOPP66VK1e6y/RkZmbqiSee0KpVqyyL2aFDB3fb5MMPP9S6dev03nvv6ejRo3r++ecVFxdnWWyX6dOnq1mzZsY2/pMunZAfPHiwkYT8unXrFBERIQ8PD61du1bbt2/X22+/rTlz5lgW81p43Rs2bNBdd92lpKQkjRkzRsnJyRo6dKgeeOABy2PnZOKaGhwcrJiYGK1bt06zZ8/WwYMH1aZNG61fv16TJ09Wy5YtLYlbkB9//FFRUVFavXq1tmzZYnm8vXv3avbs2Tp06JCxMj0uzz33nL7//nuj+0Ncq7777jstXbpUEyZMKLTfyYzpIqp06dK5ZtNlZWUZjV+hQgX3bBApu7THggULLN2AYuHChZd8PDQ01LLYObmS0hf/G0XHV1995a7plVNoaKgCAwOLRWJ6+/btio6O1meffaa7775bQUFBdp+SEX5+fvLz83M3Pnv27Glph/78+fPq06eP++ec/2bGtLU2bdrkHuCVsktS5dztHbhaH374oZ599llNnjw538etvJfMnz8/188fffSR+99W15i206U2N7S6jMj58+fzJKUlqX79+kavLcXx/r1+/XoNGzZMd955p5xOp3755RdNmTLFSBKnVKlS6t69u7p37y4pu0M/evToQu3QF8SO2do5B7i+++4790qAmjVrGmu3tGjRQv3791eJEiXcs2mtrrX8888/u2cIx8XFycfHJ1dC3kSCdsaMGe5SB1J23eGDBw9aGvNaeN0tWrSQJFWsWNGWQTY7rqlt27ZVvXr1tH79eknZm3zefPPNlseVpKSkJMXGxioqKkqHDx/WwIEDjQw4SdKQIUP0+OOPq2PHjsbK9Li49ocoro4fP67Y2FgtXbpUDoej0Ff6kZguourXr69ly5bJ6XTq8OHDeuedd9S0aVOj55Cenq7//ve/io6O1o4dOyxforhjxw5J2TMiNm/e7L5JbdiwQa1atTKSmL755ps1Y8YMde3aVQ6Hw/gu8zCjRIkS+d4MPTw8inSy8NSpU4qLi1N0dLTS09MVFBSksmXL5klwFGWmG5/XwpL34sruAV4Ufa4EjqklsDnlTEQXJ3ZeU9PT05Wenp6nDmhaWprS0tIsjV3c799vvvmmFi5c6N73Zc+ePRo2bJix2YVWd+gLYmL5dX4SExNVuXJlbd68OVftdlMDMBEREZo0aZIaNmzoni1uNVe5FMm+hLyUd1KU1SUGr4XXPX78eL344ovuPaVOnTqlWbNmaeTIkZbFtOuaunv3bneOQ/r//WZcNbWtHHxZs2aNoqOj9d133+mxxx7T+PHjNWzYsEsO+Ba2rKwsvfDCC8bi5eQa4CtOMjMz9b///U9RUVH68ccf9cgjjyglJcU9IFKYSEwXUeHh4XrjjTd0/PhxdenSRX5+frlmMFtp586dioqK0sqVK+Xr66tdu3Zp/fr1lt8YJ02aJEkaMGCA4uLi3AnhQ4cOafr06ZbGdnn99dc1fvx4d03pli1bGtsMAOakpaXlu9P02bNnLe9c2ql169Zq1qyZXn/9dXed3SVLlth8VtYr7h364upaGOBF0fb0009Lkl588UXbzqFbt25atGjRZY8VRbt379bmzZvlcDh0//33W1rGQ5LatWun4cOH6/XXX1fFihUlZW98OWbMGLVr187S2MX1/u2SkZGRazNyHx+fPBsKFzaTHfqC2DFbu2/fvgoKClKpUqXUtGlT9/fqxx9/1I033mhZ3JwqV65sy6aedifky5cvrxMnTrgTwps2bXJfa6xk9+veunWrOyktZa9ws7qshF3X1Lp1616yzrKVBgwYoBYtWuizzz5TtWrVJJlfvdm4cWPt2rXLWP3ynDIyMhQdHa2dO3fm+my7clBFUevWrXXzzTcrNDRUb731lkqXLm1Ze4XEdBFVoUIFjR8/3njc4OBgnTt3zl3/qGbNmvLz8zO6Idzvv/+ea5ZynTp1tG/fPiOxvby89OabbxqJBft06NBBw4cP18SJE91105OTkxUREVGkd7d/5plntHz5ck2fPl2dOnXSY489ZvcpGVHcO/TFVX4DvOHh4XafFoqgCxcuaNmyZXlqJpooC3X+/PlcP2dmZurPP/+0PK7dFi5cqDlz5ujBBx+U0+nU3Llz9cILLygkJMSymEOGDNGYMWPUtm1b3XLLLZKkAwcO6PHHH9fQoUMtiysV3/u3S7Vq1bR06VJ17NhRkhQTE+NOrFjFZIf+UkzP1m7fvr2aNWumEydO5Eoe1apVS+PGjbM0tsvDDz+sRYsWqX379rlKi1w8oaQwXQsJ+bCwMPXp00eHDx9Wjx49tH//fs2ePdvSmNfC687MzMxzzOqBJ7uuqZ6enrk2uzRp7ty5io6OVvv27eXn52e0DNRTTz0lKft9Xbp0qW699dZc320TNaYjIiKUmZmpTZs2qVu3boqPj1ezZs0sj2une++9Vxs3btTXX3+tGjVqWFoKis0Pi7ANGzbo4MGDuS7MVpezeOqpp3Ty5EkFBQWpY8eOql27ttq1a2dpzb6L9ezZU/fee6+7plV0dLQ2bdpkpOaU0+nU4sWL9e2338rhcKhly5bq3LlzkS7vUBxlZGQoPDxca9asUd26dSVJ+/fvl5+fnyIjI41saGOXzMxMrVu3TtHR0dq8ebMyMzM1a9YsNW/e3O5Ts8zkyZO1fPly3XLLLe7GZ0BAgNHrGsy5eJaNq5nkuo7fe++9xs8JRdsLL7yg9PR03XPPPbnKRFk5k3r+/PmaP3++UlJScs2oO3/+vAICAor8aq/HHntMH3/8sby8vCRJJ0+eVLdu3bR69WrLY//xxx/avXu3nE6n6tevbyzJUBzv3y4HDx5UWFiYdu7cKYfDIV9fX02ZMsXSmqwvvfSSNm7cqAcffFCdOnXSfffdZ6xPlN9s7S+//NLobG075Teb0uFwaOfOnZbGPX78uDsh72ozJCYmKjMz01iSNjk5Wd9//70kqUmTJqpUqZLlMe1+3SNGjFC5cuXUp08fOZ1OzZ8/X2fPnrV8Jqsd19QuXbro008/tez3/xWnT59WXFycli5dqj179qhPnz4KCAhQvXr1LIvZrl27S76fVtfOl6SAgAAtX77c/d/k5GS9/PLLevfddy2Pbac///xTy5Yt09KlS/Xnn38qJSVF0dHRhV6ulsR0ERUeHq4dO3bozjvvzNXJMbHU4LffflNUVJSWL1+uevXq6bffftPatWstHaXOKTExURMmTNCmTZskSc2bN9eIESNUo0YNy2NHRkZq586d7hkZsbGxatCgQbHYDK84OnDggBISEuR0OtWwYUP3DKji4uTJk4qJiVFMTIzOnDmjr776yu5Tskxx7tAXN506dXL/e+/eve7l367Nk0zMykDx0r59e3322WdGYyYnJ+vPP//UuHHjFBER4T5eoUIFVa5c2ei52KF79+76z3/+k+tYaGjoZTfSLiqK0/07p7Nnz8rpdLpXu1nNVIf+Yg888IB7tvajjz7qnq3NgDqKopSUFE2YMEFffvmlJOmhhx7Sq6++aqSMiUtxvabu2LFD0dHRWrlypTv3YoWgoCDFxsZa9vv/iqeeekpRUVEKCgrSokWLVLZsWXeSurhISEhQVFSUVqxYobp162rx4sWF9rtJTBdRjz32mOLj4/NssGJSRkaGe7T+u+++U5s2bYzVerZLQECAYmJi3DNm09PT1bFjx2J1wULxsn//ftWtW1fbtm3TPffcY/fpGFFcG5/F0bXQEEbR17dvX02fPt1YsuxiGRkZ2rdvnxwOh+rWrVukV/389ttvkqRly5YpKSnJvTw4JiZGtWrVUr9+/ew8PaOK2/374MGDOnjwYK5l/23btjUW38oO/cXsnK19rTh16pR++uknORwONWrUKFcN4qIm52Z4ObkG1K3cEA//r7hdUyUpPj5e/v7+SktLs7R0q6tMrJ169+6t6dOna/78+frhhx9UtWpVpaSk6P3337f1vEw7d+6cSpYsqS+++EIdOnQotN9LYrqIevbZZzV//nxbE9M5HTt2THFxcerTp4+ReHv37tWuXbtybURnog5SQECAYmNj3bPUMzIyFBwcTGIaRda10FCwQ3FsfBZHxfXzDbOGDh2qHTt2qHXr1rk6diZWW+3YsUMDBw6Up6ennE6nMjIyNHPmTDVs2NDy2Hbw8/Mr8DGHw1GsEnfF6fo2efJkxcbG6tZbb1WJEiUkZb/fCxYsMHoeVnXo82PXbO1rwfr16zVs2DD5+vpKkn755RdNmTJFLVu2tPnMrNGuXTtVqVJFHTt2VJs2bdyfcRe7ahLbYciQIbZNhCtO11QXU6+5YcOG+ZalMTn4kpmZKQ8PD2VlZblLeQQFBdk2qcAuVr3nRXdKRDFXt25d9ezZUw8//HCuTo7VNabz41ouaSopvWDBAi1evFjHjx/X3Xffra1bt+ree+81kphu1aqV+vTpo+DgYDkcDsXExKhVq1aWxwXsUlzHNgcPHqyYmBiS0gCu2q233qpbb73Vltjjx4/XxIkT3TPuNm7cqHHjxumTTz6x5XystnbtWrtP4ZpRnO7fX3zxhdasWWOsrGBBQkNDFRMTY3lSWpIqV66sHj16qEePHu7Z2k899ZTls7WvBW+++aYWLlzoLsW1Z88eDRs2rMgmptesWaNNmzYpJiZGCxYsULt27dSxY0f3RoTFyb59+2yLXZyuqS6mXnPdunX1zjv/196dR0V1ZWsA/y6TEVA6GiLRYMSBoKJxoCPOSqtPHJhUCApq2hFFDQpC0DiAcUJN4pAgQVET0CBSSLCNpnU10Q6OHZ9DoFGCih1FJSqgQEFR7w8X9Sw1Qyfce/TW91srq6turZX9pZWiat9z9klQpNbPuXfvHmxtbWFlZQVvb29otVqUl5cLzSSCXH/mbEyrlFarRcuWLZGfny86iuI/sKmpqdi9ezcCAwOxZcsW5OfnY/PmzYrUjoiIwK5du/D1119Dr9dj0KBBCAgIUKQ2kQjdunUTHUEIU/zwaSrqtvoDQFVVFQoKCoz+vE3xix7JS85DDn9NRUWF0TZwd3d3VFRUCMujpEuXLhmdR1LXxDIVpvT7+5VXXnkmdpGK+uzQoUMHhIeHIyoqCn//+9+FZFBSTU2N0c9zmzZtUFNTIzCR/Hr06IEePXrgwYMH2LdvH4KDgzFr1iyMHTtWdDRFifx8bkrvqXXGjx+vSB0rKyvhK/+nTZtmtMumpqYG06dPF34YpdJeffVVWf69bEyrlBKHHP5Wcs4b+rl61tbWqK2tNZx4fvXqVUVqm5mZYezYsSb3IYBMy969e+Ht7Q0AhkOzHr1mCkzxw6epmDp1qtHzR3f7mNpWf1JGSUkJVqxYgevXryM5ORl5eXn47rvvEBgYKHvthg0b4tixY4aDXE+cOCF8VakSMjIysGbNGgwYMAAAsHnzZoSHh8PLy0tsMJklJCRgzJgxePHFF40OvVS7qKgoTJ8+Hb179xa6k1SuL/S/hZKrtUVr0qQJ0tPTDYfRazQaNGnSRHAq+RUUFECj0eDrr79Gv3790KNHD9GRFLdt2zZhtU3lPXXSpEkICgrCgAEDDD9jcnsWbixqtVqjz0fW1taoqqoSmEiMjRs3yvLvZWPaBIiYtXTmzBl06dIFABS/i9SwYUNUV1fDxcUFcXFxeOWVV1BZWSlrzdWrV//i60rMiSRSyrZt255oQj/tmpqZyodPU8St/qS0hQsXol+/fkhJSQEAtG7dGhEREYo0pqOjozFnzhxDs666uhrr16+Xva5oW7duhUajgb29PQDg1q1bmDRpkuob0zdv3sTw4cPRp08fBAUFmcw4qoSEBNy6dQu5ubmGc2CUkpOTY9iVUPeF/tFrSjGlnV4xMTEIDw/HkiVLAADt27dHXFyc2FAySklJwd69e2FlZQVfX19kZGSYxA3GOhUVFYiPj8e1a9ewdu1aFBQUoLCwEIMGDZK99g8//IBPPvkERUVFRqvy09LSZK8tSkBAALZv345ly5YhICDAcLNTTs/KquSffvrJcJOrpKQEtbW1ghMpY+XKlZg5cyYaNmyI8ePH4/vvv8fSpUvr9bs/G9MmQMSspcWLF8Pc3Bxjx47FyJEj0aBBA0VrV1dXIyoqCuvWrcO1a9d+tXH8R1lbW8v67yd6Fpw7dw5nz57FnTt3kJycbLheXl6O6upqgcmUUVFRgY8//hjffvstJElCr169EBISYlIf/omo/hUXFyMwMNAw99XKyuqJw6vk0rlzZxw8eBCFhYXQ6/Vo3br1M7EySQl1TenHH6vZwoULMW/ePGRkZGDhwoWwsLDAuHHjMGLECEU/qyvtwoULOHDgACRJUrz26tWrnzgoKi4uDunp6YrmELlaW2ktW7ZEamoq7t+/D71er/rDyWJiYtChQwc0a9YM2dnZyM7ONnr9o48+EpRMGUuWLIG9vT3y8vIAAA4ODpg3b54ijem5c+di6NCh8PPzU/ymlyhDhgzBkCFD8MMPPyAlJQUjRoxA7969MX78eLi6uoqOJ5vg4GAEBgYamrF79+59YpelWn377beIiorCP/7xDzRr1gwffPABpk6dysY0/XdE3CHfu3cvTp06hZSUFHz44YcYOXIkxo4dq8hJ0M7OzgAeNovff/992esBwPTp0/H111/Dzs4OvXr1wvbt2/Htt9/CyckJM2fOVCQDkdyKi4tx/vx5VFRU4Pz584brNjY2z9T4ILnExsZCp9MhOjoawMPVEDExMSbx305E8rGwMP44Xlpaqthnt8LCQjRv3hzOzs44cuQIsrOzERAQADs7O0Xqi9KyZUusX78eAQEBkCQJqampinxGfRY0bNgQAQEBaNq0KZYvX46EhAR89NFHiIqKUu2Yh1atWuHBgwewsbFRrOaVK1dw+fJllJeXGzUKy8rKFJvj/qys1lZaRkYGBg4caHgfu3v3Lr755hvV7ogw9c+h+fn5WLVqFY4ePQrg4fcSpVay1tbWYvr06YrUelZZWlqiQYMGiIyMRN++fREVFSU6kixGjx4NR0dHZGdnQ6/XY9myZfjzn/8sOpaiTp48icGDB6NZs2b1fqNX0pvSvh4TdffuXfzpT38SVj83NxchISG4efMm+vXrh4iICFkOmBE5TmPRokXIz8+HVqvFq6++iqqqKgwYMAAnT54EAMVHqRDJ6ejRo+jTp4/oGIobOXIkvvzyS8NzvV4PLy8vo2tERP+txMREXL16FTk5OQgJCUFKSgpGjhyJCRMmyF7b29sbaWlpuHHjBiZMmIDevXvj1q1biI+Pl722SCUlJVi2bJnRDpgFCxagadOmoqPJ6vbt29i1axfS09PRqVMnBAUF4c9//jOKiooQHByMf/zjH6IjymLu3Lm4cOEC+vbtazRjWs7vBhqNBunp6Th//rzRKkJbW1sEBAQY5pvLydfX94nV2n5+foqv1laal5cXMjMzja75+PggIyNDTCCSlb+/P1JTUw1/xlVVVRg9erQin88XLVqEsWPHwsXFRfZaz4qDBw/i888/R0lJCcaOHQsfHx/Y2NigpqYGQ4YMMYmReJcvX0arVq1Ex1DM22+/jRYtWuCf//wnMjIyYGNjA19f33r9GeOKaZV5fOvO4/r3769QEuDUqVNITk7G//7v/2L06NEYM2YMjh07hhkzZuDAgQP1Xk/kOI1Tp05h3759qKioQJ8+fXDs2DFYWVkhICBAtXfnyXR9//33cHV1NdzwunPnDvbs2YPJkyeLDaaABw8eGN5rlFrxRETqNnnyZGRmZqK0tBTZ2dkIDg5WbGa/mZkZLC0tkZ2djcDAQEyZMkX15wXodDokJyfjgw8+EB1FcT4+PvDz80NKSgocHBwM1x0dHRU7xEqE1q1bo3Xr1orW9PX1ha+vr9EhfEp5FlZrP2t0Op3oCIoKCgrC559/LjqGItzc3BAfHw+tVovjx48jKSkJHh4estYcNWoUJElCTU0N0tPT4eTkZDQOSc0zptPS0jBlyhT07dvX6LqFhQUWLlwoKJWywsLCnrjpp2Zr165FZmYmRo8eDTs7O1y7dg1vv/12vdZgY1plEhMTf/Y1SZIUa0yPHDkSNjY2CAoKQlxcnGGbqre39xN3sOuLyHEaVlZWkCQJ1tbWaNmypWE1Rt0XPiI12bdvn9FMrRdffBFZWVmqb0yPHDkSAQEBGD58OCRJwr59+1TfwCEiZXh5eQm5kV1VVYXi4mIcPnwYYWFhANR/SJq5ublhR5sp0el0mDlz5s8eqjl79myFEyknNDRUWG1HR0fcv38fNjY22L17N86dO4cpU6bIOjrmX//6F9LT03H79m2j74a2traIjIyUre6zwt7eHgcPHsSQIUMAAAcOHFD9bojHlZeXi46gmLCwMCQmJsLGxgZxcXHw8PCQffavKfwc/ZyEhISffU3uGwLPCrV/TnpckyZNMHHiRMPzV199td7PLWBjWmU+++wz0RFQW1uL5cuXo1OnTk99fcuWLbLUjYmJ+dlxGosXL5Z1nIZWq0VBQQH0er3RY+Dhlz4iNXnaL2NTWIkydepUuLi4ICcnB3q9HuHh4ejXr5/oWET0nBI5gqzOhAkTMHz4cPTs2ROdOnVCUVERGjVqJHtd0QYMGIAtW7bAx8fHaMedmg+zNTc3R1ZW1s82ptXs8cOLe/fujenTpyvy5x0TE4PMzExcvHgRSUlJ8PLywoIFC7Bjxw7Zaopcrf0siI6OxowZMxAXFwfg4d/9jz/+WHAqZT06skbtLC0tERISgpCQEMVqvvnmm4rVetb88MMP+OSTT1BUVISamhrDdTWvEn9ct27dREdQlLu7+1NnSufk5NRbDc6YVrGysjIUFhYaNUaVGtA+atQo7NmzR5FadYYNG/bUcRq1tbXw8vJCVlaWbLV/6e6gJEk4dOiQbLWJlDZ79mx07doVEydOhF6vx7Zt23D69Gls2rRJdDTFaLVa3Lt3D/b29qKjENFzysXFBa6urujbty/Mzc2feF3EKk+dTgedTqf6psaj80AlSYJer4ckScjNzRWYSn4bN25E27ZtMXToUNFRFBUdHQ2dTgd/f38A/99AUeLQuLo5z1u2bIGVlRWCg4MVm3d88uRJdOjQQdHV2qLV1tbiyJEj6NOnDwoLC6HX69G6deunvseSOlRVVSEzM/OJRqkSN3cDAwMRHx9vdNDmzJkzkZycLHttUXx8fDB06FC88cYbRj9XptysV7v//Oc/hsdVVVX48ssvYWFhUa9TCbhiWqX+9re/YdWqVSgtLcXLL7+Mq1evwsXFRbFZOG3atMG1a9fqfYn/LxE5TsMUhvwT1VmwYAEiIiKwbt06SJKErl27/urKPzUICwtDTEwMLC0t4e3tjTt37mDatGmYNGmS6GhE9Bzatm0bMjIysG/fPgwaNAh+fn5o27atohkqKiqwefNmFBUVYe3atbh8+TIKCwsxaNAgRXMoLS8vT3QEIT7//HPcvXsXL7zwAho2bGhoyNfnqqdn0blz54wOaerWrZtio3Nqampw+vRpHDhwAO+//z4A5XaZiVitLZqZmRk++eQT9O/fX/H3U9FENmhFmjNnDqqrq9G5c2fFb6o+ePDA0JQGgD/96U+qH6NSW1uL6dOni46hmNmzZz91tXCdjz76SME0YrRo0cLo+Zw5czB+/Hg2punXxcfHIz09HZMmTUJGRgb++c9/4uDBg4rV/+mnn+Dl5YXu3bsbbZGU8weX4zSIlNGsWTPs2LEDDx48ACD24FElFRYWolGjRvjqq6/Qo0cPvPvuu/D392djmoh+F3d3d7i7u+PBgwf46quvEBMTg6qqKkRERMDNzU2RDEuWLIG9vb2hUevg4IB58+apvjH9cwfAqXmUBwDFdzM+S0QdXjxnzhzExMTA3d0d7dq1Q2FhIV577TVFaltYWECSJHzzzTcIDAxEcHAwvvrqK0Vqi+Tq6oqzZ8+ic+fOoqMoSmSDVqQrV65g//79QmrX1tYavbfcv39f9eMNu3Tpgry8PKOdR2o2cOBA0RGeOUVFRUarqOsDG9MqZWFhgaZNmxreGHv37o0NGzYoVn/48OEYPny4YvUAoLKyElOmTDE8f/TxL93lIqL/jl6vR1paGq5cuYLw8HBcu3YNN2/eVP28rbrVJydPnkT//v3RsGFDmJmZCU5FRM87a2trdOnSBYWFhcjKysKtW7cUq52fn49Vq1bh6NGjAAAbGxvU1tYqVl+Url27Go3wqKP2UR6Pr3oyFSIPLx40aJDRjR4nJyds3LhRkdoiV2uLdOrUKezcuROvvfaa0eIJtc/AFdmgFcnR0RHl5eWwtbVVvPaIESPw17/+1TC7f+fOnUIOMlbC6NGjATx8X0lPT4eTkxMaNGhgeF2tP1++vr6iIwj36Izp2tpa1NTUYMGCBfVag41plbKysoJer8drr72Gzz77DC1atMCdO3cUqy/iB5jjNIiUsWLFCpSUlODChQsIDw+HjY0Nli9frtoPJHXatGmDt99+G4WFhZg3bx4qKytFRyKi51hpaSn27duHvXv3wtLSEr6+vti3b5+iu1AeH3VWVVVlEqfNPzrKo25eopKfk0W5fv064uLikJeXZ7SbUO1noYg8vPjxgxd79eqFkJAQRVbni1ytLVJ0dLToCEKIbNCK1KhRI4waNQp9+/Y1WimuxAiTadOm4eWXX8bhw4eh1+vx1ltvwcfHR/a6Ity5c0eRufzPmmfhoGrRHt1tZWFhgZdeeqne5/azMa1Sc+bMQXl5OcLDw7FkyRKUlZVh8eLFitWvqanBnj17kJuba/TB1xTfzIjU5vjx48jIyDDcgHrxxRdVPS7nxx9/RPPmzQ2rCl9//XVYW1ujuLjY5A6QIqL606dPH7Rt2xZ+fn6Gw8hOnjxpeL1///6yZ3Bzc0N8fDy0Wi2OHz+OpKSkXzzQWY0aNGiA0aNHIygoyGi3nRpFR0dj2LBhyM3NxZo1a7Bz5060bNlSdCxZ1R16uGfPHsWa0Y+KjY2FTqczNEvT0tIQExOjyHcikau1RTLVQ9hENmhFcnJygpOTk7D6vr6+JrGqtlGjRib5s2UqIyt/jk6nw+zZs2UfBcbGtEr17NkTwMM3kG3btilef9GiRdDpdDh+/DgCAwORlZWl2LxEIpJXgwYNjLY+q33b98yZM6HRaPDCCy8gPj7esDK8WbNmOHjwIEJCQgQnJKLn0RtvvAEAOHDgwBOvSZKkSGM6LCwMiYmJsLGxQVxcHDw8PDB16lTZ64r26Izh2tpanDt3Djdv3hSYSBl37tzBmDFjsGPHDnTt2hVvvPEGJk6cKDqWrMzNzQ030B/ddq4UkQcvilytLVJZWRk+/fTTJxZIqfnQR0B8g1aU0NBQYbVNaTGeqY5GFfn361mg1O9QNqZVSvSpvHUfwkaOHIlp06Zh7NixeOeddxSpTUTycnZ2RmZmJvR6Pa5du4aEhAR0795ddCzZPLqt/dH308dfIyL6b3z22WeiI8DS0hIhISEmd4Pt0RnT5ubmaNmyZb3PS3wW1Y1usba2xo8//oiXXnoJP/74o+BU8mvVqhXGjRuH//mf/zFa/TZu3DhF6os6eFHkam2RoqOj0aZNG1y+fBlz5szBnj170LFjR9GxZGdqDbT9+/fD09MTycnJT31diZ9vU1qMl5+fb1j8+Ki6sxpycnIEpFJOSUkJVqxYgevXryM5ORl5eXn47rvvDPPF1UyJ36FsTKuU6FN56+6mmJubo6KiAo0aNTKJlShEpiAqKgorV67ErVu34O/vj4EDByIqKkp0LNk8ukLg8dUCprp6gIjksXXrVvz1r3+Vvc7PfZGvo1TDTpRHZ0ybEjc3N9y9exeBgYHw8/ODlZWVSYykun//Ptq1a4cffvhB8doiD14UuVpbpCtXrmDDhg04dOgQRowYgSFDhqh6J8iz0KAV4eLFi/D09MT58+eFZTClxXitWrVCQkKC6BjCLFy4EP369UNKSgoAoHXr1oiIiDCJxrQSv0PZmFYp0afy2tnZ4d69e+jbty+mTJmCF198ES+99JKwPERUf2xtbbFs2TKja4cPH1btXNKqqioUFBRAr9cbPa57jYiovnz55ZeKNKZjY2Ph6uqKdu3ayV7rWZWTk4OCggIEBQWhpKQEpaWlqt8GHxkZCQDw8fHBm2++ifLycjg7OwtOJT+RK4RFHrwIiFutLVLdoixLS0vcvXsXdnZ2uHHjhuBU8nkWGrQizJ49GwCwYMGCJw58LC8vVySDKS3Gs7KyQosWLUTHEKa4uBiBgYH44osvADz8/8PMzExwKmUo8TuUjWmVEn0qb0JCAszNzREWFobMzEyUl5er9oRaIlOyf/9+XL9+HQMHDoSTkxO++eYbfPjhh6ioqFBtY7qystLoQKxHH3PFNBHVJ6XGA73//vvIyMjApUuX4OPjgxEjRsDOzk6R2s+ChIQEZGdn49atWwgKCkJ1dTWio6Oxc+dO0dFkFR0djVGjRqF79+5o3ry56DiKysnJwdWrV41Gcsm9klT0wYsiV2uL1KpVK9y9e9fw39+oUSO0b99edCzZ1DVoly5d+sRO6dLSUhGRFBUcHAyNRvOr1+RgSovx6kZBmSoLC+PWaWlpqcmMdKyoqMDmzZtRVFSEtWvXoqCgAIWFhUaH6/5RbEyrlOhTec3NzQEAZmZmbEgTqcSyZcvwzTffoGPHjtizZw8GDBiAtLQ0zJ49G2+99ZboeLI5fPiw6AhEZCLCw8MVqTNq1CiMGjUK165dg0ajQWBgIJydnRESEoLXX39dkQwiZWVlYc+ePRgzZgwAwMHBQbEVdiJ16NAB77//Pu7fvw8fHx/4+vrCwcFBdCzZRUZG4sKFC+jQoYPhO4oSRB+8KHq1tihr1qwB8PB97v79+zA3N8e0adMEp5Lfu+++i7Vr1xqel5eXY/LkyUhNTRWYSj41NTWorq5GbW0tKisrDU3CsrIyxXYHmNJiPLX+PfqthgwZgkWLFuH+/ftIT09HSkoKRo0aJTqWIpYsWQJ7e3vDGDQHBwfMmzePjWn6daJO5Y2IiEBcXBxGjRr11JWEaWlpimciovpx9OhRaDQa2NjYoKSkBAMGDEBmZqbqtz4TEcmpsLAQzZs3R4MGDaDX65GQkICAgABFVjC/+uqrmDhxIl566SWsX78evXv3NonG9AsvvPDE6i9T2AETFBSEoKAg5OfnQ6PRwN/fH+3atcOWLVtER5PVmTNnkJWVJWTFn6iDF0Wv1hYhPDwckydPhouLC+7evQtvb2/Y2trizp07eOmllww3otTqpZdewurVqzF//nxUVFRg+vTpGDlypOhYsomPj8fGjRshSRK6dOliuG5ra4u3335bkQxcjGc6Jk+ejMzMTJSWliI7OxvBwcEmsQMFeHjw5apVq3D06FEAgI2NDWpra+u1BhvTKiXqVN4JEyYA+P8ZdkSkHg0bNoSNjQ0AoGnTpmjVqhWb0kREf9A777yDtLQ0FBUVYfHixejduzciIyMRHx8vW029Xo8jR44gPT0d+fn58PT0RGpqKhwdHWWr+SxxcHDAqVOnIEkSdDodNm/ebFLzttu2bYs333wTV65cwYkTJ0THkZ2oVeF3795FUVERHBwcFD94UfRqbRG+//57uLi4AAD27t2LNm3aYOvWrbhx4wamTZum+sZ0VFQU5syZg6SkJBw5cgT9+/dHcHCw6FiyCQ0NRWhoKGJiYrBo0SIhGU6fPo21a9fi6tWr0Ol0hus5OTlC8pC8vLy8TOIA2cc9flO3qqqq3seYsDGtUiUlJVixYgWuX7+O5ORk5OXl4bvvvpP91FBXV1cAwJtvvilrHSJS3k8//WR04ndZWZnRc7We+k1EJCczMzNYWloiOzsbb731FqZOnSr7Kpx+/frB3t4efn5+mDlzJiRJQlVVFS5dugTgYeNSzd577z1ERkbi4sWL6NKlC9zc3Azb/9Xs3//+NzQaDbKystCuXTv4+vpi3bp1omPJpu4zSqtWrTBx4kQMGjTIaMShnJ9b/va3v+Hdd9+FjY0NtFotNmzYgJ49e8pW72lErdYW5dEG/OnTpw3bzB0cHFS9I+LRsRVLly7FlClT0KNHDwQFBaGiogINGzYUmE5+c+fORW1tLczMzJCfn4+LFy9i8ODBT8zblkN0dDTeeecduLq6msxBeKZq1qxZiI2NxZ/+9CcAwJ07d7BkyRJ89NFHYoMpwM3NDfHx8dBqtTh+/DiSkpLq/WwpNqZVauHChejXrx9SUlIAAK1bt0ZERITsjenZs2f/4i9+U/jBJVKrXr16GZ343bNnT5M7AZyIqL5VVVWhuLgYhw8fRlhYGAD5D0G0tLTE3bt3sXXrViQlJRnVkyQJhw4dkrW+KHWNd+BhQ6GmpgZmZmYwMzPDnTt30LRpU4Hp5Dd79mz4+PggLS3NJGZLP/oZpWXLlsjPz1es9ieffIJdu3ahffv2OHbsGDZt2qRoY1rkam2RiouLYWdnhxMnThgOBQQevs+qVdeuXSFJEvR6veF/z58/jy1btkCSJOTm5oqOKKvx48fj888/x/379zFp0iQ4OzvjyJEjWLlypey1GzduDE9PT9nrkHhFRUWGpjQAvPjii7h69aq4QAoKCwtDYmIibGxsEBcXBw8Pj3qf28/GtEoVFxcjMDAQX3zxBQDAyspKkbt4AwcOlL0GEYmxYsUK0RGIiFRnwoQJGD58OHr27IlOnTqhqKgIjRo1krWmqR7qOnXq1CeuSZKE+/fv4969e6pu4Jw6dQqvvPIKtm/fjh07duD1119HaGgo3NzcREeTjcjPLWZmZmjfvj0AwN3dXZEmWZ1nYbW2CFOnToWPjw8sLS3RvXt3w86PM2fOoHnz5oLTyafuQLI69+7dw4kTJ+Do6GgYbaJmer0e1tbW2LdvH/z9/TFr1izFZmuPGDECO3fuhKenp9GKfbWvUjdFOp0OOp3OMFe8uroaWq1WcCplXL16FSEhIQgJCTFcKygoQJs2beqtBhvTKmVhYfxHW1paKvvqGwDw9fWVvQYRiXfkyBF8++23kCQJvXv3Ru/evUVHIiJ6LgUEBCAgIMDwvHnz5khKSlI8R1ZWFkaMGKF4XSU93pB/8OABkpKSkJKSgokTJ4oJpYC///3viI2NRUhIiOEcmO+++w7z5s3De++9Zxh5oFYJCQnw9/c32oK9Z88eTJ48Wbaa1dXVKCgoMHz/0mq1Rs/lHJcjerW2KJ6ennBzc8Pt27eNGrKvvPIKYmNjBSaT1y8d+hgWFqb62dpVVVXQarU4cuQIxo8fDwCKjdVo2rQp3nvvPcTExACAYdW6mm9ymqo+ffogLCzM8Hdsx44d6Nu3r+BUyggPD4dGo/nVa38EG9MqNWTIECxatAj3799Heno6UlJSMGrUKNnrbt++HRMmTMDq1auf+vr8+fNlz0BE8vr000+xd+9eDB8+HACwcuVK+Pj4YNKkSYKTERE9fyoqKrB582YUFRVh7dq1uHz5MgoLCxVvFm7ZskX1jek6NTU12LlzJz799FP0798f6enpaNasmehYsvn444+RmJhodMBj+/bt4ebmhsjISNU3pvft22e0Wv7FF19EVlaWrI3pyspKTJkyxeha3XO5x+WIXK0tmr29Pezt7Y2uqflnGwAuXLhg0oc+Dhs2DO7u7mjdujW6deuGW7duKXbg57p167Bjxw507NiRM6ZVbu7cudi8eTNWrlwJvV6PgQMHPnUXlpr89NNP+Omnn1BVVWV0Y7WsrAwPHjyo11psTKvU5MmTkZmZidLSUmRnZyM4OFj2g3SA/z904tEDNohIXTIzM7Fr1y7Y2toCAIKDgxEYGMjGNBHR77BkyRLY29sbtmM7ODhg3rx5ijcLldhZ9yzIyMjAhg0b0KlTJ2zfvh1OTk6iI8musrLSqCldx9nZWdWzd+s87e+2TqeTtabIcTkiV2uT8l544QXDY1M69LFOaGgoxo8fD1tbW5iZmcHa2hobNmxQpPbLL7+MTp06KVKLxLK0tERoaChCQ0NFR1HMl19+ie3bt+PmzZtGN1obNWpU7zd22ZhWIZ1Oh5kzZyI+Ph5eXl6K1h49ejT279+Pbt26oVevXti+fTu+/fZbODk5YebMmYpmISL51DWlH39MRET/nfz8fKxatQpHjx4FANjY2KC2tlbxHHXbU9Vs5MiRePDgAWbNmgVXV1fodDqjAxHV2rCrrq5GdXU1LC0tja5rtVqTmJHZqlUrJCUlYeLEidDr9di2bRtatmwpOpZsRK7WJjFM8dDHOnq9HgcOHMDly5cRERGBO3fu4ObNm4qslHd3d0dcXByGDRtmtEpbrb9L6KGgoCB8/vnnomPIbsKECZgwYQLi4+Mxffp0WWuxMa1C5ubmqKysNMw4UlJMTAzy8/Oh1Wrx6quvoqqqCgMGDMDJkyexePFirFu3TtE8RFT/XF1d8e6772LMmDGQJAm7d++Gq6ur6FhERM+lx5uFVVVViq9e1mq18PT0REVFBQD1Htx0//59AMD69eshSZLR/89qbtj95S9/QWRkJJYuXWo4WLO0tBRLlizBX/7yF8Hp5LdgwQJERERg3bp1kCQJXbt2RVxcnOhYsjHVw01Nlake+lhnxYoVKCkpwYULFxAREQEbGxssX74caWlpstfOzMwEAOzfv99wTc2/S+ih8vJy0REU8eOPPwIAvLy88OOPP0KSJDRp0kSWUTmS3lT27ZmYDz74ABcvXsSIESNgY2NjuN6/f39Z6w4bNgz79u1DRUUF+vTpg2PHjsHKygq1tbXw8vJCVlaWrPWJSH4PHjzApk2bkJOTAwDo1asXZsyYwRE+RES/w+rVq9G4cWNkZmZi8eLFSEpKwuuvv46wsDDZax84cADLly/HzZs3AfDgJrXSarVYsmQJvvrqK7z22msAgCtXrmDo0KFYsmQJrKysBCdURt1MTH5eIbW5deuW4dDHuoVpxcXF0Ol0qm9Oe3t7IyMjA76+vsjIyADwcHfMl19+KTYYqZa/vz9SU1NFx5Cdu7v7Ezfxy8vL0aVLF6xevbpe31u4Ylql/vWvfwEAdu7cabgmSZLsjWkrKytIkgRra2u0bNnS8EHXzMzsiRVBRPR8sra2RkREhOgYRESqEBYWhsTERNjY2CAuLg4eHh6KHaizevVqbNiwAa6urjy4ScWsrKywfPlyhIaGIj8/H3q9Hs7OzmjRooXoaIo5cuQIvv32W0iShN69e6N3796iIxHVG1M89LFOgwYNjHaJKz0K69KlSzh+/DiAh428Nm3aKFqflGcKTWkAOHbs2BPXdDoddu3ahdjYWHzyySf1VouNaZX67LPPhNR99HCNxw/aMIUZV0Rqlpyc/Iuvjxs3TqEkRETqYWlpiZCQEISEhChe297eHp07d1a8LonRvHlz1a+efJpPP/0Ue/fuxfDhwwEAK1euhI+PDw9tJlIBZ2dnZGZmQq/X49q1a0hISED37t0VqZ2RkYE1a9ZgwIABAIDNmzcjPDxc8XO+SD78/mvM3Nwc48aNq/dROWxMq0x2dvYvvi73iunHD9t49LEpnApMpGbnz58XHYGISHVWr179xLVGjRqhS5cu6Nmzp6y1g4OD8eGHH2Lw4ME8uIlUKzMzE7t27TIc1hwcHIzAwEA2polUICoqCitXrsStW7fg7+8PDw8PREZGKlJ769at0Gg0htXqt27dwqRJk9iYVhF+/306nU5Xr/8+NqZVJjExEcDDlcvnzp2Ds7MzgIcnvnfp0kX2xjQP2yBSrxUrVoiOQESkOiUlJTh16hQGDRoEADh06BC6d++O/fv3w9PTU9aV1MXFxdi2bRsyMjIMozx4cBOpUV1T+vHHRPT8W7ZsmdFzJQ+ne3SEyuPjVOj5Z8rff+sOxH7U3bt3sWvXLrRr165ea7ExrTJ1IzwiIiIQHR2NN954AwBw9uxZRU6mJSL10+v1+OKLL4xmNY4ZM4a7IoiIfoebN28iPT0ddnZ2AIAZM2YgMjISKSkp8Pf3l7Ux/dlnn+HgwYN4+eWXZatBJJqrqyveffddw2eV3bt3w9XVVXQsIqoHwcHB0Gg0v3pNDi1btsT69esREBAASZKQmpoKR0dH2euSGD/88APy8vKg1WoN13x8fMQFklnXrl2NDj+UJAlNmjRBr169sGDBgnqtxca0ShUUFBia0gDQuXNnLFmyRFwgIlKN1atXIzc3F35+fgAezle7fPky5s+fLzgZEdHzp7i42NCUBgA7Ozv85z//ga2treEQabk0b96cTWlSvffeew+bNm0yrKrs1asXZsyYITgVEf0RNTU1qK6uRm1tLSorKw3Ns7Kysqeu9JTD0qVLsWzZMnh5eUGSJPTq1QsxMTGK1CZl7dixA1988QVu3bqFTp064dSpU/jzn/+s6sZ0Xl6eYrXYmFYpCwsL7N27F97e3gAezlazsOAfNxH9cUePHoVGozG8p3h6esLPz4+NaSKi36Ft27Z477334OfnB0mSkJ6ejlatWkGr1RrGa8ilc+fOmDt3LoYOHWo0Y1ru0W9ESrK2tkZERIToGERUj+Lj47Fx40ZIkoQuXboYrtva2uLtt99WJEODBg3wwQcfGF1TcowIKSc1NRW7d+9GYGAgtmzZgvz8fGzevFl0LNVgp1Klli9fjvnz52PhwoUwMzNDu3btEBUVJToWEanEo2M7OMKDiOj3W758OTZt2oTY2Fjo9Xr06NEDERERMDMzM5wdIpe6Q33qRsEBD9/T2ZgmNSkpKcGKFStw/fp1JCcnIy8vD9999x0CAwNFRyOi3yk0NBShoaGIiYnBokWLhGQQOUaElGVlZQVra2vU1tZCr9fD2dkZV69eFR1LNdiYVqm2bdsiPT0dP/74IzQaDTIzMxEdHY2DBw+KjkZEz7k+ffpgypQp8PX1hSRJ0Gg06NOnj+hYRETPJVtbW0RGRj71tSZNmsha+9GGNJFaLVy4EP369UNKSgoAoHXr1oiIiGBjmkgF6prSWq0WOp3OcL1hw4ay1fy5MSKlpaWKjREhZTVs2BDV1dVwcXFBXFwcXnnlFVRWVoqOpRpsTKtQTU0NDh8+jD179uDMmTOoqanB1q1bjWZOExH9t3Q6HbRaLSIiIvDFF1/g66+/hl6vh4eHB/z9/UXHIyJ6LlVVVSEzMxNFRUWoqakxXFdiPFJ2dvZTr3PFNKlJcXExAgMD8cUXXwB4uPJN7jE5RKSMr7/+GrGxsbh586bhoDZJkpCbmytbzaeNEZEkCTY2NoqNESFlLV68GNXV1YiKisK6detw7do1rF69WnQs1ZD0dbd3SBVWrFiBffv2wdnZGb6+vhg8eDCGDRuGw4cPi45GRM+5VatWoXXr1hgzZozR9R07duDGjRucMU1E9DtMnz4d1dXV6Ny5M8zNzQ3XQ0NDZa8dHBxseKzVapGbm4sOHTpg165dstcmUoq/vz9SU1Ph4+ODjIwMlJaWIigoCJmZmaKjEdEfNHjwYKxatQpdunRR/IZT3RiRe/fu4cSJE3B0dISLi4uiGYjUgCumVWbnzp3o2rUrpk6dCnd3dwCc/0pE9eObb75BeHj4E9eDgoLg5eXFxjQR0e9w5coV7N+/X0jtx0d5XLp0CUlJSUKyEMllyJAhWLRoEe7fv4/09HSkpKRg1KhRomMRUT2ws7NDt27dFK0ZHh6OyZMnY9GiRbh79y68vb1ha2uLO3fuICws7IlFPPT8KykpwWefffbE7raPPvpIYCr1YGNaZY4ePYovv/wSq1evxr179+Dj42M0a4mI6PcyMzMzWs336HXeACMi+n0cHR1RXl4OW1tb0VHQtm1b/Pvf/xYdg6heTZ48GZmZmSgtLUV2djaCg4Ph7e0tOhYR1YPBgwcjJSUFw4YNQ4MGDQzX5ZwxfeHCBcPK6L1796JNmzbYunUrbty4gWnTprExrUKzZs1CmzZt0LNnz6d+H6Y/ho1plWncuDHGjRuHcePGIS8vD2lpaaisrMS4ceMwcuRIvPXWW6IjEtFzSqvVoqKi4okPevfv34dWqxWUiojo+daoUSOMGjUKffv2hZWVleG60jOma2trce7cOdTW1spel0hpXl5e8PLyEh2DiOrZBx98AODhWA2lZky/8MILhsenT5/GoEGDAAAODg5crKNSpaWliI2NFR1DtdiYVjEXFxcsXLgQkZGR+Prrr6HRaNiYJqLfbdiwYYiMjMTy5csNK/vKysqwaNEiDB06VHA6IqLnk5OTE5ycnITUTkxMNDy2sLCAo6Mjt6WS6nALNpF65eXlCalbXFwMOzs7nDhxArNnzzZcr6qqEpKH5NWuXTsUFxejWbNmoqOoEg8/JCKi36SmpgZRUVE4dOgQWrVqBQC4fPkyPDw8sGrVKlhY8F4nERERPVvGjh2LNm3a4I033jDagu3r6yswFRE9r/bv34+YmBhYWlqiU6dO2LRpEwDgzJkz2LBhA7Zs2SI4IdW3SZMm4fz58+jatavRyBje4KwfbEwTEdF/5cqVK/j++++h1+vRsWNHvPbaa6IjERE9d/bv3w9PT08kJyc/9fVx48bJVvv06dPo3r270SiPR/Xv31+22kRKGzFiBLKyskTHIKJ65O7u/tSxGXWjPHJycmStf+vWLdy+fRsuLi6GHMXFxdDpdGjevLmstUl5Go3mqdd5g7N+cHkbERH9V1577TU2o4mI/qCLFy/C09MT58+fV7y2RqNB9+7djUZ51JEkiY1pUhVuwSZSnz179gitb29vD3t7e6NrfI9RLzag5cUV00RERERERKQqs2fPhiRJKC8v5xZsIhNw+fJlw7hBovr0008/ITY2Fjk5OZAkCb169cKCBQvQpEkT0dFUgY1pIiIiIiKBcnJycPXqVaOD2eQc5XHp0qVffL1t27ay1SZSikajwd27d6HX62Fubo7GjRsbvc4VcETq4uvr+7MjF4j+iFmzZqFt27Z46623oNfrkZqaivz8fGzcuFF0NFXgKA8iIiIiIkEiIyNx4cIFdOjQwehgNjlNnTr1Z1+TJAmHDh1SJAeRnBo0aIAPP/wQNjY20Gq12LBhA3r27Ck6FhHJhGsuSS5Xr17Fhg0bDM9nz54Nb29vgYnUhY1pIiIiIiJBzpw5g6ysLFhaWipW8/Dhw4rVIhLlk08+wa5du9C+fXscO3YMmzZtYmOaSMW6desmOgKpVG1tLUpKStC0aVMAQElJCWprawWnUg82pomIiIiIBHFwcBBaPycnBwUFBQgKCkJJSQlKS0vh5OQkNBNRfTAzM0P79u0BAO7u7li5cqXgREQkp0WLFomOQCo1adIk+Pj4YMCAAZAkCdnZ2Zg7d67oWKrBxjQRERERkSCtWrXCxIkTMWjQIFhZWRmuyzljuk5CQgKys7Nx69YtBAUFobq6GtHR0di5c6fstYnkVl1djYKCAsP2fq1Wa/Scs9SJnl91h5v+HB5uSvXJx8cHHTp0wIkTJ6DX6zF+/Hj+DqlHbEwTEREREQmi1WrRsmVL5OfnK147KysLe/bswZgxYwA8XL1dXl6ueA4iOVRWVmLKlClG1+qec5Y60fNt4MCBoiOQiXF2doazs7PoGKrExjQRERERkSArVqwQVvuFF154Yrb1L61AI3qecJY6kXr5+vqKjkAmICIiAnFxcRg1atRTPx+lpaUJSKU+bEwTEREREQlSUVGBzZs3o6ioCGvXrkVBQQEKCwsxaNAg2Ws7ODjg1KlTkCQJtbW1iI+PR7t27WSvS0RE9EesXr36F1+fP3++QklIzSZMmAAAiIyMFJxE3diYJiIiIiISZMmSJbC3t0deXh6Ah83iefPmKdKYfu+99xAZGYmLFy/ijTfegJubG9asWSN7XSIioj/C2tpadAQyAa6urgCA69evw9vb2+i1vXv3ioikSpK+7vQHIiIiIiJSlK+vLzQaDXx8fJCRkQEA8PLyQmZmpmIZKioqUFtbCxsbG8VqEhERET0P6j6r/do1+n24YpqIiIiISJDHZzxXVVVByXUjV69exdWrV6HT6QzX+vfvr1h9IiKiP+Lo0aPIzc1FVVWV4VpoaKjARKQW586dw9mzZ3Hnzh0kJycbrpeXl6O6ulpgMnVhY5qIiIiISBA3NzfEx8dDq9Xi+PHjSEpKgoeHhyK1165di927d6NNmzYwMzMD8PDwQzamiYjoebBmzRqcO3cOly5dwl/+8hccOnQIPXv2FB2LVKK4uBjnz59HRUUFzp8/b7huY2Mj9PBqteEoDyIiIiIiQaqrq5GYmIjDhw8DADw8PDB16lSYm5vLXnvw4MHQaDSwtbWVvRYREVF9GzlyJDQaDfz8/JCZmYni4mIsXboUH3/8sehopCJHjx5Fnz59RMdQLa6YJiIiIiJS2KNbQhs3bgwfHx/D8127dmHcuHGyZ7C3t2dTmoiInltWVlawsLCAJEmorq5Gs2bNcOPGDdGxSCVOnz6N7t27Q6fTITs7+4nXucOsfrAxTURERESksNjYWLi6uqJdu3aK1677ctWlSxfMnTsXQ4cORYMGDQyv84sWERE9D2xsbFBRUYGuXbsiKioK9vb2iuw4ItOg0WjQvXt3JCYmPvEaR5/VH47yICIiIiJS2J49e5CRkYHKykr4+PhgxIgRsLOzU6R2cHDwz74mSRJ27NihSA4iIqI/4vbt22jcuDF0Oh2SkpJQVlaG4OBgNG/eXHQ0IvqN2JgmIiIiIhLk2rVr0Gg02L9/P5ydnRESEoLXX39ddCwiIiIiAnDy5El06NABNjY22L17N86dO4cpU6bA0dFRdDRVMBMdgIiIiIjIVL366quYOHEigoODcfz4cZw9e1ax2oGBgb/pGhER0bPohx9+wPz58/HWW29h9OjRhn+I6lNMTAysra1x8eJFJCUloXnz5liwYIHoWKrBGdNERERERArT6/U4cuQI0tPTkZ+fD09PT6Smpiq6+qaystLouU6nw7179xSrT0RE9EfMmTMH3t7e8PX15Wxpkk3dAZvffPMNAgMDERwcjK+++kp0LNVgY5qIiIiISGH9+vWDvb09/Pz8MHPmTEiShKqqKly6dAkA0LZtW9lqJyYmIjExEeXl5ejZs6fhemVlJUaOHClbXSIiovpkYWGByZMni45BKldTU4PTp0/jwIEDeP/99wE8vJlP9YMzpomIiIiIFObh4WF4LEkSHv1ILkkSDh06JFvtsrIy3Lt3D7GxsVi0aJHhuq2trWIHMBIREf1R69atg5ubG/r16yc6CqnY3//+d2zYsAHu7u549913UVhYiLVr12Ljxo2io6kCG9NERERERCaqpqYGhYWFkCQJrVq1goUFN1QSEdHzIScnBzNmzICZmRmsrKyg1+shSRJycnJERyOi34iNaSIiIiIiE3T+/HnMmjXL8GW+pqYGGzZsQMeOHUVHIyIi+lWDBw/GvHnz0LFjR5iZmRmut2jRQmAqUpuqqipkZmaiqKgINTU1huvz588XmEo9uCSCiIiIiMgELVu2DMuXLzfMmT527BhiY2Oxa9cuwcmIiIh+nZ2dHYYOHSo6BqncnDlzUF1djc6dO8PKykp0HNVhY5qIiIiIyARVVFQYHX7o7u6OiooKgYmIiIh+u0GDBmHnzp3w9PREgwYNDNcbNmwoMBWpzZUrV7B//37RMVSLjWkiIiIiIhPUsGFDHDt2DO7u7gCAEydO8Ms8ERE9Nz788EMAwNKlSw0HCUuShNzcXLHBSFUcHR1RXl4OW1tb0VFUiTOmiYiIiIhM0NmzZzFnzhzDttTq6mqsX78erq6ugpMRERH9dvfu3cOJEyfg6OgIFxcX0XFIZebNm4fz58+jb9++RqM8OGO6fnDFNBERERGRCercuTMOHjyIwsJC6PV6tG7dGpaWlqJjERER/aLw8HBMnjwZLi4uuHv3Lry9vWFra4s7d+4gLCwMY8aMER2RVMTJyQlOTk6iY6gWV0wTEREREZmgwsJCNG/eHA0aNMCRI0eQm5uLgIAA2NnZiY5GRET0s4YNG4a//e1vAIDt27cjOzsbW7duxY0bNzBt2jTs3btXcEIi+q24YpqIiIiIyAS98847SEtLQ1FRERYvXozevXsjMjIS8fHxoqMRERH9rEcPOjx9+jQGDRoEAHBwcIAkSaJikYodPXoUubm5qKqqMlwLDQ0VmEg9zEQHICIiIiIi5ZmZmcHS0hLZ2dkIDAxEbGwsrl+/LjoWERHRryouLkZlZSVOnDiBN99803D90cYhUX1Ys2YNPv30U2zbtg03b97Ezp07cfnyZdGxVIONaSIiIiIiE1RVVYXi4mIcPnwY7u7uAABO+SMiomfd1KlT4ePjgyFDhqB79+5o27YtAODMmTNo3ry54HSkNtnZ2diyZQuaNm2KmJgYpKen48GDB6JjqQZHeRARERERmaAJEyZg+PDh6NmzJzp16oSioiI0atRIdCwiIqJf5OnpCTc3N9y+fRsuLi6G66+88gpiY2MFJiM1srKygoWFBSRJQnV1NZo1a4YbN26IjqUaPPyQiIiIiIig0+mg0+lgZWUlOgoRERHRM2H8+PHYvHkzVq1ahbKyMtjb2+P06dPYvXu36GiqwMY0EREREZEJqqiowObNm1FUVIS1a9eioKAAhYWFhkOkiIiIiEzd7du30bhxY+h0OiQlJaGsrAzBwcEcG1NPOGOaiIiIiMgELVmyBDU1NcjLywMAODg4YOPGjYJTERERET0bdDodPvzwQ1hZWaFhw4aYMWMGIiMj2ZSuR2xMExERERGZoPz8fISHh8PS0hIAYGNjg9raWsGpiIiIiJ4N5ubmuHr1qugYqsbGNBERERGRCaprSNepqqoCp/wRERERAdHR0QAAd3d3xMTE4OzZs7h06ZLhH6ofFqIDEBERERGR8tzc3BAfHw+tVovjx48jKSkJHh4eomMRERERCZebmwsASEtLAwD84x//MLwmSRIOHTokIpbq8PBDIiIiIiITVF1djcTERBw+fBgA4OHhgalTp8Lc3FxwMiIiIiKxfH19odFoRMdQPTamiYiIiIhMSHJy8i++Pm7cOIWSEBERET2bOnbsiMaNG//s6zk5OQqmUS+O8iAiIiIiMiGxsbFwdXVFu3btREchIiIieia1atUKCQkJomOoHhvTREREREQm5P3330dGRgYuXboEHx8fjBgxAnZ2dqJjERERET0zrKys0KJFC9ExVI+jPIiIiIiITNC1a9eg0Wiwf/9+ODs7IyQkBK+//rroWERERETC+fv7IzU1VXQM1WNjmoiIiIjIRJWVlSErKwvr16/H3LlzMWbMGNGRiIiIiMhEsDFNRERERGRC9Ho9jhw5gvT0dOTn58PT0xM+Pj5wdHQUHY2IiIiITAgb00REREREJqRv376wt7eHn58fevToAUmSjF5v27atoGREREREZErYmCYiIiIiMiEeHh6Gx5Ik4dGvA5Ik4dChQyJiEREREZGJYWOaiIiIiIiIiIiIiBRlJjoAEREREREREREREZkWNqaJiIiIiIiIiIiISFFsTBMRERERERERERGRotiYJiIiIiIiIiIiIiJFsTFNRERERERERERERIr6P0++mco9rIE9AAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 1800x360 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.figure(figsize=(25, 5))\n",
    "sns.set_theme()\n",
    "act_mut_all[\"tumor_types\"].value_counts().sort_index().plot(kind=\"bar\")\n",
    "#sns.countplot(x=profile_mut_all[\"tumor_types\"], palette=sns.hls_palette(2))\n",
    "plt.xticks(rotation=90);\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Testing with a single RandomForest binary classifier"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dimension of the training data (16608, 96) and test data (7119, 96)\n",
      "     All  Train  Test    Pred\n",
      "0  23240  16280  6960  7119.0\n",
      "1    487    328   159     NaN\n",
      "Accuracy: 0.9776654024441636\n",
      "              precision    recall  f1-score   support\n",
      "\n",
      "           0       0.98      1.00      0.99      6960\n",
      "           1       0.00      0.00      0.00       159\n",
      "\n",
      "    accuracy                           0.98      7119\n",
      "   macro avg       0.49      0.50      0.49      7119\n",
      "weighted avg       0.96      0.98      0.97      7119\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/jr/miniconda3/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1308: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/home/jr/miniconda3/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1308: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/home/jr/miniconda3/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1308: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABCwAAAI0CAYAAADWR7hcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABCqElEQVR4nO39f3Tc9X0n+j+lUWzAWJUlJDEQt772LUSk3XALd9nubZqt3eI0kVHOpucqX23aJg1h04RcdxO+G4UEyYBprkhy06Tg0HbZND8IJ6Xb4lrQivSy326TZtM0TbIhyi3EyAkBYRnJPjaEYDya7x9cVAgE2yOJ+Wjm8TiHc+x5zUivwTPSa56fz/v9aalWq9UAAAAAFEhrvRsAAAAA+FECCwAAAKBwBBYAAABA4QgsAAAAgMIRWAAAAACFI7AAAAAACkdgAQAAABROW70bWA4HDz6W+flqvdtgiXV1nZ7Z2Ufr3QZwErxvG1Nra0vWrVtT7zZeFGaKxuRnE6w83reN6XgzRUMGFvPzVcNFg/LvCiuP9y0rmZmicfl3hZXH+7b5WBICAAAAFI7AAgAAACichlwSAgD1UKkcy8GDB3Ls2NF6t7Ik2tpWZd267pRKxgUAWIxGmxFqUctcYQIBgCVy8OCBnHLKaVmz5sy0tLTUu51FqVareeyxwzl48EDOOKNc73YAYEVrpBmhFrXOFZaEAMASOXbsaNasaW+IQaSlpSVr1rQ39ZEgAFgqjTQj1KLWuUJgAQBLqJEGkUZ6LgBQb83+e7WW5y+wAAAAAArHHhYAsEzWtp+aU1Yv/a/aHz5xLEcOP35C9z18+HBe97pXZ2Dg9dm+/d1Jkptv/oM8/vjjufzy38mdd+7J3/3d32bnzuuXvE8A4PnVc0Z461t/M08++WSOHXsyDzzwvfxP/9OmJMk555ybK68cPe73uP32P80TTzyRwcF/tyQ9vxCBBQAsk1NWt2Xbu3cv+dfd8+GBHDnB+37+83+Zl7/8Z/PXfz2Rt7/9/8hLXvKSJe8HADg59ZwR/uiPPpkkmZ5+KJde+uv54z/+7LPqx44dS1vbj48KXve6X1tsmydMYLGCLVcqV2Td3Wvr3cKL4mSOngK8kDvu+Iu8/e3b8+lP/3G+8IW/yS/90i/XtZ+xsbFMTEzkwQcfzJ49e3LOOeckSZ544on87u/+br70pS9l9erVOf/883PttdcmSaampjI8PJxDhw6lo6MjY2Nj2bBhw6JqPFezzRXNMlMk5grg+H7t17alv38gX/3qV3LWWWfnssvenh073pfHHnssR48ezb/+1/9b3v727Umee6bm5z//V1m7tj333783a9eenp07r09X1xlL0lfz/FZqQMuVylF/J3P0FODHue++e3P48OFccMH/mrm52dxxx1/UPbDYsmVLfuM3fiP/7t89+zTSD37wg1m9enUmJibS0tKSRx55ZKE2OjqaoaGhDAwMZPfu3RkZGcmnPvWpRdV4LnNF4zJXACfikUceye///h8keepAwtjYR3Laaafl2LFjede7Ls9//+9/l3/1r/71cx737W9P5pOfvDW9vWdmbGxn/vRPP5d//+/fsSQ92XQTABrUHXfszqtf/dq0tLTkVa/6pXzrW/fkwIGZuvZ04YUXplx+9vXXH3vssdx+++3Zvn37wg7iZ5zx1JGZ2dnZTE5Opr+/P0nS39+fycnJzM3N1VwDAJ7r1a9+7cKf5+fns2vXR/Obv/n/yVve8sbcf//e3Hffvc/7uH/xL16R3t4zkyQvf/nP5KGHvr9kPTnDAgAa0JNPPpnPf/6vsmrV6vzVX92R5Kk1qX/5l+N17uy5HnjggXR0dOSGG27Il7/85axZsybbt2/PhRdemOnp6fT29qZUKiVJSqVSenp6Mj09nWq1WlOts7Ozbs8VAIrqtNNOXfjz5z53S44cOZw//MM/zurVqzM2dl2OHn3ieR+3atWqhT+3tpZSqVSWrCeBBQA0oP/23/5/+cmf3JCPf/zmhdvuued/ZOfO0fzKr7y6jp0917Fjx/LAAw/kvPPOy3ve85584xvfyNve9rZ8/vOfr3dr6eo6vd4twJJopj07aFwr+XU8M9OatrYXZ4HDiX6fUqk1ScvC/Uulf+7xscceTXd3d9asOTUzMzP5whf+Jv/23/5a2tpa09raktbWloU/t7T889f40b//qNbW1pP6dxRYAEADuvPOPbn44l991m0/8zP/IvPz8/nGN76Wc855WZ06e66zzjorbW1tC8s3XvGKV2TdunWZmprKWWedlf3796dSqaRUeuqozczMTMrlcqrVak21kzE7+2jm56vL8bQLZyV/EOD4DhywiwUrW3f32hX9Op6fn8+xY/Mvyvc60e9TqcwnqS7cv1L55x5f//rBXHXVe/Lrv/6G9PT05oIL/tfMzz913/n56rP+XK3+89f40b//qPn5+Wf9O7a2trzgwQGBBQAskx8+cSx7PjywLF/3eD784Y897+1/8ifP3lTxNa/Zlte8ZtuS9FWrzs7OXHTRRfniF7+YX/iFX8jU1FRmZ2fzUz/1U2lvb09fX1/Gx8czMDCQ8fHx9PX1LSzrqLUGAPVUzxnhaeXyWbnjjv87SfKnf7rnWbUzzyznj/7o+Teqfstb/v3Cn390jljquUJgAQDL5Mjhx+3M/yN27tyZu+66K4888kje/OY3p6OjI3fccUeuvvrqXHnllRkbG0tbW1uuv/76tLe3J0l27NiR4eHh7Nq1K+3t7RkbG1v4erXWAKCezAgnRmABALxo3v/+9+f973//c25fv359Pv3pTz/vYzZt2pTbbrttSWsAQPG5rCkAAABQOAILAFhC1WrjbNDYSM8FAOqt2X+v1vL8BRYAsETa2lblsccON8RAUq1W89hjh9PWtur4dwYAXlAjzQi1qHWusIcFACyRdeu6c/DggTz66KF6t7Ik2tpWZd267nq3AQArXqPNCLWoZa4QWADAEimV2nLGGeV6twEAFIwZoTaWhAAAAACFI7AAAAAACkdgAQAAABSOwAIAAAAoHIEFAAAAUDgCCwAAAKBwBBYAAABA4QgsAAAAgMIRWAAAAACFI7AAAAAACkdgAQAAABSOwAIAAAAoHIEFAAAAUDgCCwAAAKBwBBYAAABA4QgsAAAAgMI5bmBx8ODBvPWtb83WrVuzbdu2XH755Zmbm0uSTE1NZXBwMFu3bs3g4GD27du38LjlqAEAK9vY2Fg2b96cc889N/fee+9z6jfccMNzamYKAGhOxw0sWlpacumll2ZiYiJ79uzJ+vXr86EPfShJMjo6mqGhoUxMTGRoaCgjIyMLj1uOGgCwsm3ZsiW33HJLzj777OfUvvWtb+XrX/96zjrrrGfdbqYAgOZ03MCio6MjF1100cLfzz///Dz00EOZnZ3N5ORk+vv7kyT9/f2ZnJzM3NzcstQAgJXvwgsvTLlcfs7tR48ezTXXXJPR0dG0tLQs3G6mAIDm1XYyd56fn8+tt96azZs3Z3p6Or29vSmVSkmSUqmUnp6eTE9Pp1qtLnmts7PzhPvs6jr9ZJ4WFFJ399p6twBLwmuZE/HRj340l1xySdavX/+s25dj3jBT0Iz8LKYReB03n5MKLK699tqcdtppeeMb35jJycnl6mnRZmcfzfx8td5tLDtv2MZ24MCRercAi9bdvdZruQG1trYs6Qf5r33ta/nmN7+ZK664Ysm+5lJplpkiMVc0Oj+LWenMFI3peDPFCQcWY2Nj+e53v5ubbropra2tKZfL2b9/fyqVSkqlUiqVSmZmZlIul1OtVpe8BgA0pq985Su5//77s2XLliTJww8/nLe85S35wAc+kL6+PjMFADSpE7qs6Uc+8pHcc889ufHGG7Nq1aokSVdXV/r6+jI+Pp4kGR8fT19fXzo7O5elBgA0pssuuyxf+MIXcvfdd+fuu+/OmWeemZtvvjm/8Au/YKYAgCbWUq1WX/A8x/vuuy/9/f3ZsGFDTjnllCTJS1/60tx4443Zu3dvhoeHc/jw4bS3t2dsbCwbN25MkmWpnahmOX2zu3tttr17d73bYBns+fCAU95oCE7fbEyLWRKyc+fO3HXXXXnkkUeybt26dHR05I477njWfTZv3pybbrop55xzThIzxYvFXNG4zBU0AjNFYzreTHHcwGIlapbhwmDRuAwWNArDRWNa6j0siqxZZorEXNHIzBU0AjNFYzreTHFCS0IAAAAAXkwCCwAAAKBwBBYAAABA4QgsAAAAgMIRWAAAAACFI7AAAAAACkdgAQAAABSOwAIAAAAoHIEFAAAAUDgCCwAAAKBwBBYAAABA4QgsAAAAgMIRWAAAAACFI7AAAAAACkdgAQAAABSOwAIAAAAoHIEFAAAAUDgCCwAAAKBwBBYAAABA4QgsAAAAgMIRWAAAL5qxsbFs3rw55557bu69994kycGDB/PWt741W7duzbZt23L55Zdnbm5u4TFTU1MZHBzM1q1bMzg4mH379i26BgAUn8ACAHjRbNmyJbfcckvOPvvshdtaWlpy6aWXZmJiInv27Mn69evzoQ99aKE+OjqaoaGhTExMZGhoKCMjI4uuAQDFJ7AAAF40F154Ycrl8rNu6+joyEUXXbTw9/PPPz8PPfRQkmR2djaTk5Pp7+9PkvT392dycjJzc3M11wCAlaGt3g0AADxtfn4+t956azZv3pwkmZ6eTm9vb0qlUpKkVCqlp6cn09PTqVarNdU6Ozvr8+QAgJMisAAACuPaa6/Naaedlje+8Y31biVJ0tV1er1bgCXR3b223i3AonkdNx+BBQBQCGNjY/nud7+bm266Ka2tT61aLZfL2b9/fyqVSkqlUiqVSmZmZlIul1OtVmuqnYzZ2UczP19djqdbOD4INLYDB47UuwVYlO7utV7HDai1teUFDw7YwwIAqLuPfOQjueeee3LjjTdm1apVC7d3dXWlr68v4+PjSZLx8fH09fWls7Oz5hoAsDK0VKvVhjts0CxHQ7q712bbu3fXuw2WwZ4PD0iQaQiOhjSm4x0NeSE7d+7MXXfdlUceeSTr1q1LR0dHfu/3fi/9/f3ZsGFDTjnllCTJS1/60tx4441Jkr1792Z4eDiHDx9Oe3t7xsbGsnHjxkXVTlSzzBSJuaKRmStoBGaKxnS8mUJgsYIZLBqXwYJGYbhoTIsJLFaaZpkpEnNFIzNX0AjMFI3JkhAAAABgxRFYAAAAAIUjsAAAAAAKR2ABAAAAFI7AAgAAACgcgQUAAABQOAILAAAAoHAEFgAAAEDhCCwAAACAwhFYAAAAAIUjsAAAAAAKR2ABAAAAFI7AAgAAACic4wYWY2Nj2bx5c84999zce++9C7dv3rw5r371qzMwMJCBgYH87d/+7UJtamoqg4OD2bp1awYHB7Nv375F1wAAAIDmcdzAYsuWLbnlllty9tlnP6f2sY99LLt3787u3bvzyle+cuH20dHRDA0NZWJiIkNDQxkZGVl0DQAAAGgexw0sLrzwwpTL5RP+grOzs5mcnEx/f3+SpL+/P5OTk5mbm6u5BgAAADSXtsU8+Iorrki1Ws0FF1yQd73rXWlvb8/09HR6e3tTKpWSJKVSKT09PZmenk61Wq2p1tnZucinCQAAAKwkNQcWt9xyS8rlco4ePZrrrrsu11xzTT70oQ8tZW816+o6vd4twKJ1d6+tdwuwJLyWAQCoRc2BxdPLRFatWpWhoaH89m//9sLt+/fvT6VSSalUSqVSyczMTMrlcqrVak21kzU7+2jm56u1PrUVw4eAxnbgwJF6twCL1t291mu5AbW2tjg4AAAsu5oua/qDH/wgR448NYBWq9Xceeed6evrS5J0dXWlr68v4+PjSZLx8fH09fWls7Oz5hoAAADQXI57hsXOnTtz11135ZFHHsmb3/zmdHR05Kabbso73/nOVCqVzM/PZ9OmTRkdHV14zI4dOzI8PJxdu3alvb09Y2Nji64BAAAAzaOlWq023NqJZloSsu3du+vdBstgz4cHnEZPQ7AkpDEtZknI2NhYJiYm8uCDD2bPnj0555xzkiRTU1MZHh7OoUOH0tHRkbGxsWzYsGHZaieqWWaKxFzRyMwVNAIzRWM63kxR05IQAIBabNmyJbfcckvOPvvsZ90+OjqaoaGhTExMZGhoKCMjI8taAwCKT2ABALxoLrzwwudsqD07O5vJycn09/cnSfr7+zM5OZm5ubllqQEAK0PNVwkBAFgK09PT6e3tTalUSpKUSqX09PRkeno61Wp1yWsns6G3q6HQKFxdjkbgddx8BBYAAD9Gs+1hQeOy9p+Vzh4Wjel4e1gILACAuiqXy9m/f38qlUpKpVIqlUpmZmZSLpdTrVaXvAYArAz2sAAA6qqrqyt9fX0ZHx9PkoyPj6evry+dnZ3LUgMAVgaXNV3BXH6scbn8GI3C6ZuNaTGXNd25c2fuuuuuPPLII1m3bl06Ojpyxx13ZO/evRkeHs7hw4fT3t6esbGxbNy4MUmWpXaimmWmSMwVjcxcQSMwUzSm480UAosVzGDRuAwWNArDRWNaTGCx0jTLTJGYKxqZuYJGYKZoTMebKSwJAQAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAoBD+63/9r3nd616XgYGBbNu2LXfddVeSZGpqKoODg9m6dWsGBwezb9++hcfUWgMAik9gAQDUXbVazX/8j/8x119/fXbv3p0PfvCDec973pP5+fmMjo5maGgoExMTGRoaysjIyMLjaq0BAMUnsAAACqG1tTVHjhxJkhw5ciQ9PT05ePBgJicn09/fnyTp7+/P5ORk5ubmMjs7W1MNAFgZ2urdAABAS0tLfu/3fi9vf/vbc9ppp+Wxxx7LH/zBH2R6ejq9vb0plUpJklKplJ6enkxPT6dardZU6+zsrNvzBABOnMACAKi7Y8eO5Q/+4A+ya9euXHDBBfnqV7+a//Af/kOuv/76uvbV1XV6Xb8/LJXu7rX1bgEWzeu4+QgsAIC6+/a3v52ZmZlccMEFSZILLrggp556alavXp39+/enUqmkVCqlUqlkZmYm5XI51Wq1ptrJmJ19NPPz1eV4yoXjg0BjO3DgSL1bgEXp7l7rddyAWltbXvDggD0sAIC6O/PMM/Pwww/n/vvvT5Ls3bs3jzzySH7qp34qfX19GR8fT5KMj4+nr68vnZ2d6erqqqkGAKwMzrAAAOquu7s7O3bsyPbt29PS0pIk+cAHPpCOjo7s2LEjw8PD2bVrV9rb2zM2NrbwuFprAEDxCSwAgEK45JJLcskllzzn9k2bNuW222573sfUWgMAis+SEAAAAKBwBBYAAABA4QgsAAAAgMIRWAAAAACFI7AAAAAACkdgAQAAABTOcQOLsbGxbN68Oeeee27uvffehdunpqYyODiYrVu3ZnBwMPv27VvWGgAAANA8jhtYbNmyJbfcckvOPvvsZ90+OjqaoaGhTExMZGhoKCMjI8taAwAAAJrHcQOLCy+8MOVy+Vm3zc7OZnJyMv39/UmS/v7+TE5OZm5ubllqAAAAQHNpq+VB09PT6e3tTalUSpKUSqX09PRkeno61Wp1yWudnZ0n1V9X1+m1PC0olO7utfVuAZaE1zIAALWoKbAoutnZRzM/X613G8vOh4DGduDAkXq3AIvW3b3Wa7kBtba2ODgAACy7mgKLcrmc/fv3p1KppFQqpVKpZGZmJuVyOdVqdclrAAAAQHOp6bKmXV1d6evry/j4eJJkfHw8fX196ezsXJYaAAAA0FxaqtXqC66d2LlzZ+6666488sgjWbduXTo6OnLHHXdk7969GR4ezuHDh9Pe3p6xsbFs3LgxSZaldjKaaUnItnfvrncbLIM9Hx5wGj0NwZKQxtRMS0KaZaZIzBWNzFxBIzBTNKbjzRTHDSxWomYZLgwWjctgQaMwXDQmgUVjMlc0LnMFjcBM0ZiON1PUtCQEAAAAYDkJLAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQBQCE888URGR0dz8cUXZ9u2bbnqqquSJFNTUxkcHMzWrVszODiYffv2LTym1hoAUHwCCwCgED74wQ9m9erVmZiYyJ49e7J9+/YkyejoaIaGhjIxMZGhoaGMjIwsPKbWGgBQfAILAKDuHnvssdx+++3Zvn17WlpakiRnnHFGZmdnMzk5mf7+/iRJf39/JicnMzc3V3MNAFgZ2urdAADAAw88kI6Ojtxwww358pe/nDVr1mT79u055ZRT0tvbm1KplCQplUrp6enJ9PR0qtVqTbXOzs4T7qur6/Slf7JQB93da+vdAiya13HzEVgAAHV37NixPPDAAznvvPPynve8J9/4xjfytre9LR/96Efr2tfs7KOZn6/WtYcXiw8Cje3AgSP1bgEWpbt7rddxA2ptbXnBgwMCCwCg7s4666y0tbUtLOF4xStekXXr1uWUU07J/v37U6lUUiqVUqlUMjMzk3K5nGq1WlMNAFgZ7GEBANRdZ2dnLrroonzxi19M8tQVPmZnZ7Nhw4b09fVlfHw8STI+Pp6+vr50dnamq6urphoAsDK0VKvVhjvPsVlO3+zuXptt795d7zZYBns+POCUNxqC0zcb0/FO36zVAw88kCuvvDKHDh1KW1tbfud3fievetWrsnfv3gwPD+fw4cNpb2/P2NhYNm7cmCQ1105Us8wUibmikZkraARmisZkSQgAsCKsX78+n/70p59z+6ZNm3Lbbbc972NqrQEAxWdJCAAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAIVyww035Nxzz829996bJJmamsrg4GC2bt2awcHB7Nu3b+G+tdYAgOITWAAAhfGtb30rX//613PWWWct3DY6OpqhoaFMTExkaGgoIyMji64BAMUnsAAACuHo0aO55pprMjo6mpaWliTJ7OxsJicn09/fnyTp7+/P5ORk5ubmaq4BACtDW70bAABIko9+9KO55JJLsn79+oXbpqen09vbm1KplCQplUrp6enJ9PR0qtVqTbXOzs4X/8kBACdNYAEA1N3Xvva1fPOb38wVV1xR71aepavr9Hq3AEuiu3ttvVuARfM6bj4CCwCg7r7yla/k/vvvz5YtW5IkDz/8cN7ylrfkve99b/bv359KpZJSqZRKpZKZmZmUy+VUq9WaaidjdvbRzM9Xl+MpF44PAo3twIEj9W4BFqW7e63XcQNqbW15wYMD9rAAAOrusssuyxe+8IXcfffdufvuu3PmmWfm5ptvzmte85r09fVlfHw8STI+Pp6+vr50dnamq6urphoAsDI4wwIAKLQdO3ZkeHg4u3btSnt7e8bGxhZdAwCKb9GBxebNm7Nq1aqsXr06SXLFFVfkla98ZaampjI8PJxDhw6lo6MjY2Nj2bBhQ5LUXAMAmsPdd9+98OdNmzbltttue9771VoDAIpvSZaEfOxjH8vu3buze/fuvPKVr0zimukAAABA7ZZlDwvXTAcAAAAWY0n2sLjiiitSrVZzwQUX5F3velfdr5nuEmQ0Aru10yi8lgEAqMWiA4tbbrkl5XI5R48ezXXXXZdrrrkmb3rTm5agtdo1yyXIfAhobC7bRCNwCbLGdLxLkAEALIVFLwl5+nrmq1atytDQUP7xH/8x5XJ54drnSZ517fNaawAAAEDzWFRg8YMf/CBHjjx15KxarebOO+9MX19fzddFd810AAAAIFnkkpDZ2dm8853vTKVSyfz8fDZt2pTR0dEkrpkOAAAA1G5RgcX69etz++23P2/NNdMBAACAWi3LZU0BAAAAFkNgAQAAABSOwAIAAAAoHIEFAAAAUDgCCwAAAKBwBBYAAABA4QgsAAAAgMIRWAAAAACFI7AAAAAACkdgAQAAABSOwAIAAAAoHIEFAAAAUDgCCwAAAKBwBBYAQCEcPHgwb33rW7N169Zs27Ytl19+eebm5pIkU1NTGRwczNatWzM4OJh9+/YtPK7WGgBQbAILAKAQWlpacumll2ZiYiJ79uzJ+vXr86EPfShJMjo6mqGhoUxMTGRoaCgjIyMLj6u1BgAUm8ACACiEjo6OXHTRRQt/P//88/PQQw9ldnY2k5OT6e/vT5L09/dncnIyc3NzNdcAgOJrq3cDAAA/an5+Prfeems2b96c6enp9Pb2plQqJUlKpVJ6enoyPT2darVaU62zs/OE+ujqOn15niC8yLq719a7BVg0r+PmI7AAAArn2muvzWmnnZY3vvGNmZycrFsfs7OPZn6+Wrfv/2LyQaCxHThwpN4twKJ0d6/1Om5Ara0tL3hwQGABABTK2NhYvvvd7+amm25Ka2tryuVy9u/fn0qlklKplEqlkpmZmZTL5VSr1ZpqAEDx2cMCACiMj3zkI7nnnnty4403ZtWqVUmSrq6u9PX1ZXx8PEkyPj6evr6+dHZ21lwDAIrPGRYAQCHcd999uemmm7Jhw4a84Q1vSJK89KUvzY033pgdO3ZkeHg4u3btSnt7e8bGxhYeV2sNACg2gQUAUAg//dM/nX/6p3963tqmTZty2223LWkNACg2S0IAAACAwhFYAAAAAIUjsAAAAAAKR2ABAAAAFI7AAgAAACgcgQUAAABQOAILAAAAoHAEFgAAAEDhCCwAAACAwhFYAAAAAIUjsAAAAAAKR2ABAAAAFI7AAgAAACgcgQUAAABQOAILAAAAoHAEFgAAAEDhCCwAAACAwhFYAAAAAIUjsAAAAAAKp63eDQA0k7Xtp+aU1c31o7e7e229W3hR/PCJYzly+PF6twFAE2m2uaJZZorEXPG0Qr66p6amMjw8nEOHDqWjoyNjY2PZsGFDvdsCWLRTVrdl27t317sNlsGeDw/kSL2b4DnMFEAjM1c0LnPFUwq5JGR0dDRDQ0OZmJjI0NBQRkZG6t0SALACmSkAYOUqXGAxOzubycnJ9Pf3J0n6+/szOTmZubm5OncGAKwkZgoAWNkKtyRkeno6vb29KZVKSZJSqZSenp5MT0+ns7PzhL5Ga2vLcrZYKD3rTq13CyyTZnodNxvv28bVLO/blfI8zRQnz8+nxtVsr+Vm4n3buJrhfXu851i4wGIprFu3pt4tvGhufv/F9W6BZdLVdXq9W2CZeN82Lu/bxtNMM0Xi51Mj8/OpcXnfNi7v2wIuCSmXy9m/f38qlUqSpFKpZGZmJuVyuc6dAQAriZkCAFa2wgUWXV1d6evry/j4eJJkfHw8fX19J3zqJgBAYqYAgJWupVqtVuvdxI/au3dvhoeHc/jw4bS3t2dsbCwbN26sd1sAwApjpgCAlauQgQUAAADQ3Aq3JAQAAABAYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOG01bsB+HEOHjyYhx9+OEly5plnZt26dXXuCABYqcwVACuPwILC+d73vperrroqk5OT6enpSZLMzMzkvPPOy9VXX50NGzbUt0EAYMUwVwCsXC3VarVa7ybgmd7whjdkaGgo/f39aW19atXS/Px89uzZk89+9rP53Oc+V+cOgZO1bdu27Nmzp95tAE3IXAGNxUzRXJxhQeEcOnQol1xyybNua21tzcDAQD7+8Y/XqSvgeL7zne/82NrBgwdfxE4A/pm5AlYeMwVPE1hQOB0dHRkfH89rX/vatLS0JEmq1Wr27NmT9vb2OncH/Dj9/f05++yz83wn7h06dOjFbwgg5gpYicwUPM2SEApn3759GR0dzbe//e309vYmSfbv35+Xvexl2bFjRzZu3FjnDoHns2XLlnz2s59deN8+06te9ar8zd/8TR26ApqduQJWHjMFT3OGBYWzYcOGfPKTn8zc3Fymp6eTJOVyOZ2dnXXuDHghF198cR588MHnHS5+5Vd+pQ4dAZgrYCUyU/A0Z1gAAAAAhdNa7wYAAAAAfpTAAgAAACgcgQUAAABQOAILAAAAoHAEFgAAAEDhCCwAAACAwhFYAAAAAIUjsAAAAAAKR2ABAAAAFI7AAgAAACgcgQUAAABQOG31bmA5HDz4WObnq/VugyXW1XV6ZmcfrXcbwEnwvm1Mra0tWbduTb3beFGYKWBl8XsHVpbjzRQNGVjMz1cNFw3KvyusPN63rGRmClh5vGehcVgSAgAAABSOwAIAAAAoHIEFAAAAUDgNuYcFACyHSuVYDh48kGPHjta7lRdFW9uqrFvXnVLJuAAAS6HZZolnqmWuWNQE8v3vfz/veMc7Fv5+5MiRPProo/n7v//7TE1NZXh4OIcOHUpHR0fGxsayYcOGJKm5BgD1dPDggZxyymlZs+bMtLS01LudZVWtVvPYY4dz8OCBnHFGud7tAEBDaKZZ4plqnSsWtSTkpS99aXbv3r3w35YtW9Lf358kGR0dzdDQUCYmJjI0NJSRkZGFx9VaA4B6OnbsaNasaW+KAaOlpSVr1rQ35REgAFguzTRLPFOtc8WS7WFx9OjR7NmzJ69//eszOzubycnJhfCiv78/k5OTmZubq7kGAEXQTANGMz1XAHixNOvv11qe95ItSr377rvT29ubl7/85bnnnnvS29ubUqmUJCmVSunp6cn09HSq1WpNtc7OzqVqFQCWxNr2U3PK6qXf3+GHTxzLkcOPL/nXBQCKxSzxwpbs/8x/+S//Ja9//euX6sstSlfX6fVugWXS3b223i0AJ6mR3rczM61pa/vnkxNPWd2Wbe/eveTfZ8+HB/J42wufBPlbv/UbefLJo3nyySfzwAPfy8aNm5Ik55xzbq666uoT+j5f/eo/5NixJ3PRRT//Y+/T2traUP+GAFAkyzlLHDmB+/3ar23LqlWr8pKXrMr8fCW/+ZtvyS//8taav++dd+7J3/3d32bnzutr/hrPtCSBxf79+/OVr3wl11//VFPlcjn79+9PpVJJqVRKpVLJzMxMyuVyqtVqTbWTMTv7aObnq0vx1AptudI46q9RElHo7l6bAwdO5NflyjA/P59jx+ZflO91vO/zh3/4x0mS6emHcumlv55PfOKzJ/zYp/3DP3wljz/+eC644KIfe5/5+fnn/Bu2trY4OMCKZoZqbELWxmQ+Xj47d45l48b/Offe+//kbW97Sy688KJ0dHQkSY4dO5a2tvr9vFyS7/znf/7nedWrXpV169YlSbq6utLX15fx8fEMDAxkfHw8fX19C8s6aq3xbMuVxlF/J5qIAjzTl770hXzqU/85TzxxNC95yUvyzne+Kz/zMz+b731vX6677ur88Ic/zPx8Jb/6q9ty0UU/n927/yzz8/P5h3/4+2zZcnF+/dffVNf+XX2MF4sZClYe8/HyO+ecl+W0007LddeN5qyzzs4DDzyQQ4cO5j//58/kL/9yPH/2Z7elUqnk9NNPzxVXDOcnf3JDnnzyyXzkI9fna1/7arq7e/KTP7lhSXtassDife9737Nu27FjR4aHh7Nr1660t7dnbGxs0TUA4Pk9+OD388d/fHP+r//r97Nmzem5//69ueKK/yN/9md35M/+7E/z8z//v+VNb7o0SXL48OG0t7dnYODf5vHHH8/ll/9OfZv/fz199bGnXXfddalUKkn++SpiAwMD2b17d0ZGRvKpT31qUTUA4J/94z/+Q44ePZq2trbcc883c8MNf5hTTz013/jG13L33Z/PjTf+UVatWpUvfemL+cAHrsnHP/6fs3v3f8n09EP59Kf/JMeOHcs73vHWk14h8UKWJLCYmJh4zm2bNm3Kbbfd9rz3r7UGADy/L3/5S3nwwe/nHe+4bOG2SqWSubnZnH/+/5Ibb/xonnzyyfzcz12Yn/u5C+vY6Yl5+upjN99888JVxD7xiU8keeoqYtdee23m5uZSrVZrqjl7EwCe8v73vyerVq3OmjVrct11Y7nrrr/Keef9bE499dQkyRe/+N/yne/cl8sue1OSpFqt5siRw0mSf/zHr+ZXf7U/bW1taWtry9atv5r/8T++vmS9WbwHAA2gWq3moot+Pldddc1zav/m32zJz/zMv8jf//1/z2c+88e5446/yMjItXXo8sQV5epj9uoAKI5G2J/kRzfwXk4n+n0+8IEPZtOm/3nh75///EROP/20hce3tCTbtg3ksst++zmPbWl5am+rp+/b2tqSlpaWH/u9T3Yzb4EFADSAf/kv/1U+8Yk/yv337124Ysi3v/2t9PW9PN///gM566yz85rXbMtLX7o+v/u7T4Uaa9asySOPHKhn2z9WUa4+1iwbeTebRvjQA82oETbyLtIG3k+rVJ7dU7Vazfx8deG2n//5V2bnztH0978uPT29qVQque++e/Oyl/Xl537uwtx55x35N//ml1OpHMvExF+mt/fMH/u9f3Qz7+Nt5C2wAIAa/fCJY9nz4YFl+bona/36n8zIyLX5P//Pa/PEE0/k2LEn87M/+4r09b08d9/9+dx111/lJS9pS0tLS7Zvf3eS5Bd/8Zfyvvf9f/OmNw0VYtPNpxXt6mMAsFyKNEv8OOef/3O57LK3Z3j4Xf9vuPFkfumXfjkve1lfLrnk3+Y73/lOfv3X//f09PTm/PMvyPT0g0v2vQUWAFCjI4cfr/uO5eXyWbnjjv87yVNnWfzLf/mvnnOf3/iN38pv/MZvPef2s846+1mXQy0KVx8DoFnUe5b40z/d85zb3ve+Hc+57eKLfzUXX/yrz7n9JS95Sd7znvc95/alIrAAAArF1ccAgERgAQAUjKuPAQBJ8uJsTwoADaJabZ4NGJvpuQLAi6VZf7/W8rwFFgBwglpbS6lUlm4Tq6KrVI6ltbVU7zYAoGE02yzxTLXMFQILADhBp556eo4cOZRq9cW5HFk9VavzOXLkYE499cdfagwAODnNNEs8U61zhT0sAOAEnX76T+TgwQPZv//7SRr9dM6WrFp1Sk4//Sfq3QgANIzmmiWeqba5QmABACeopaUlnZ099W4DAFihzBInx5IQAAAAoHAEFgAAAEDhCCwAAACAwhFYAAAAAIUjsAAAAAAKR2ABAAAAFI7AAgAAACgcgQUAAABQOAILAAAAoHAEFgAAAEDhCCwAAACAwhFYAAAAAIUjsAAAAAAKR2ABAAAAFI7AAgAAACicRQcWTzzxREZHR3PxxRdn27Ztueqqq5IkU1NTGRwczNatWzM4OJh9+/YtPKbWGgAAANAcFh1YfPCDH8zq1aszMTGRPXv2ZPv27UmS0dHRDA0NZWJiIkNDQxkZGVl4TK01AAAAoDksKrB47LHHcvvtt2f79u1paWlJkpxxxhmZnZ3N5ORk+vv7kyT9/f2ZnJzM3NxczTUAAACgebQt5sEPPPBAOjo6csMNN+TLX/5y1qxZk+3bt+eUU05Jb29vSqVSkqRUKqWnpyfT09OpVqs11To7O0+4r66u0xfztKAQurvX1rsFWBJeywAA1GJRgcWxY8fywAMP5Lzzzst73vOefOMb38jb3va2fPSjH12q/moyO/to5uerde3hxeBDQGM7cOBIvVuARevuXuu13IBaW1uW5eDAE088kd/93d/Nl770paxevTrnn39+rr322kxNTWV4eDiHDh1KR0dHxsbGsmHDhiSpuQYAFN+iloScddZZaWtrW1jC8YpXvCLr1q3LKaeckv3796dSqSRJKpVKZmZmUi6XUy6Xa6oBAI3NvlgAwDMtKrDo7OzMRRddlC9+8YtJnjqSMTs7mw0bNqSvry/j4+NJkvHx8fT19aWzszNdXV011QCAxmVfLADgRy1qSUiSXH311bnyyiszNjaWtra2XH/99Wlvb8+OHTsyPDycXbt2pb29PWNjYwuPqbUGADSmou6LBQDUz6IDi/Xr1+fTn/70c27ftGlTbrvttud9TK01AKAxFXVfLBt5AxSHPfyaz6IDCwCAxTqRfbFKpdKz9reqVqs11U5Gs2zk3Wx86IGVyUbejed4G3kvag8LAIClYF8sAOBHtVSr1YY7bNAsR0O6u9dm27t317sNlsGeDw9IkGkILmvamJbrsqYPPPBArrzyyhw6dChtbW35nd/5nbzqVa/K3r17Mzw8nMOHDy/sb7Vx48Ykqbl2opplpmg2ZihYeczHjel4M4UlIQBAIdgXCwB4JktCAAAAgMIRWAAAAACFI7AAAAAACkdgAQAAABSOwAIAAAAoHIEFAAAAUDgCCwAAAKBwBBYAAABA4QgsAAAAgMIRWAAAAACFI7AAAAAACkdgAQAAABSOwAIAAAAoHIEFAAAAUDgCCwAAAKBwBBYAAABA4QgsAAAAgMIRWAAAAACFI7AAAAAACkdgAQAAABSOwAIAAAAonLbFfoHNmzdn1apVWb16dZLkiiuuyCtf+cpMTU1leHg4hw4dSkdHR8bGxrJhw4YkqbkGAAAANIclOcPiYx/7WHbv3p3du3fnla98ZZJkdHQ0Q0NDmZiYyNDQUEZGRhbuX2sNAAAAaA7LsiRkdnY2k5OT6e/vT5L09/dncnIyc3NzNdcAAACA5rHoJSHJU8tAqtVqLrjggrzrXe/K9PR0ent7UyqVkiSlUik9PT2Znp5OtVqtqdbZ2bkUrQIAAAArwKIDi1tuuSXlcjlHjx7Nddddl2uuuSZvetOblqC12nV1nV7X7w9Lobt7bb1bgCXhtczJsDcWAPC0RQcW5XI5SbJq1aoMDQ3lt3/7t/Pe9743+/fvT6VSSalUSqVSyczMTMrlcqrVak21kzE7+2jm56uLfWqF50NAYztw4Ei9W4BF6+5e67XcgFpbW5b14MDHPvaxnHPOOc+67ek9rgYGBrJ79+6MjIzkU5/61KJqAECxLWoPix/84Ac5cuSpQbRarebOO+9MX19furq60tfXl/Hx8STJ+Ph4+vr60tnZWXMNAGhO9sYCgOa0qDMsZmdn8853vjOVSiXz8/PZtGlTRkdHkyQ7duzI8PBwdu3alfb29oyNjS08rtYaAND47I0FACSLDCzWr1+f22+//XlrmzZtym233bakNQCgsRVtbyz7YgEUhyXxzWdJrhICALAUirY3VrPsi9VsfOiBlcm+WI3nePtiLWoPCwCApWJvLADgmZxhAQAUgr2xAIBnElgAAIVgbywA4JksCQEAAAAKR2ABAAAAFI7AAgAAACgcgQUAAABQOAILAAAAoHAEFgAAAEDhCCwAAACAwhFYAAAAAIUjsAAAAAAKR2ABAAAAFI7AAgAAACgcgQUAAABQOAILAAAAoHAEFgAAAEDhCCwAAACAwhFYAAAAAIUjsAAAAAAKR2ABAAAAFI7AAgAAACgcgQUAAABQOAILAAAAoHAEFgAAAEDhLFlgccMNN+Tcc8/NvffemySZmprK4OBgtm7dmsHBwezbt2/hvrXWAAAAgOawJIHFt771rXz961/PWWedtXDb6OhohoaGMjExkaGhoYyMjCy6BgAAADSHRQcWR48ezTXXXJPR0dG0tLQkSWZnZzM5OZn+/v4kSX9/fyYnJzM3N1dzDQAAAGgebYv9Ah/96EdzySWXZP369Qu3TU9Pp7e3N6VSKUlSKpXS09OT6enpVKvVmmqdnZ0n3FNX1+mLfVpQd93da+vdAiwJr2VO1g033JDf//3fz549e3LOOedkamoqw8PDOXToUDo6OjI2NpYNGzYkSc01AKD4FhVYfO1rX8s3v/nNXHHFFUvVz5KYnX008/PVerex7HwIaGwHDhypdwuwaN3da72WG1Bra8uyHRx4oWWmAwMD2b17d0ZGRvKpT31qUTUAoPgWtSTkK1/5Su6///5s2bIlmzdvzsMPP5y3vOUt+d73vpf9+/enUqkkSSqVSmZmZlIul1Mul2uqAQCNzTJTAOCZFnWGxWWXXZbLLrts4e+bN2/OTTfdlHPOOSe33nprxsfHMzAwkPHx8fT19S0s6+jr66upBgA0LstMAXghzjBvPovew+LH2bFjR4aHh7Nr1660t7dnbGxs0TUAoDFZZsqLyYceWJksM208x1tmuqSBxd13373w502bNuW222573vvVWgMAGtMzl5kmWVhm+t73vndhuWipVHrWctFqtVpTDQBYGRZ9WVMAgMW67LLL8oUvfCF333137r777px55pm5+eab85rXvGZhuWiSZy0X7erqqqkGAKwMy7YkBABgKVhmCgDNSWABABSOZaYAgCUhAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKJy2xX6Bt7/97fn+97+f1tbWnHbaabnqqqvS19eXqampDA8P59ChQ+no6MjY2Fg2bNiQJDXXAAAAgOaw6DMsxsbG8hd/8Re5/fbb81u/9Vu58sorkySjo6MZGhrKxMREhoaGMjIysvCYWmsAAABAc1h0YLF27dqFPz/66KNpaWnJ7OxsJicn09/fnyTp7+/P5ORk5ubmaq4BAAAAzWPRS0KS5H3ve1+++MUvplqt5j/9p/+U6enp9Pb2plQqJUlKpVJ6enoyPT2darVaU62zs3MpWgUACsxSUwDgaUsSWFx33XVJkttvvz3XX399tm/fvhRftmZdXafX9fvDUujuXnv8O8EK4LXMyRgbG1s4e/Ov//qvc+WVV+bP//zPF5aMDgwMZPfu3RkZGcmnPvWpJKm5BgAU25IEFk973etel5GRkZx55pnZv39/KpVKSqVSKpVKZmZmUi6XU61Wa6qdjNnZRzM/X13Kp1ZIPgQ0tgMHjtS7BVi07u61XssNqLW1ZdkODrzQUtNPfOITSZ5aMnrttddmbm4u1Wq1ppozNwGg+BYVWDz22GM5fPjwQqBw99135yd+4ifS1dWVvr6+jI+PZ2BgIOPj4+nr61sYDmqtAQCNr0hLTZ21CVAcDtg2n0UFFo8//ni2b9+exx9/PK2trfmJn/iJ3HTTTWlpacmOHTsyPDycXbt2pb29PWNjYwuPq7UGADS+Ii01bZazNpuNDz2wMjlrs/Ec76zNRQUWZ5xxRv7kT/7keWubNm3KbbfdtqQ1AKB5FGWpKQBQH4u+rCkAwFJ47LHHMj09vfD351tqmuRZS0ZrrQEAxbekm24CANTKUlMA4JkEFgBAIVhqCgA8kyUhAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4AgsAAACgcAQWAAAAQOEILAAAAIDCEVgAAAAAhSOwAAAAAApHYAEAAAAUjsACAAAAKByBBQAAAFA4iwosDh48mLe+9a3ZunVrtm3blssvvzxzc3NJkqmpqQwODmbr1q0ZHBzMvn37Fh5Xaw0AAABoDosKLFpaWnLppZdmYmIie/bsyfr16/OhD30oSTI6OpqhoaFMTExkaGgoIyMjC4+rtQYANC4HQgCAZ1pUYNHR0ZGLLrpo4e/nn39+HnrooczOzmZycjL9/f1Jkv7+/kxOTmZubq7mGgDQ2BwIAQCeqW2pvtD8/HxuvfXWbN68OdPT0+nt7U2pVEqSlEql9PT0ZHp6OtVqtaZaZ2fnCffS1XX6Uj0tqJvu7rX1bgGWhNcyJ+r5DoTceuutCwc0PvGJTyR56oDGtddem7m5uVSr1ZpqJzNXAAD1sWSBxbXXXpvTTjstb3zjGzM5OblUX7Yms7OPZn6+WtceXgw+BDS2AweO1LsFWLTu7rVeyw2otbVl2Q8OFOlACABQH0sSWIyNjeW73/1ubrrpprS2tqZcLmf//v2pVCoplUqpVCqZmZlJuVxOtVqtqQYANI+iHAhx1iZAcThg23wWHVh85CMfyT333JM//MM/zKpVq5IkXV1d6evry/j4eAYGBjI+Pp6+vr6Foxm11gCAxlekAyHNctZms/GhB1YmZ202nuOdtbmoTTfvu+++3HTTTZmZmckb3vCGDAwM5B3veEeSZMeOHfnMZz6TrVu35jOf+UyuvvrqhcfVWgMAGtvTB0JuvPHG5z0QkuRZBzRqrQEAxddSrVYb7rBBsxwN6e5em23v3l3vNlgGez48IEGmIdjDojEt1x4W9913X/r7+7Nhw4accsopSZKXvvSlufHGG7N3794MDw/n8OHDaW9vz9jYWDZu3JgkNddORLPMFM3GDAUrj/m4MR1vpliyTTcBABbjp3/6p/NP//RPz1vbtGlTbrvttiWtAQDFtqglIQAAAADLQWABAAAAFI7AAgAAACgcgQUAAABQOAILAAAAoHAEFgAAAEDhCCwAAACAwhFYAAAAAIUjsAAAAAAKR2ABAAAAFI7AAgAAACgcgQUAAABQOAILAAAAoHAEFgAAAEDhCCwAAACAwhFYAAAAAIUjsAAAAAAKR2ABAAAAFI7AAgAAACgcgQUAAABQOAILAAAAoHAEFgAAAEDhCCwAAACAwhFYAAAAAIWzqMBibGwsmzdvzrnnnpt777134fapqakMDg5m69atGRwczL59+xZdAwAAAJrHogKLLVu25JZbbsnZZ5/9rNtHR0czNDSUiYmJDA0NZWRkZNE1AKCxORACADzTogKLCy+8MOVy+Vm3zc7OZnJyMv39/UmS/v7+TE5OZm5uruYaAND4HAgBAJ5pyfewmJ6eTm9vb0qlUpKkVCqlp6cn09PTNdcAgMbnQAgA8Ext9W5gOXR1nV7vFmDRurvX1rsFWBJeyyzGCx3QqFarNdU6Ozvr9nwAgBO35IFFuVzO/v37U6lUUiqVUqlUMjMzk3K5nGq1WlPtZM3OPpr5+epSP7XC8SGgsR04cKTeLcCidXev9VpuQK2tLU1zcKBZnifASuDzT/NZ8sCiq6srfX19GR8fz8DAQMbHx9PX17dwNKPWGgDQfOp9IKRZDoI0Gx96YGVyEKTxHO8gyKL2sNi5c2d+8Rd/MQ8//HDe/OY357WvfW2SZMeOHfnMZz6TrVu35jOf+UyuvvrqhcfUWgMAms8zD4QkedYBjVprAMDK0FKtVhvusEGzHA3p7l6bbe/eXe82WAZ7PjwgQaYhWBLSmJZrScjOnTtz11135ZFHHsm6devS0dGRO+64I3v37s3w8HAOHz6c9vb2jI2NZePGjUlSc+1ENctM0WzMULDymI8b0/FmCoHFCuaXbePyA5lGIbBoTM20h0WzzBTNxgwFK4/5uDEt65IQAAAAgOUgsAAAAAAKR2ABAAAAFI7AAgAAACgcgQUAAABQOAILAAAAoHAEFgAAAEDhCCwAAACAwhFYAAAAAIUjsAAAAAAKR2ABAAAAFI7AAgAAACgcgQUAAABQOAILAAAAoHAEFgAAAEDhCCwAAACAwhFYAAAAAIUjsAAAAAAKR2ABAAAAFI7AAgAAACgcgQUAAABQOAILAAAAoHAEFgAAAEDhtNW7AYBmsrb91Jyyurl+9HZ3r613Cy+KHz5xLEcOP17vNgAAGkZzTc0AdXbK6rZse/fuerfBMtjz4YEcqXcTAAANpJBLQqampjI4OJitW7dmcHAw+/btq3dLAMAKZKYAgJWrkIHF6OhohoaGMjExkaGhoYyMjNS7JQBgBTJTAMDKVbglIbOzs5mcnMwnPvGJJEl/f3+uvfbazM3NpbOz84S+Rmtry3K2WCg9606tdwssk2Z6HTcb79vG1Szv25XyPM0UvBA/i2Hl8TO58Rzv37RwgcX09HR6e3tTKpWSJKVSKT09PZmenj7h4WLdujXL2WKh3Pz+i+vdAsukq+v0erfAMvG+bVzet8VipuCF+FkMK4/fs82nkEtCAAAAgOZWuMCiXC5n//79qVQqSZJKpZKZmZmUy+U6dwYArCRmCgBY2QoXWHR1daWvry/j4+NJkvHx8fT19Z3wqZsAAImZAgBWupZqtVqtdxM/au/evRkeHs7hw4fT3t6esbGxbNy4sd5tAQArjJkCAFauQgYWAAAAQHMr3JIQAAAAAIEFAAAAUDgCCwAAAKBwBBYAAABA4QgsAAAAgMJpq3cD8OMcPHgwDz/8cJLkzDPPzLp16+rcEQAARWNmhMYlsKBwvve97+Wqq67K5ORkenp6kiQzMzM577zzcvXVV2fDhg31bRAAgLozM0Lja6lWq9V6NwHP9IY3vCFDQ0Pp7+9Pa+tTq5bm5+ezZ8+efPazn83nPve5OncInKxt27Zlz5499W4DgAZiZoTG5wwLCufQoUO55JJLnnVba2trBgYG8vGPf7xOXQHH853vfOfH1g4ePPgidgJAMzAzQuMTWFA4HR0dGR8fz2tf+9q0tLQkSarVavbs2ZP29vY6dwf8OP39/Tn77LPzfCfuHTp06MVvCICGZmaExmdJCIWzb9++jI6O5tvf/nZ6e3uTJPv378/LXvay7NixIxs3bqxzh8Dz2bJlSz772c8uvG+f6VWvelX+5m/+pg5dAdCozIzQ+JxhQeFs2LAhn/zkJzM3N5fp6ekkSblcTmdnZ507A17IxRdfnAcffPB5A4tf+ZVfqUNHADQyMyM0PmdYAAAAAIXTWu8GAAAAAH6UwAIAAAAoHIEFAAAAUDgCCwAAAKBwBBYAAABA4fz/AThnMGVXjEsPAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 1080x576 with 4 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAJSCAYAAAAGWpdZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAwKElEQVR4nO3dfXiedXk//ncaaEuBWNLRkAI/alUgTgG1rIggDoQyFmR1w84oVFGRh3agwiigrdSHraIypShzqDzqBhMRgn4LiIoyAdkPEQ0MqC3ykDajBUNLoZDc3z/6JVLLVUJtkk/o63Uc92Fyfe4713lfxwGex5vz+lx1tVqtFgAAKNSIoS4AAAA2RMMKAEDRNKwAABRNwwoAQNE0rAAAFE3DCgBA0bYY6gJeqt6luw51CcAwMXXCnkNdAjAMXN97xVCXkGRwe5wRO9w7aOfaFCSsAAAUbdglrAAAL0e96R20cw23xHK41QsAwGZGwgoAUICe2uAlrMOtAZSwAgBQtOHWYAMAvCz1pjbUJRRLwgoAQNEkrAAABRjMXQKGGwkrAABFk7ACABSgp2aGtYqEFQCAoklYAQAKYJeAahJWAACKpmEFAKBoRgIAAArQYySgkoQVAICiSVgBAArgpqtqElYAAIomYQUAKIAHB1STsAIAUDQJKwBAAXqHuoCCSVgBACiahBUAoAD2Ya0mYQUAoGgSVgCAAvQIWCtJWAEAKJqEFQCgAHYJqCZhBQCgaBJWAIAC9KRuqEsoloQVAICiaVgBACiakQAAgAL02taqkoQVAICiSVgBAArgpqtqElYAAIomYQUAKICEtZqEFQCAoklYAQAK0FuTsFaRsAIAUDQJKwBAAcywVpOwAgBQNAkrAEABeuSIlVwZAACKJmEFACiAXQKqSVgBACiahBUAoAB2CagmYQUAoGgaVgAAimYkAACgAD01OWIVVwYAgKJJWAEACtArR6zkygAAUDQJKwBAAWxrVU3CCgBA0SSsAAAFsEtANVcGAICiSVgBAArQa4a1koQVAICiSVgBAArQI0es5MoAAFA0CSsAQAHsElDNlQEAoGgSVgCAAvTKESu5MgAAFE3DCgBA0YwEAAAUoKfmwQFVJKwAABRNwgoAUAAPDqjmygAAUDQJKwBAAXo9OKCSKwMAQKWnn346c+fOzSGHHJLDDz88n/jEJ5IkixcvzvTp0zN16tRMnz49S5Ys6fvMxq5V0bACABSgJyMG7fVSnH322Rk1alQWLlyYa665JieddFKSZO7cuWlra8vChQvT1taWOXPm9H1mY9eqaFgBAHhBq1atylVXXZWTTjopdXVrt936sz/7syxfvjwdHR1pbW1NkrS2tqajoyMrVqzY6LUNMcMKAFCAwdyHtbu7O93d3esdb2hoSENDQ9/vDz74YMaOHZsFCxbk1ltvzdZbb52TTjopo0ePTlNTU+rr65Mk9fX1GT9+fDo7O1Or1TZqrbGxsbJeDSsAwGbmoosuyoIFC9Y7PnPmzMyaNavv92effTYPPvhgXvva1+a0007LnXfemeOOOy5f+tKXBrNcDSsAQAl6B3FSc8aMGZk2bdp6x5+fribJhAkTssUWW/T9J/w999wz2223XUaPHp1ly5alp6cn9fX16enpSVdXV5qbm1Or1TZqbUPMsAIAbGYaGhqy0047rff644a1sbExU6ZMyc0335xk7R3+y5cvz8SJE9PS0pL29vYkSXt7e1paWtLY2Jhx48Zt1NqG1NVqtdqmvggDqXfprkNdAjBMTJ2w51CXAAwD1/deMdQlJEm+ce9+g3auY3b9Wb/f++CDD+aMM87I448/ni222CInn3xyDjjggCxatCizZ89Od3d3GhoaMn/+/EyaNClJNnqtioYVeNnSsAL9oWEtnxlWAIAC9GbwdgkYbsywAgBQNA0rAABFMxIAAFCAnpocsYorAwBA0SSsAAAF6JEjVnJlAAAomoQVAKAAvTXbWlWRsAIAUDQJKwBAAcywVnNlAAAomoQVAKAAvfZhreTKAABQNAkrAEABemKXgCoSVgAAiiZhBQAogBnWaq4MAABFk7ACABTADGs1CSsAAEXTsAIAUDQjAQAABXDTVTVXBgCAoklYAQAK0CNhreTKAABQNAkrAEABem1rVUnCCgBA0SSsAAAFMMNazZUBAKBoElYAgAL01sywVpGwAgBQNAkrAEABeuSIlVwZAACKJmEFACiAGdZqElYAAIomYQUAKECvHLGSKwMAQNEkrAAABegxw1pJwgoAQNE0rAAAFM1IAABAAWxrVU3CCgBA0SSsAAAF6K3JEau4MgAAFE3CCgBQgJ6YYa0iYQUAoGgSVgCAAtgloJqEFQCAoklYAQAKYJeAaq4MAABFk7ACABSg1y4BlSSsAAAUTcNKca79YfLXRyVvnJoc8u7k9jvXHr+iPZnalrzp0ORDpyZdj677ud/cm7x31tr1/f4mufg//7D2cGcy46TkDYckhx2V/Nftg/Z1gAJsu902mfudU3P1E5fk0sVfyV++e7+hLgnW01OrG7TXcGMkgKLc/IvkC/+afHFuskdL8r/L1x6/7ZfJv/xbcuG/JLvslHz2y8nH5iWXfHnt+mOPJ8eemsyemUw9IHnm2WRp1x/+7sfmJXv9efKvn0tuuiU5eW7yfy5LGscO7vcDhsasBR/Is2uezbt2+FBetdfEfKb99Pz2ziV5oOOhoS4N6AcJK0VZ8M3khBlrm8sRI5Km7de+fvxfydS3Ja95ZTJyy7Xvuf3Ouvzu4bWfu/Dy5C17J4cfnIwcmWw9JnnVxLVrix9MOu5LZh2TjB6VHHJAsusrk+t+MlTfEhhMo8eMyn5/u08unPPveWrVU/nNzffk51ffnrcfdcBQlwbr6K2NGLTXcDNoFT/22GO5++67c/fdd+exxx4brNMyjPT0JL/5n7Vp6dS25G1/l3zqX5Knnk5qtbWv5zz3832L1/7vnR3J2Ibk3SckbzkiOX528siytWv3L052bl7bxD5nt1evPQ68/O24a3N6e3rz8H2dfccW/WpJdnntTkNYFfBSDPhIwO9+97t84hOfSEdHR8aPH58k6erqymtf+9qcddZZmThx4kCXwDCx/LHkmWfrsvAntVxybrJlfXLimcn5Fydv3Sf56FnJ3x+xdiTgKxcldXW1PPXU2s8u/d+1KerXP5/sOin5/PnJKfOSb52XPLk62Wabdc+17dbJskfXrwF4+dlqm9FZ9fsn1zm26vdPZsy2Ww1RRcBLNeAN6z/+4z+mra0t3/zmNzNixNpAt7e3N9dcc01OO+20/Md//MdAl8AwMWrU2v997zuT8ePW/vy+d61tWE/+UDLz/ck/fCJZuSqZceTaxLRp+7XvGz0qeft+yetb1v5+wvuSfd9RlydW1jJmq2TVqnXPtXJVsrX/r4LNwuqVT2VMw7r/wG/dsFWefGL1EFUEL8yjWasN+EjA448/nne84x19zWqSjBgxIkcccUR+//vfD/TpGUZesW2yw/a1yvX3TEsWfiu5+XvJwQesHSF4zaS1a7tOSuqe98/5cz/XasmrX5k82Jmsel7Acs+itceBl7+H7+1M/Rb12fHVO/Qdm7THRDdcwTAy4A3r2LFj097entrzBhBrtVquvvrqNDQ0DPTpGWam/VVy2ZVrxwN+/0Ry8RXJAfsmTz+d3PvbtQ3oI8uSuZ9PjvrbtU1ukrzzsOSGnyZ337d2h4CvXpy86fW1NGybvHLnZPdXJ+dduPbvXH/T2r91iPstYLPw1JNP52dX3poZZ03P6DGj8uf77pZ9j9g7N1zizkvK0pu6QXsNN3W153eSA2DJkiWZO3du7r777jQ1NSVJli1blt133z2f/OQnM2nSpJf093qX7joQZVKIZ55du2XVtT9MRo1MDn1bcspxydNrkqP+IXnwkbWjANP+KjnpA0l9/R8+++2rkvMvSZ56Knnj65M5H02a145N5+HO5PR/Tn7VkTQ3JZ84Odl38hB8QQbV1Al7DnUJFGLb7bbJx75+fN548B55YvnKXHD6ZfnRt3821GVRiOt7rxjqEpIk77n1Q4N2rsum/NugnWtTGPCG9TkrVqxIZ+faOzSbm5vT2Ni4UX9Hwwr0l4YV6I9SGtZ333LsoJ3r2/t8bdDOtSkM2oMDGhsbN7pJBQBg8+VJVwAABRiOG/oPFlcGAICiSVgBAApgH9ZqElYAAIomYQUAKMBw3B91sEhYAQAomoQVAKAAZliraVgBAKh04IEHZuTIkRk1alSS5JRTTsn++++fxYsXZ/bs2Xn88cczduzYzJ8/PxMnTkySjV6rYiQAAKAAvbW6QXu9VF/+8pfzve99L9/73vey//77J0nmzp2btra2LFy4MG1tbZkzZ07f+zd2rYqGFQCAl2T58uXp6OhIa2trkqS1tTUdHR1ZsWLFRq9tiJEAAIDNTHd3d7q7u9c73tDQkIaGhvWOn3LKKanVannTm96Uj370o+ns7ExTU1Pq6+uTJPX19Rk/fnw6OztTq9U2aq2xsbGyXg0rAEABBvOmq4suuigLFixY7/jMmTMza9asdY5ddtllaW5uzpo1a/KZz3wm8+bNy/ve975BqnQtDSsAwGZmxowZmTZt2nrHXyhdbW5uTpKMHDkybW1tOf7443P66adn2bJl6enpSX19fXp6etLV1ZXm5ubUarWNWtsQM6wAAAUYzJuuGhoastNOO633+uOG9cknn8wTTzyRJKnVavn+97+flpaWjBs3Li0tLWlvb0+StLe3p6WlJY2NjRu9tiF1tVqttqkv+EDqXbrrUJcADBNTJ+w51CUAw8D1vVcMdQlJkr++6R8G7VzXvvXL/Xrfgw8+mFmzZqWnpye9vb151atelY9//OMZP358Fi1alNmzZ6e7uzsNDQ2ZP39+Jk2alCQbvVZFwwq8bGlYgf4opWH9q5tOGrRz/eCtXxq0c20KRgIAACiam64AAArg0azVJKwAABRNwgoAUAAJazUJKwAARZOwAgAUQMJaTcIKAEDRJKwAAAWQsFaTsAIAUDQJKwBAAWoS1koSVgAAiqZhBQCgaEYCAAAK0BsjAVUkrAAAFE3CCgBQANtaVZOwAgBQNAkrAEABbGtVTcIKAEDRJKwAAAUww1pNwgoAQNEkrAAABTDDWk3CCgBA0SSsAAAFMMNaTcIKAEDRJKwAAAWo1Ya6gnJJWAEAKJqEFQCgAL0xw1pFwgoAQNE0rAAAFM1IAABAATw4oJqEFQCAoklYAQAK4MEB1SSsAAAUTcIKAFAADw6oJmEFAKBoElYAgALYJaCahBUAgKJJWAEACiBhrSZhBQCgaBJWAIAC2Ie1moQVAICiSVgBAApgH9ZqElYAAIomYQUAKIBdAqpJWAEAKJqGFQCAohkJAAAogJGAahJWAACKJmEFACiAXa2qSVgBACiahBUAoABmWKtJWAEAKJqEFQCgBIZYK0lYAQAomoQVAKAAZlirSVgBACiahBUAoAA1M6yVJKwAABRNwgoAUAAzrNUkrAAAFE3CCgBQAglrJQkrAABF07ACAFA0IwEAAAWwrVU1CSsAAEWTsAIAlEDCWknCCgBA0SSsAAAF8OCAahJWAACKpmEFAChBbRBfG2HBggXZbbfdcu+99yZJFi9enOnTp2fq1KmZPn16lixZ0vfejV2romEFAGCDfvOb3+SXv/xlJkyY0Hds7ty5aWtry8KFC9PW1pY5c+b8yWtVNKwAAAWo1eoG7fVSrFmzJvPmzcvcuXNTV7f2s8uXL09HR0daW1uTJK2treno6MiKFSs2em1D3HQFALCZ6e7uTnd393rHGxoa0tDQsM6xL33pS3nHO96RnXfeue9YZ2dnmpqaUl9fnySpr6/P+PHj09nZmVqttlFrjY2NlfVqWAEASjCI+7BedNFFWbBgwXrHZ86cmVmzZvX9fscdd+Suu+7KKaecMnjFvQANKwDAZmbGjBmZNm3aesf/OF39xS9+kd/+9rc56KCDkiRLly7NBz7wgZx++ulZtmxZenp6Ul9fn56ennR1daW5uTm1Wm2j1jbEDCsAQBHqBu3V0NCQnXbaab3XHzesxx57bH72s5/lxhtvzI033pgddtghX//613PYYYelpaUl7e3tSZL29va0tLSksbEx48aN26i1DZGwAgDwkn3yk5/M7Nmz85WvfCUNDQ2ZP3/+n7xWpa5Wqw2rJ9f2Lt11qEsAhompE/Yc6hKAYeD63iuGuoQkycSLXrxx21SWzDht0M61KRgJAACgaBpWAACKZoYVAKAEw2pIc3BJWAEAKJqEFQCgBC/xkambEwkrAABFk7ACABRgeG00OrgkrAAAFK0yYT311FNTV/fisxSf+9znNmlBAACbJQlrpcqGdZdddhnMOgAA4AVVNqwzZ84czDoAADZvdgmo1O+brm6++eZce+21WbFiRc4///zcddddWblyZd785jcPZH0AAGzm+nXT1SWXXJJPfvKTmThxYn7xi18kSUaPHp0vfelLA1ocAMDmoq42eK/hpl8N60UXXZRvfvObOfbYYzNixNqPTJo0KYsXLx7Q4gAAoF8jAatWrUpzc3OS9O0c8Oyzz2bLLbccuMoAADYnwzD5HCz9Slj33nvvfO1rX1vn2MUXX5wpU6YMSFEAAPCcfiWsH//4x3PcccfliiuuyKpVqzJ16tRss802Of/88we6PgCAzYNdAir1q2EdP358vvOd7+Suu+7Kww8/nObm5uyxxx5986wAADBQ+t1x9vb25plnnkmS9PT0pOaBtwAADIJ+Jaz33HNPTjzxxKxZsyZNTU1ZunRpRo0alfPOOy+77777QNcIAPDyJwus1K+G9Ywzzsh73vOevP/9709dXV1qtVouvPDCnHHGGbnyyisHukYAADZj/RoJWLJkSWbMmNG3pVVdXV2OPvroLFmyZCBrAwDYfNQG8TXM9KthPeCAA3LjjTeuc+xHP/pR3va2tw1ETQAA0KdyJODUU0/tS1R7enrykY98JK973euyww47ZOnSpfn1r3+dgw46aNAKBQB4WRuGyedgqWxYd9lll3V+33XXXft+fvWrX5399ttv4KoCAID/p7JhnTlz5mDWAQCwefPggEr92iUgSdasWZPFixfnscceW2cP1je/+c0DUhgAACT9bFhvv/32nHzyyVmzZk1WrlyZbbbZJqtWrcoOO+yQH/7whwNdIwDAy16dGdZK/dol4J/+6Z/ywQ9+MLfddlu23nrr3HbbbTn++OPT1tY20PUBALCZ6/c+rEcfffQ6x4499thceOGFA1ETAMDmxz6slfrVsG677bZZuXJlkmT77bfP/fffn+7u7jz55JMDWhwAAPRrhvXggw/OT37ykxx++OH5u7/7uxx99NHZYostcuihhw50fQAAbOb61bCeeeaZfT8fc8wx2WOPPbJq1arsv//+A1YYAAAkL2Fbq+ebPHnypq4DAGCzZpeAapUNa1tbW9+jWTfksssu26QFAQDA81U2rEceeeRg1tFvf/XKKUNdAjBsPDXUBQD0nyddVapsWKdNmzaYdQAAwAvq17ZWAAAwVDbqpisAADYxN11VkrACAFA0CSsAQAkkrJX6lbCuWbMm55xzTg466KC86U1vSpL87Gc/y6WXXjqgxQEAQL8a1s9+9rO599578/nPf75vb9bXvOY1+fa3vz2gxQEAbC7qaoP3Gm76NRJwww035LrrrsuYMWMyYsTaHrepqSnLli0b0OIAAKBfDeuWW26Znp6edY6tWLEiY8eOHYiaAAA2P8Mw+Rws/RoJOPTQQ3PaaaflwQcfTJJ0dXVl3rx5+eu//usBLQ4AAPrVsH7kIx/JjjvumHe84x3p7u7O1KlTM378+Jx44okDXR8AwOahNoivYaZfIwEjR47MmWeemTPPPDMrVqzIdttt13fzFQAADKR+NazPjQI8Z9WqVX0/77zzzpu2IgCAzdBwvHt/sPSrYT344INTV1eXWu0PV/K5hPXuu+8emMoAACD9bFjvueeedX7/3//93yxYsCCTJ08ekKIAADY7NeOWVfp109Uf23777XPmmWfmi1/84qauBwAA1tGvhPWF/Pa3v83q1as3ZS0AAJsvM6yV+tWwtrW1rbMrwOrVq3P//ffb1goAgAHXr4b1yCOPXOf3rbbaKrvvvnsmTpw4EDUBAECfF21Ye3p6csstt+RTn/pURo4cORg1AQBsdmxrVe1Fb7qqr6/PzTff7EEBAAAMiX7tEjBjxoyce+65eeaZZwa6HgCAzZNHs1ba4EhAe3t7Wltbc+mll+bRRx/NN7/5zTQ2Nq6Ttv74xz8e6BoBANiMbbBhnTNnTlpbW3P22WcPVj0AAJslM6zVNtiwPvco1r/4i78YlGIAAOCPbbBh7e3tzS233NLXuL6QN7/5zZu8KACAzY6EtdIGG9Y1a9bkzDPPrGxY6+rq8sMf/nBACgMAgORFGtatttpKQwoAMBgkrJX6ta0VAAAMlX7ddAUAwMCyS0C1DSasd9xxx2DVAQAAL8hIAAAARdOwAgBQtA3OsAIAMEgKnWE94YQT8tBDD2XEiBEZM2ZMPvGJT6SlpSWLFy/O7Nmz8/jjj2fs2LGZP39+Jk6cmCQbvVZFwgoAQKX58+fn6quvzlVXXZVjjjkmZ5xxRpJk7ty5aWtry8KFC9PW1pY5c+b0fWZj16poWAEAqLTtttv2/bxy5crU1dVl+fLl6ejoSGtra5KktbU1HR0dWbFixUavbYiRAACAAgzmtlbd3d3p7u5e73hDQ0MaGhrWO37mmWfm5ptvTq1WywUXXJDOzs40NTWlvr4+SVJfX5/x48ens7MztVpto9YaGxsr69WwAgBsZi666KIsWLBgveMzZ87MrFmz1jv+mc98Jkly1VVX5XOf+1xOOumkAa/x+TSsAAAlGMSEdcaMGZk2bdp6x18oXX2+v/mbv8mcOXOyww47ZNmyZenp6Ul9fX16enrS1dWV5ubm1Gq1jVrbEDOsAACbmYaGhuy0007rvf64YV21alU6Ozv7fr/xxhvzile8IuPGjUtLS0va29uTJO3t7WlpaUljY+NGr21IXW2YPX916lZHDXUJwDDR+/RTQ10CMAxc33vFUJeQJNl97jmDdq57zvpIv9736KOP5oQTTsjq1aszYsSIvOIVr8hpp52WP//zP8+iRYsye/bsdHd3p6GhIfPnz8+kSZOSZKPXqmhYgZctDSvQHxrW8plhBQAowGDuEjDcmGEFAKBoElYAgBJIWCtJWAEAKJqEFQCgAGZYq0lYAQAomoQVAKAEEtZKElYAAIomYQUAKIGEtZKEFQCAomlYAQAompEAAIAC2NaqmoQVAICiSVgBAEogYa0kYQUAoGgSVgCAEkhYK0lYAQAomoQVAKAAdgmoJmEFAKBoElYAgBJIWCtJWAEAKJqEFQCgAGZYq0lYAQAomoQVAKAEEtZKElYAAIomYQUAKIGEtZKEFQCAomlYAQAompEAAIAC1A11AQWTsAIAUDQJKwBACdx0VUnCCgBA0SSsAAAF8GjWahJWAACKJmEFACiBhLWShBUAgKJJWAEASiBhrSRhBQCgaBJWAIAC2CWgmoQVAICiSVgBAEogYa0kYQUAoGgSVgCAAphhrSZhBQCgaBpWAACKZiQAAKAERgIqSVgBACiahBUAoABuuqomYQUAoGgSVgCAEkhYK0lYAQAomoQVAKAEEtZKElYAAIomYQUAKIBdAqpJWAEAKJqEFQCgBBLWShJWAACKJmEFAChAXU3EWkXCCgBA0SSsAAAlELBWkrACAFA0DSsAAEUzEgAAUAAPDqgmYQUAoGgSVgCAEkhYK0lYAQAomoQVAKAAZlirSVgBACiahBUAoAQS1koSVgAAiqZhBQAoQF1t8F799dhjj+VDH/pQpk6dmsMPPzwzZ87MihUrkiSLFy/O9OnTM3Xq1EyfPj1Llizp+9zGrlXRsAIA8ILq6urywQ9+MAsXLsw111yTnXfeOZ///OeTJHPnzk1bW1sWLlyYtra2zJkzp+9zG7tWRcMKAFCC2uC9uru789BDD6336u7uXqeksWPHZsqUKX2/77XXXnnkkUeyfPnydHR0pLW1NUnS2tqajo6OrFixYqPXNsRNVwAAm5mLLrooCxYsWO/4zJkzM2vWrBf8TG9vb7797W/nwAMPTGdnZ5qamlJfX58kqa+vz/jx49PZ2ZlarbZRa42NjZX1algBAAowmPuwzpgxI9OmTVvveENDQ+VnPvWpT2XMmDF573vfm46OjoEsbz0aVgCAzUxDQ8MGm9M/Nn/+/DzwwAM5//zzM2LEiDQ3N2fZsmXp6elJfX19enp60tXVlebm5tRqtY1a2xAzrAAAJajVBu/1Epxzzjn59a9/nfPOOy8jR45MkowbNy4tLS1pb29PkrS3t6elpSWNjY0bvbYhdbXaS6x6iE3d6qihLgEYJnqffmqoSwCGget7rxjqEpIk+7znC4N2rlsu+1i/3nffffeltbU1EydOzOjRo5MkO+20U84777wsWrQos2fPTnd3dxoaGjJ//vxMmjQpSTZ6rYqGFXjZ0rAC/aFhLZ8ZVgCAAgzmTVfDjRlWAACKJmEFACiBhLWShBUAgKJJWAEAClDXO9QVlEvCCgBA0SSsAAAlMMNaScIKAEDRJKwAAAWwD2s1DStFe8dxb8/B790/E1+3c358+S35wrFfS5I0/X9/lov/55ysXvmHJxld/oX2fOufv5ck2foVY3L859+bvQ/ZM0lyzdduyKWf+e7gfwGgCNtut00+esHxedMhe6T70Sfy9TO+lR99+2dDXRbQTxpWira88/F8a/7Vmfz212fkViPXW3/nDh9Ob8/6t1Ue97n3ZNSYUTl6949k7PYN+ecfzE7X7x7NdZf8dDDKBgoza8EH8uyaZ/OuHT6UV+01MZ9pPz2/vXNJHuh4aKhLgz+oiVirmGGlaDd/7/b8/Jr/TveKlS/pc1MOe0Ou+GJ7nl69Jst+92gWXviTTJ1xwABVCZRs9JhR2e9v98mFc/49T616Kr+5+Z78/Orb8/aj/DsBhgsJK8PaJfeek1otueOHv86/nfHtdC//Q2NbV1e3zs+7vHanoSgRGGI77tqc3p7ePHxfZ9+xRb9akj3e+tohrArWZ4a1moSVYen3y5/IzLfMyVG7fiQz9/1Ettp2dE775vF967df/6u865TWbLXN6EyYND6HzHhrRo1Zf6QAePnbapvRWfX7J9c5tur3T2bMtlsNUUXASzWkDevhhx8+lKdnGHtq1dO57/9fnN6e3jze1Z3zPnJxJh+8R8ZsOzpJ8tWPXZI1q5/JN+46O5+84iP58eW35NGHVwxx1cBQWL3yqYxpWLc53bphqzz5xOohqggq1AbxNcwM+EjA/fffX7n22GOPDfTp2UzUnhtU/39jAE88tirz3//VvvX3n3Vk/uf23w5FacAQe/jeztRvUZ8dX71DHr5/aZJk0h4T3XAFw8iAN6ytra3Zcccd/9BQPM/jjz8+0KdnmBtRPyL1W9RnRP2IjKivy5ajtkzPsz15zRtfmVWPr8rD9y/LNtttnRO+cFTu/ElHnuxem5g0v3J8Vv7+yax6fFXe+PbX56+O+cuceshnhvjbAEPhqSefzs+uvDUzzpqeL37o/Lxqr4nZ94i9c9Jbzhzq0oB+GvCGdccdd8y3vvWtNDU1rbd2wAHu0GTD2mYfkaM+/s6+39/etl8u+fSVeei+zrz/rBMzdvuGrOpenTtu/HX+acZX+t73mjdOzHFnvzdbv2JMHr5vaea//6t54O6Hh+IrAAU498QL8rGvH5/Ll12QJ5avzJdO+DcJK8Vx01W1AW9YDznkkDz88MMv2LAefPDBA316hrlLP/Pdyg3/f3z5LZWfu+k7t+Wm79w2UGUBw8wTj63MJ9959lCXAWykAW9YTzvttMq1j3/84wN9egCA4cGDAyrZ1goAgKJ5cAAAQAHMsFaTsAIAUDQJKwBACSSslSSsAAAUTcIKAFAAM6zVJKwAABRNwgoAUIJeEWsVCSsAAEWTsAIAlEDAWknCCgBA0SSsAAAFsEtANQkrAABF07ACAFA0IwEAACWomQmoImEFAKBoElYAgAK46aqahBUAgKJJWAEASiBhrSRhBQCgaBJWAIAC1NkloJKEFQCAoklYAQBK0DvUBZRLwgoAQNEkrAAABTDDWk3CCgBA0SSsAAAlELBWkrACAFA0CSsAQAnMsFaSsAIAUDQJKwBAAeoErJUkrAAAFE3DCgBA0YwEAACUwE1XlSSsAAAUTcIKAFCAut6hrqBcElYAAIomYQUAKIEZ1koSVgAAiiZhBQAogYC1koQVAICiSVgBAApQZ4a1koQVAICiSVgBAEogYa0kYQUAoGgSVgCAEnjSVSUJKwAARZOwAgAUwC4B1SSsAAAUTcMKAECl+fPn58ADD8xuu+2We++9t+/44sWLM3369EydOjXTp0/PkiVL/uS1KhpWAIAS1GqD93oJDjrooFx22WXZcccd1zk+d+7ctLW1ZeHChWlra8ucOXP+5LUqGlYAgM1Md3d3HnroofVe3d3d67138uTJaW5uXufY8uXL09HRkdbW1iRJa2trOjo6smLFio1e2xA3XQEAlGAQb7q66KKLsmDBgvWOz5w5M7NmzXrRz3d2dqapqSn19fVJkvr6+owfPz6dnZ2p1WobtdbY2Fh5Pg0rAMBmZsaMGZk2bdp6xxsaGoagmhenYQUAKMEgPjigoaHhT2pOm5ubs2zZsvT09KS+vj49PT3p6upKc3NzarXaRq1tiBlWAABeknHjxqWlpSXt7e1Jkvb29rS0tKSxsXGj1zakrlYbXrvUTt3qqKEuARgmep9+aqhLAIaB63uvGOoSkiSH7vXid8tvKv/nl/P6/d5Pf/rTue666/Loo49mu+22y9ixY3Pttddm0aJFmT17drq7u9PQ0JD58+dn0qRJSbLRa1U0rMDLloYV6A8Na/nMsAIAlGB4ZYiDygwrAABFk7ACAJRAwlpJwgoAQNEkrAAAJZCwVpKwAgBQNAkrAEAJBvFJV8ONhBUAgKJpWAEAKJqRAACAAtS56aqShBUAgKJJWAEASiBhrSRhBQCgaBJWAIAS9EpYq0hYAQAomoQVAKAEZlgrSVgBACiahBUAoAQS1koSVgAAiiZhBQAogYS1koQVAICiSVgBAEpgH9ZKElYAAIomYQUAKEGtd6grKJaEFQCAomlYAQAompEAAIAS2NaqkoQVAICiSVgBAEpgW6tKElYAAIomYQUAKIEZ1koSVgAAiiZhBQAogYS1koQVAICiSVgBAEogYa0kYQUAoGgSVgCAEvT2DnUFxZKwAgBQNAkrAEAJzLBWkrACAFA0CSsAQAkkrJUkrAAAFE3DCgBA0YwEAACUoNdIQBUJKwAARZOwAgAUoFbz4IAqElYAAIomYQUAKIEZ1koSVgAAiiZhBQAogQcHVJKwAgBQNAkrAEAJeu0SUEXCCgBA0SSsAAAlMMNaScIKAEDRJKwAAAWomWGtJGEFAKBoElYAgBKYYa0kYQUAoGgaVgAAimYkAACgBL1GAqpIWAEAKJqEFQCgBDXbWlWRsAIAUDQJKwBAAWpmWCtJWAEAKJqEFQCgBGZYK0lYAQAomoQVAKAAZlirSVgBAKi0ePHiTJ8+PVOnTs306dOzZMmSQa9BwwoAUIJa7+C9XoK5c+emra0tCxcuTFtbW+bMmTNAF6CahhUAYDPT3d2dhx56aL1Xd3f3Ou9bvnx5Ojo60tramiRpbW1NR0dHVqxYMaj1DrsZ1oWrLxnqEgAANrnre68YtHOde+65WbBgwXrHZ86cmVmzZvX93tnZmaamptTX1ydJ6uvrM378+HR2dqaxsXHQ6h12DSsAAH+aGTNmZNq0aesdb2hoGIJqXpyGFQBgM9PQ0NCv5rS5uTnLli1LT09P6uvr09PTk66urjQ3Nw9ClX9ghhUAgBc0bty4tLS0pL29PUnS3t6elpaWQR0HSJK6Wq1m0y8AAF7QokWLMnv27HR3d6ehoSHz58/PpEmTBrUGDSsAAEUzEgAAQNE0rAAAFE3DCgBA0TSsAAAUTcPKsLZ48eJMnz49U6dOzfTp07NkyZKhLgko0Pz583PggQdmt912y7333jvU5QAvkYaVYW3u3Llpa2vLwoUL09bWljlz5gx1SUCBDjrooFx22WXZcccdh7oUYCNoWBm2li9fno6OjrS2tiZJWltb09HRkRUrVgxxZUBpJk+ePOhP5gE2HQ0rw1ZnZ2eamppSX1+fJKmvr8/48ePT2dk5xJUBAJuShhUAgKJpWBm2mpubs2zZsvT09CRJenp60tXV5T/7AcDLjIaVYWvcuHFpaWlJe3t7kqS9vT0tLS1pbGwc4soAgE2prlar1Ya6CNhYixYtyuzZs9Pd3Z2GhobMnz8/kyZNGuqygMJ8+tOfznXXXZdHH3002223XcaOHZtrr712qMsC+knDCgBA0YwEAABQNA0rAABF07ACAFA0DSsAAEXTsAIAUDQNK1CE2bNn55xzzkmS3H777Zk6deqgnHe33XbLAw888IJrRx11VK644op+/Z0DDzww//Vf/7VRNfwpnwXYHGhYgX478MADs8cee+QNb3hD9t1335x++ulZtWrVJj/P5MmTs3Dhwhd935VXXpl3v/vdm/z8AJRFwwq8JOeff37uuOOOfPe7381dd92Vr371q+u959lnnx2CygB4udKwAhulqakp+++/f+67774ka//T+mWXXZZDDjkkhxxySJLkRz/6UY444ohMnjw5f//3f5977rmn7/MdHR2ZNm1a3vCGN+Tkk0/O008/3bd266235q1vfWvf752dnZk5c2b22WefTJkyJfPmzcuiRYsyd+7c/PKXv8wb3vCGTJ48OUmyZs2azJ8/P29729uy7777Zs6cOXnqqaf6/tYFF1yQ/fbbL/vtt1/+8z//s9/f93e/+12OPvroTJkyJVOmTMnHPvaxdHd3r/Oeu+66K4cddlj23nvvnH766et8pw1dCwA2TMMKbJTOzs7cdNNNaWlp6Tt2ww035PLLL8/3v//9/OY3v8kZZ5yRefPm5dZbb8306dNzwgknZM2aNVmzZk1OPPHEHHHEEbntttty6KGH5rrrrnvB8/T09OTDH/5wJkyYkBtvvDE33XRTDjvssLzqVa/KWWedlb322it33HFHbr/99iTJ2WefncWLF+eqq67Kddddl66urpx33nlJkptuuinf+MY38o1vfCPXXXddfv7zn/f7+9ZqtXz4wx/OT3/60/zgBz/I0qVLc+65567znmuuuSZf//rXc/3112fx4sX5yle+kiQbvBYAvDgNK/CSnHjiiZk8eXLa2tqy995757jjjutbO/bYYzN27NiMHj06l19+eaZPn54999wz9fX1mTZtWrbccsv88pe/zJ133plnnnkmM2bMyJZbbplDDz00r3/961/wfL/61a/S1dWVf/zHf8yYMWMyatSovjT1j9VqtVxxxRU544wzMnbs2GyzzTb58Ic/3PfM+B/84Ad55zvfmV133TVjxozJzJkz+/29d9lll7zlLW/JyJEj09jYmPe///35xS9+sc573vOe96S5uTljx47N8ccf33feDV0LAF7cFkNdADC8nHfeedl3331fcK25ubnv50ceeSRXXXVVLr300r5jzzzzTLq6ulJXV5empqbU1dX1rU2YMOEF/2ZnZ2cmTJiQLbZ48X9drVixIqtXr8473/nOvmO1Wi29vb1Jkq6urrzuda/rW9txxx1f9G8+Z/ny5fn0pz+d22+/PatWrUqtVktDQ8M673n+958wYUK6urqSbPhaAPDiNKzAJvP8BrS5uTnHHXdcjj/++PXed9ttt2XZsmWp1Wp9n3nkkUey8847r/fe5ubmdHZ25tlnn12vaX3++ZJku+22y+jRo3Pttdemqalpvb81fvz4dHZ29v3+yCOP9Pu7feELX0hdXV2uvvrqbLfddrnhhhsyb968dd7zx397/Pjxfd+h6loA8OKMBAAD4sgjj8y///u/584770ytVsuTTz6ZH//4x1m5cmX22muvbLHFFrn44ovz7LPP5rrrrstdd931gn9njz32yPbbb58vfOELefLJJ/P000/nv//7v5Mk48aNy7Jly/pmQUeMGJEjjzwyn/3sZ7N8+fIkybJly/LTn/40SXLooYfmu9/9bu6///6sXr06CxYs6Pf3WbVqVcaMGZOGhoYsW7YsF1xwwXrv+da3vpWlS5fm8ccfz7/+67/msMMOe9FrAcCL07ACA+L1r399PvWpT2XevHnZe++9c8ghh+TKK69MkowcOTLnnntuvvvd72bvvffO97///Rx88MEv+Hfq6+tz/vnn54EHHshf/uVf5q1vfWt+8IMfJEn22WefvPrVr85+++2XKVOmJElOPfXU7LLLLnnXu96VN77xjXnf+96XxYsXJ0kOOOCAzJgxIzNmzMjBBx+cffbZp9/fZ+bMmeno6MjkyZNz7LHH9u2E8Hytra055phj8va3vz0777xzX6K6oWsBwIurq9VqtaEuAgAAqkhYAQAomoYVAICiaVgBACiahhUAgKJpWAEAKJqGFQCAomlYAQAomoYVAICiaVgBACja/wVPn9KCSUA5LQAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 864x720 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAGJCAYAAAB/3c+9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABRwUlEQVR4nO3dd3hUZf7+8fekhxRSSKU3IVIDoRNUihSDWEBc1J/lK67uuriuW7Ah2NnV3bWXdUEUCyAQICBdeggtQCAJgZDeM+kzmX5+fwRmjRCcQJJJJp/XdXFdZHLmnHsewtyZU56jUhRFQQghhLgKJ3sHEEII0XpJSQghhGiQlIQQQogGSUkIIYRokJSEEEKIBklJCCGEaJCUhBBCiAZJSQiH9dBDDzFixAgMBsMVj69Zs6beYwkJCUyYMMH6taIofPXVV8TExDB06FAmTJjAggULOHfuXIPb27BhAxMnTmTYsGHMmTOHwsLCa+b74IMPGDBgAJGRkURFRXH//feTmJhYb5mqqipeeeUVxo0bx5AhQ5g5cyZr1669Yl2bNm3innvuITIykvHjx/P4449z7Nixa25fCFu42DuAEM0hNzeXY8eO4ePjw65du5g+fXqjnv/GG2+wZ88eXnvtNYYPH47ZbGbHjh3s3buXfv36XbG8RqPhhRde4LPPPmPs2LGcOXMGNze3X93O9OnTeeeddzCZTHzwwQc888wz7Nu3DwCDwcAjjzxCYGAg33//PaGhocTHx7Nw4UKqqqp49NFHAVi+fDmff/45S5YsYfz48bi6urJ//3527dpFVFRUo163EL8kJSEcUmxsLEOGDGHIkCHExsY2qiQyMzP55ptvWLVqFYMHD7Y+fueddzb4HJVKhbOzM126dMHJyane82zh4uLCzJkz+fTTTykrKyMgIIANGzZQUFDAypUr6dChAwATJkzgpZde4sUXX2TOnDkoisL777/Pm2++ye23325d38SJE5k4cWKjMghxNbK7STikDRs2MHPmTGbOnMmBAwcoLS21+bnx8fGEhoY26o3e1dWViIgI/vjHP1JZWdnovAaDgdjYWPz8/PD19QXg0KFDTJgwwVoQl91+++3o9XoSExNJTExEr9czZcqURm9TCFtISQiHc+zYMfLz85k+fToDBw6ka9euxMXF2fz8iooKgoKCGrXN1157jX79+nHHHXfw6KOPWoviX//6F2+//XaDz9u6dStRUVEMGTKENWvW8P777+PiUvcBv7y8/Ko5XFxc8Pf3p7y8nIqKCvz9/a3PEaKpSUkIhxMbG8u4ceMICAgAICYmhvXr11u/7+zsjNForPcck8lkfaP18/OjpKTE5u1ptVrWrl3L/PnzmT9/PmPHjrUWxYkTJxgzZkyDz502bRrHjh3j4MGD9O3bl7Nnz1q/5+/vf9UcJpOJ8vJy/P398fPzo7y8HJPJZHNeIRpDSkI4FJ1Ox48//sjRo0cZN24c48aNY8WKFaSmppKamgpAWFgYeXl59Z6Xm5tL586dARgzZgyFhYUkJSXZtE2LxYLZbMbZ2RmAP//5zwwcOJD77rsPnU5X76yphgQEBLBkyRI++OADiouLARg7diz79u1Dq9XWW3b79u24ubkxdOhQIiMjcXd3Z+fOnTZlFaKxpCSEQ9m5cyfOzs5s3ryZ2NhYYmNj2bJlC1FRUcTGxgIwY8YM1q1bx+nTp1EUhYyMDL788ktmzJgBQI8ePZg3bx7PPfccCQkJGAwG9Ho9mzdv5vPPP79im97e3kRHR7NkyRJKS0sxGAyMHj2anJwcXF1dr/jU0pDevXsTHR3NF198AcCsWbMIDQ3lmWeeITc3F6PRyP79+3n99dd5+umn8fHxwcfHhwULFvDqq6+yc+dOamtrMRqN7N27l7///e9NM6iiXVPJ/SSEI/m///s/+vbty8KFC+s9vmXLFt544w327t2Li4sLP/zwA8uXL6egoIDAwEDmzJnD448/jpNT3e9Nl6+TWL16Nbm5ufj6+jJ8+HB+//vf07dv3yu2W1FRwd///nf27t2LoigMHjyYP/7xjyxZsoTOnTvzzjvvXPGcDz74gKysrHrfO3XqFA8//DC7du0iMDCQiooK/vnPf7Jz505qamro2rUrjzzyCHPmzKm3ro0bN/Lll19y8eJFvLy8GDBgAE8++STDhg1rimEV7ZiUhBBCiAbJ7iYhhBANapGSWLp0KRMnTqRfv36kpaVddRmz2cySJUuYPHkyU6ZMuWLaBCGEEC2vRUpi0qRJfPPNN9azR65m06ZNZGdns337dlatWsUHH3xAbm5uS8QTQgjRgBYpiaioKMLCwq65zJYtW5gzZw5OTk4EBAQwefJktm7d2hLxhBBCNKDVHJMoKCggPDzc+nVYWNivzqIphBCiebWakhBCCNH6tJoJX8LCwsjPz7dOqvbLTxa2Ki/XYLG037N6AwO9Uatr7B3D7mQcZAzA8cbAYrFQWFtMXk0B+dUF5GoKKNGWYlEsAPi4exPqHYyvWweMFh0Wi4GnRv/2hrbZakpi2rRprFmzhttvv52Kigp27tzJN9980+j1WCxKuy4JoN2//stkHGQMoO2OgUWxUKwtJasqh6zqXLKrcsitycdoqZunq4OrJ118Q+nl3xUUI2pdMcU1mZwpisdorrvKP8Q7mKdoAyXx+uuvs337dkpLS3n00Ufx8/Nj8+bNzJ8/nwULFjBo0CBmzZrFqVOnrHPi//73v6dr164tEU8IIexKURTK9RVkVeX+rBRy0Zl1ALg5u9LZJ5Th4QNxUlko05ZSoinkTOFhak21zZrN4a64Vqtr2uxvDk0hKMiHkpJqe8ewOxkHGQNovWNQY9CQVZ1DZlUO2VU5ZFXlUm2s2y3mrHImzCeIMO9g3JydqNSXUaopIr86n2p9415LiHcwX81ecUNZW83uJiGEcEQ6k47s6rx6u43UunIAVKgI9gqkT2B3Ori6oTFWodYUkV+Vxtmiw3ZOXkdKQgghmojRYiKvJr/ebqMiTTEKdXs3/D060sU3lP5BPdGbNKhriymozuGC+oT14HNrIyUhhBDXwaJYKNQUW8sgqyqHvJoCzIoZAG83r0sHljtjVnSotSUU1eRzOOcsJkvbuUmUlIQQQvwKRVFQ68rqCqEql8yqHHJr8tCbDQB4OLvTxTeUkZ0HAybKdSUUVRdysuAAepPevuFvkJSEEEL8QqW+qt4nhOzqXDTGujsEujg5E+4TwpDQCFydVFTo1JTUFJJaeozj+Ro7J296UhJCiHZNa6wluzq3XilU6CsBcFI5EeLVif6deuHh4kqNoYJSTRE5FckkFVbYN3gLkZIQQrQbBrOR3Jq8nx1YzqFYW2r9fidPf7r5hTPQrRe1phpKtcUUVGdwruSo9eBzeyMlIYRwSGaLmczyHE7mnSPzUiEUaIqsZxH5uvvQ1TeUvoHdMJprUWuLKawp4FDWaevBZyElIYRwABbFQom21Lq7KKsql9yaPOsUFp4uHnT1DWOU3xDAhFpbTLGmkKN5qdYpLMTVSUkIIdoURVGo0FdecWC51nRpCgsnV8J9QxgWNgA3FxVqTTHFmiLOFiegvXTwWdhOSkII0arVGDVkVdVdqXx5KotqQ90UFk4qJ8K8gxkQ3Bd3Z2eq9RWUagrJKDvNqYIq3NxdMOjbzjUJrZGUhBCi1dCZ9ORU55FVnUP2pesR1LoyoG4Ki6AOAfQJ6IaXqwdaYxWl2iLyq8+TXNw6prBwRFISQgi7MFlM5NUUWI8hZFXnUPizKSz8PHzp6htG/6Ae6M1aymqLKKjKY19mYqudwsIRSUkIIZqddQqLSxPcZVXlkleTj+nSWURerh3o6htGT/9wzIqBstpiimoKSchJwWiRA8v2JCUhhGhS/5vCIte62yi7Otc6hYW7sxudfUOJ6jwIFRYqdCUU1RRyqvAguksHn0XrISUhhGgyOdX5rE6L5WJlJlB3b4Rwn2AGh/SvuzeCrowSTSEXSk+QmO84txV1ZFISQogbpjFqibu4jf15h/Fy7cAt3UdSqS+tu1lOVSpniuLtHVFcJykJIcR1sygW4vOPsuHij2iNtYzuMhSNUc2WtHVtajps0TApCSHEdcmsymb1uQ1kVefQy68rvfxD2XlxO5W6SntHE01ISkII0SjVhho2pv/IoYKj+Lr7MK3PeI7kHmRt8n57RxPNQEpCCGETs8XM/vzDxF3cjt6sZ1zX4ZTXFrDmzLdy3YIDk5IQQvyqCxUZrE6LJa+mgL4BPens48/ujO1U66vtHU00MykJIUSDKvVVrL+whaNFJ/Dz6Mi03tHE5+zjWF6WvaOJFiIlIYS4gtli5qfcA2zJ2IHZYmZC95EU12Sx5uw3smupnZGSEELUk1p2njVpGyjUFhPRqQ+dOnRgV3qcTLPdTklJCCEAKNOVs+7CZhKLTxPo6c/0PtEcyNrN4Zw8e0cTdiQlIUQ7Z7SY2JW9j22Zu1CA23qMJrvyPKuSVrbb+zqL/5GSEKIdO1Oawg/nN1JSq2ZQcD983VzYdn4DtaZae0cTrYSUhBDtUGmtmh/ObySpNIXgDoFM6zOOfZm7KagusHc00cpISQjRjhjMBrZn7WFH9h6cVU5M6jmG9LJkViV9Y+9oopWSkhCiHVAUhVOlZ1l7fhNlunKGht6Mh7OFzWnr0Jv09o4nWjEpCSEcXJGmmDXnN5JSlkaYdzBTe49lT8ZOijXF9o4m2gApCSEclM6oI/bCFnbn7MfN2ZUpvcaRUpzI6jPf2juaaEOkJIRwMIqicLz4FLHxmymvrWR42CBUKh0bUldjNMv9okXjSEkI4UDyawpZnRbL+YqLdO0YzojwCHZf3IFaq7Z3NNFGSUkI4QC0xlq2ZOxgb94hPFzcmdp7PMnqE6w5c8je0UQbJyUhRBtmUSwkFJ5gw4Ut1Bg1jOw8GIO5ivXJq1C5ytXS4sZJSQjRRmVX57L63AYyqrLo3rEzowNuZlfGDsprywFwk//eognIT5EQbUyNUcOmi9s4mJeAt1sHpvWO5nh+PD8kH7R3NOGApCSEaCMsioWD+UfYlL6VWrOOMV0iqTaU8MPZbzErZnvHEw5KSkKINuBiZRar02LJqc6jl383evgFsyt9O1X6KntHEw5OSkKIVqzaUENs+hYOFxyjo7sP0/qM50jOAdbn77N3NNFOSEkI0QqZLWb25cWzOWM7BrOR6G5RlGrzWHPmW7l9qGhRUhJCtDLny9NZnbaBfE0hNwX0Ity3I7vTt1JtqLF3NNEOSUkI0UpU6CtZf2Ezx4pOEuDhx/Q+0RzM2svRvGx7RxPtmJSEEHZmspj4KecAP2buxKxYuKX7SAqqM1h95hvZtSTsTkpCCDtKKUtjTdoGirQl3NypL4EdPNmZHofWqLV3NCEAKQkh7EJdW866C5s4WXKGTp4BTOszngNZPxGfk2fvaELUIyUhRAsymo3szN7LtqyfALitx2iyK8+xKmmlnZMJcXVSEkK0kKTSZH5I20iprozBwf3xdndm2/kN1Jpq7R1NiAZJSQjRzIq1paw9v5Ez6lRCvDoxvc849mTsorCm0N7RhPhVUhJCNBO92cD2zN3szN6Ls5Mzk3qO5YI6ie+TvrF3NCFsJiUhRBNTFIWTJWdYe34T5foKIkMH4OZsYvO5tejNenvHE6JRpCSEaEKFmiLWpG0ktfw8Yd4hTO0yhp8ydlKiKbF3NCGui5SEEE1AZ9KxJXMnP+UcwN3ZjSm9xpFcnMjqM9/ZO5oQN0RKQogboCgKR4sSib2wmUpDNVHhg1AULRtSV2M0G+0dT4gb1mIlkZGRwcKFC6moqMDPz4+lS5fSo0ePesuo1Wqef/55CgoKMBqNjB49mpdeegkXF+ky0foYzEa+Sv6exJIkuvqGM6rLAHZn7ECtVds7mhBNxqmlNvTKK68wb948tm3bxrx581i0aNEVy3z66af07t2bTZs2sWnTJs6ePcv27dtbKqIQNqsxavjg5OecLDnDpJ5jMZhKWXP2eykI4XBapCTUajXJycnExMQAEBMTQ3JyMmVlZfWWU6lUaDQaLBYLBoMBo9FISEhIS0QUwmaltWrePf4R2dV5zOh7C3syfiRNnWbvWEI0ixYpiYKCAkJCQnB2dgbA2dmZ4OBgCgoK6i33u9/9joyMDMaPH2/9M3z48JaIKIRNsqpyeOfYR2iMGqb2HkNsymrKasvtHUuIZtOqdvZv3bqVfv36sWLFCjQaDfPnz2fr1q1MmzbN5nUEBno3Y8K2ISjIx94RWoWmHofj+Um8l/gF3u5ejOgykNi0NZicTLi5t6r/RvW05mwtpT2Pgavbjb/2Fhm9sLAwioqKMJvNODs7YzabKS4uJiwsrN5yK1eu5M0338TJyQkfHx8mTpxIQkJCo0pCra7BYlGa+iW0GUFBPpSUVNs7ht019Tjsz4tn1blYuviG0bWjH6tPrUKhdf+cubm7YNCb7B3Drtr7GBhdb/y1t8jupsDAQCIiIoiLiwMgLi6OiIgIAgIC6i3XpUsX9u2ru8G7wWAgPj6evn37tkREIa7KoljYkP4j359bT/9OvfF1hx/TtrT6ghCiqbTY2U2LFy9m5cqVTJ06lZUrV7JkyRIA5s+fT1JSEgAvvPACx48fZ+bMmdx111306NGD++67r6UiClGP0WJiRfL3bM/6iZHhQ6jS5XMo+5C9YwnRolSKojjUr0Syu0l2N8GNj4PWWMvnSSs4X3GRiT3HcCz3IDlVbete0+19VwvIGIR4B/PV7BU3tI72e0RHiAaU6cr5+NQyirWlzOh7CzsubKZUW2rvWELYhZSEED+TU53PJ6eWobfomd5nPBtS11JjqLF3LCHsRkpCiEtS1Gl8ceZrPFzcuaX7MFaf/VbmXxLtnpSEEEB8wTG+Tf2BUK8gegcE88PZVVgUi71jCWF3UhKiXVMUhS2ZO9mSsYObAnri4WIm7twme8cSotWQkhDtltli5rtz64gvOMqwsIGotdkczTtt71hCtCpSEqJd0pl0fHFmJSlladzSfRSnCxPIrMi0dywhWh0pCdHuVOgr+eTUcvI1hUzvM4GfMrZSVFNs71hCtEpSEqJdya8p5ONTy9CatMzoG83G1HVU6+XiQyEaIiUh2o208nQ+T1qBq5MLE3uO4Icz36M36+0dS4hWTUpCtAvHChP5OmU1gR0CiOjUhdVnvpNTXIWwgZSEcGiKorAjew8b0n+kt393Ono4syF1vb1jCdFmSEkIh2W2mFlzfiP78+IZEhJBtb6Qny4m2juWEG2KlIRwSDqTnv+c+Yqk0hTGd4sitSSR9LJ0e8cSos2RkhAOp9pQwz9/WsHFsmym9h7PvsydFNYU2juWEG2SlIRwKEXaEj4++V+qjNXccdMtxJ1bT6Wu0t6xhGizpCSEw7hYmcmnp79EpVIxte8Yfkj6Hp1JZ+9YQrRpUhLCIZwsTuLL5O/w8+jI4JCerE1Zhc4k10AIcaOkJESb91POAdae30T3jp0J8vJkXfIPuLnLj7YQTUH+J4k2y6JYWH9hM7tz9jMw6CYMlgp2ph+wdywhHIqUhGiTjGYjK5K/J7EkiTFdhnGx7Axp6jR7xxLC4UhJiDanxqjhs9MruFiZyZRe4zics4fcqjx7xxLCIUlJiDaltLaMj0/9F7WunDv63srW8xsoqy23dywhHJaUhGgzsqpy+OTUciyYmdp7DLEpq9EatfaOJYRDk5IQbUJSaTLLznyDt5sXw8MHsPrMd5gsJnvHEsLhSUmIVm9/3mFWnVtPZ59Qunb0Z+3Z1Sgo9o4lRLsgJSFaLYtiYdPFbWzP+omITn1QoWXr+S32jiVEuyIlIVolk8XEypQ1HC1KZGT4EPKqzpNckmzvWEK0O1ISotXRGmv5T9JXpFWkM7HnGI7lHiSnKtvesYRol6QkRKtSrqvgo1P/pVhbyoy+t7DjwmZKtaX2jiVEuyUlIVqN3Op8Pj61DL1Fz/Q+49mQupYaQ429YwnRrklJiFYhpSyNL5K+xsPFnVu6D2P12W8xmo32jiVEuyclIewuvuAY36b+QKhXEL0Dgvnh7CosisXesYQQSEkIO1IUhR8zd7I5Ywc3BfTEw8VM3LlN9o4lhPgZKQnR4iyKhUP5R9h0cRs1Rg3Dwgai1mZzNO+0vaMJIX5BSkK0qNSy86w9v4l8TSE9/LoQ5TeAUwVHyKzItHc0IcRVSEmIFlGkKWbdhc2cUacQ6OnPtN7jScg9wIYCuUmQEK2ZlIRoVhqjlh8zdrI37xBuTq5M7DGGzMpUVp/5RuZfEqINkJIQzcJsMbM/7zBbMnagNdUSFT4Ii6Jlc9paDGaDveMJIWwkJSGalKIonFWnsu7CZoq0xfQN6EFX30B2Z+ykUldp73hCiEaSkhBNJr+mkHUX4kgpSyOoQyBTe48nPnsfx/L22DuaEOI62VwSBw8eZPPmzZSVlfHpp5+SlJRETU0NY8aMac58og2oNtQQl7Gdg3kJeLi4M6nnWC6ok1h9ZqW9owkhbpBNJfH111/z1VdfMWfOHLZt2waAh4cHb7zxhpREO2a0mNibe5AfM3ZhsBgY3WUoOlMFm86tkSk1hHAQNpXEihUr+PLLL+nSpQv/+c9/AOjVqxcZGRnNGk60ToqicKr0LOsvbKa0Vk3/wN6EePuyJ2MXVfoqe8cTQjQhm0pCo9EQFhYGgEqlAsBkMuHq6tp8yUSrlFOdx9rzmzhfcZEQryCm9R7Hgew9JOTm2TuaEKIZONmy0IgRI/j888/rPfbVV18xatSoZgklWp9KfRVfp6xm6dH3KdAUcnuvcbiqNKw68w15VVIQQjgqlaIov3pFU3FxMU8++SQVFRUUFRXRpUsXvL29+fTTTwkKCmqJnDZTq2uwWNrvRVpBQT6UlFQ32foMZiO7c/axLesnzBYzo7sMpVJfTEJOPCaLqcm209Tc3F0w6FtvvpYgYyBjEOIdzFezV9zQOmza3RQcHMzatWtJSkoiLy+PsLAwBg8ejJOTTR9ERBukKArHi08Re2EL5foKBgbdhL+nB3sytsmNgIRoR2x6l3/qqadQqVQMHjyY6dOnM3ToUJycnHj66aebO5+wg4zKbN49/jHLz35LBzcPpvYeS3rZaeLObZSCEKKdsemTREJCwlUfP3LkSJOGEfZVrqtgQ/qPHC1KxNfNm9t7j+d04VFWn/nW3tGEEHZyzZJ47733ADAajda/X5aTk0N4eHjzJRMtRmfSszN7Dzuz96GgEN1tBGptHuvOfodZMds7nhDCjq5ZEoWFhUDd/unLf78sLCyMP/zhD82XTDQ7i2LhSOEJNqZvpdJQxZCQCLxdndh9cTNao9be8YQQrcA1S+Ktt94CIDIykvvuu69FAomWkVGZzeq09WRX59HNN5yRXW5mb+YuSjQl9o4mhGhFbDomcbkgampqKC8vr/e9rl27Nn0q0WwMZgObLm7jp5wD+Lr7MLXPeI7nxfPD2UP2jiaEaIVsKon09HSee+45UlNTUalUKIpivfI6JSWlWQOKppNWns43qT9QWqtmZOchaA1qfjjzLRbFYu9oQohWyqZTYBcvXsyoUaM4cuQI3t7eHD16lLlz5/L22283dz7RBGpNOr47t473Ej8DFGb0Gc+J/AMczD4gBSGEuCabPkmkpqaybNkyXF1dURQFHx8f/vrXvxITE8OsWbOaO6O4AWfV5/gudS0V+krGdR2OWpvLd0kyhbcQwjY2lYS7u7t1Qj9/f3/y8/Px9fWloqLC5g1lZGSwcOFCKioq8PPzY+nSpfTo0eOK5bZs2cInn3xi3aW1fPlyOnXqZPN2RB2NUcva85tIKDxOiFcnpnYZw7YLW6jQVdg7mhCiDbGpJIYPH86PP/7IPffcw9SpU5k/fz5ubm6MHj3a5g298sorzJs3j1mzZrFhwwYWLVrEV199VW+ZpKQkPvzwQ1asWEFQUBDV1dW4ubk17hUJTpacYdW59dQYNUzoNpK86vOskgvihBDXwaYJ/n7OYrGwceNGtFotd999N56enr/6HLVazdSpU0lISMDZ2Rmz2cyoUaPYvn07AQEB1uWee+45xowZw+zZsxv/Sqzbar8T/FUbatiQtZn4nON09gllQFB3tl34sV3e46G9T+wGMgYgY9BiE/z9nJOTE3fddRcGg4E1a9bwwAMP/OpzCgoKCAkJwdnZGQBnZ2eCg4MpKCioVxLp6el06dKFBx54AK1Wy5QpU6zzRomGKYrCsaKTrDm/Ab1Zz209xpBelsSas6vsHU0I0cb9aknEx8eTkpJCt27dmDx5MiaTiW+//Zb//Oc/+Pn52VQStjKbzZw7d47ly5djMBh4/PHHCQ8P56677rJ5HYGB3k2Wpy0o01bwn+Pfcjw/iR5+XejXqTPbM+qumHZzb/TvAA6lvb9+kDGA9j0Grm43/tqvuYbPP/+cTz75hD59+nDhwgV+85vfcOTIEdzc3Hjttde49dZbbdpIWFgYRUVFmM1m6+6m4uJi693uLgsPD2fatGm4ubnh5ubGpEmTOH36dKNKor3sblIUhfiCo6y7EIfJYmZyz7GcLT5ObNrhdv3x+rL2vpsBZAxAxsDoeuOv/ZolsWrVKr7++msGDhzIyZMn+c1vfsPf/vY3HnnkkUZtJDAwkIiICOLi4pg1axZxcXFERETU29UEEBMTw969e5k1axYmk4nDhw8zderURr8oR1daW8Z3qWtJLT9Pb/9udPYNYEvaempNte36tyYhRNO75jtKeXk5AwcOBGDo0KG4ubnx8MMPX9eGFi9ezMKFC/n444/x9fVl6dKlAMyfP58FCxYwaNAg7rjjDs6cOcOMGTNwcnJi/PjxN3QQ29FYFAv7cuPZcPFHVMDtvcZzoiCeE/n77B1NCOGgrnl207Bhwzh+/DiKoqAoCmPGjCEhIYGfP6W13Z3OUXc3FWlL+CZlDemVmfQL7EWQVwd2XtiB3qyvt1x7/3h9mYyDjAHIGDT72U1arZabb77Z+rWiKNavL1/sJnM3NS+zxczunP3EZWzH1cmFab2jOZyznyO5mfaOJoRoB65ZErt27WqpHOIq8moKWJmyhuzqXAYG3YSXmxPrUr7HaDbaO5oQop24Zkl07ty5pXKInzFZTGzL+oltmbvxdPFgRp8J7M/aTW5Vrr2jCSHaGTkVppUxW8x8evpLUsrSGBp6M87oWXP2W0yW9rtfVQhhP1ISrYiiKKxMXUNKWRrT+kSzN2MHhTWFv/5EIYRoJlISrciG9B85UniC23qMZvfFrXIrUSGE3TXq/NWCggJOnjzZTFHat59yDrAjew8jOw/heN4hKQghRKtgU0nk5+dz//33M336dB599FEAtm7dyosvvtis4dqL40WnWHt+EwOCbiKnIpWcqmx7RxJCCMDGkli0aBG33norJ06cwMWlbg/VuHHjOHToULOGaw/SytP5Kvl7evh1wWguJ7X0nL0jCSGElU0lkZSUxBNPPIGTk5N12m4fHx+qq6ubNZyjy6sp4LPTKwjsEECApxtH847aO5IQQtRjU0kEBgaSlZVV77ELFy5cMYursF2ZrpyPTv4XDxc3+geGs/uiXLgohGh9bCqJxx57jCeffJK1a9diMpmIi4vj2WefZf78+c2dzyHVGDV8ePK/GCwGRnUZQFzaJntHEkKIq7LpFNjZs2fj5+fHqlWrCAsLIzY2lmeeeYbJkyc3dz6HYzAb+ez0l6hr1UzrM47VZ7/DoljsHUsIIa7KppIwm81MnjxZSuEGmS1mlp/9lozKbGb0ncD6lDUyD5MQolWzaXfTuHHjWLx4McePH2/uPA5LURRWpcVyuvQsU3qPZ0vaBrRGrb1jCSHENdlUEsuWLaNDhw4899xzTJw4kXfffZdz5+RUzcb4MXMnB/MTiO42gv2ZO6jQVdg7khBC/Kpr3nToao4cOUJcXBw7duygU6dObNrUug66tsabDh3MT+Db1LUMCxtIZvlZMsozmm1b7f0mK5fJOMgYgIxBU9x0qNG3levZsye9e/cmLCyMvLy8G9p4e5BUmsx3qevoF9ibUk1msxaEEEI0NZsOXFdVVbFt2zbi4uI4deoU48aN4/HHH2fSpEnNna9Ny6jM4r9nvqGLbxjOqlqSis7YO5IQQjSKTSURHR1NZGQkMTExfPjhh/j4+DR3rjavUFPMJ6eW09HDh84+Hdl24Ud7RxJCiEazqSR27NhBcHBwc2dxGBX6Sj469V+cnFQMCenFuuQf7B1JCCGuS4MlcfToUUaMGAFAeno66enpV11uzJgxzZOsjTKajXx8ahkao4aJPUey5sx39o4khBDXrcGSWLJkCXFxcQANTgmuUqnYtUvmHPq5o0UnyaspYHqfaNYnr8asmO0dSQghrluDJXG5IAB2797dImHaOkVR2JN7gFCvIBJyD6A36+0dSQghbohNp8A+9dRTV3386aefbtIwbd2FigzyagoYENxHTnUVQjgEm0oiISHhqo8fOXKkScO0dXtzD9LBxZPMijR7RxFCiCZxzbOb3nvvPQCMRqP175fl5OQQHh7efMnamDJdOadKzzKmSyQ70jfaO44QQjSJa5ZEYWEhULev/fLfLwsLC+MPf/hD8yVrY/bnHUZRFPTmKpnZVQjhMK5ZEm+99RYAkZGR3HfffS0SqC0ymI0czEtgQFBfjufJLjghhONosCRyc3Pp0qULUHctRE5OzlWX69q1a/Mka0OOFSWiMWnp5OUjs7sKIRxKgyUxc+ZMEhMTAZgyZQoqlYpfThirUqlISUlp3oStXN1prwcJ8w7mdIHcb0MI4VgaLInLBQGQmpraImHaosunvU7uNYa1Z2VXkxDCsTR6qnCoO7NJpgmvsyf3IB1cPckol5swCSEcj00l8ac//YkTJ04AsHbtWu644w7uuOMO1qxZ06zhWrsyXTmnSs4wLHQASUVJ9o4jhBBNzqaSiI+PZ+DAgQB8+eWXLF++nDVr1vCf//ynWcO1dvty4wHQmSvltFchhEOyaapwo9GIm5sbRUVFVFRUMHz4cABKS0ubNVxrZjAbOJR/hAFBfTmWd/Ur0oUQoq2zqSQiIiL47LPPyMvL49ZbbwWgqKgIb2/v5szWqh29fNprBx8qdZX2jiOEEM3Cpt1Nb7zxBmlpaej1ep555hmg7uynmTNnNmu41kpRFPbk1J32eqpQTnsVQjgulfLLix/aOLW6BouleV/S+fJ0/p34GZN7jmFtcuu6qZCbuwsGvcneMexOxkHGAGQMQryD+Wr2ihtah027m6DurKYNGzZQVFRESEgIs2bN4t57772hjbdV1tNeK+S0VyGEY7OpJD755BNiY2N57LHHCA8PJz8/ny+++ILi4uIG7zXhqNS15ZwqOcu4bsPZfmGDveMIIUSzsqkk1qxZw9dff03nzp2tj40fP54HH3yw3ZXE/rx4VCoVOqOc9iqEcHw2Hbiura0lICCg3mN+fn7odLpmCdVaGcwGDuYncHNQX47lyxQcQgjHZ1NJREdH8+c//5mLFy+i0+lIT09n4cKFjB8/vrnztSpHCxPRmmrp5Oklp70KIdoFm0pi0aJFeHl5MWvWLCIjI7nrrrvw9PTk5Zdfbu58rcbl2V7DvUM4VXjC3nGEEKJF/OoxiaqqKnJycli0aBFvv/025eXl+Pv74+R0XXMDtlnnKy6Srym8dNqrXGEthGgfrvlOv2fPHiZMmMC9997LLbfcwpEjRwgMDGx3BQF1p716uXbgYrlMmy6EaD+u+W7/3nvv8ec//5nExEQWLFjAv//97xaK1bqoa8s4XXKWyNCbOVN0xt5xhBCixVyzJHJycnjwwQfx9PTkgQceICsrq6VytSr7Lp32WmuqwGiR016FEO3HNUvCYrFY/+7i4oLZbG72QK2N3mzg4KXZXo/nH7V3HCGEaFHXPHCt0+l44IEHrF9rNJp6XwN88803zZOslThWmEitqZYAOe1VCNEOXbMk3njjjXpfz549u1nDtEaHCo4S6hXEaTntVQjRDl2zJO6+++6WytEq5dcUklmVza09RrEhRXY1CSHan/Z3LmsjHC44hpPKiVJtvr2jCCGEXUhJNMBsMZNQeJybO/UhqfCUveMIIYRdSEk0IEmdQo1RQycvX6r0VfaOI4QQdtFiJZGRkcHcuXOZOnUqc+fOJTMzs8FlL168yJAhQ1i6dGlLxbtCfP5RfN28OV+abLcMQghhbzaVhMFg4F//+heTJk1i+PDhABw4cICVK1favKFXXnmFefPmsW3bNubNm8eiRYuuupzZbOaVV15h8uTJNq+7qVXoKzmrTmVwSD/Olcrd54QQ7ZdNJfHmm2+SlpbGO++8g0qlAqBv3758951t93dWq9UkJycTExMDQExMDMnJyZSVlV2x7Oeff86tt95Kjx49bHwJTe9I4QkUFAwWDWal/V1AKIQQl9lUEjt37uTdd98lMjLSOrlfSEgIRUVFNm2koKCAkJAQnJ2dAXB2diY4OJiCgoJ6y6WmpnLgwAEeeeSRRryEpqUoCvEFR+np15XThYl2yyGEEK2BTbcvdXV1vWJKjrKyMvz8/JosiNFo5OWXX+att96ylsn1CAz0vqEcqSXpFGtLmRI2huSyeNzcbRqiVqUtZm4OMg4yBtC+x8DV7cZfu01rmDZtGn/72994/vnnASguLubNN9/kjjvusGkjYWFhFBUVYTabcXZ2xmw2U1xcTFhYmHWZkpISsrOzeeKJJ4C6+1goikJNTQ2vvfaazS9Ira7BYlFsXv6XfkzZi7uzGxll5zHoTde9Hntxc3dpk7mbmoyDjAHIGBhdb/y127S76dlnn6Vz587ceeedVFVVMXXqVIKDg/n9739v00YCAwOJiIggLi4OgLi4OCIiIurdNzs8PJyEhAR2797N7t27efjhh7nvvvsaVRA3SmfSc6L4FAOD+3G2WKYEF0IImz5JuLm58eKLL/Liiy9SVlaGv7+/9QC2rRYvXszChQv5+OOP8fX1tZ7eOn/+fBYsWMCgQYMan76JJRafRm820MHVCZ1JZ+84QghhdypFUX5130xOTk6D3+vatWuTBrpRN7K76d3jH1NjqsZkLiOjPKOJk7WM9v7x+jIZBxkDkDEI8Q7mq9krbmgdNn2SmDJlCiqVip/3yeVPEikpKTcUoLUo0hRzsTKT23qMIjZllb3jCCFEq2BTSaSm1r+vc0lJCR9++CFRUVHNEsoe4i9N5ldWW2jvKEII0Wpc17QcQUFBvPjii/zzn/9s6jx2cXkyv/6BvTlVeNLecYQQotW47rmbLl68SG1tbVNmsZtjRSepMlQT4u0nd58TQoifsWl307x58+qdzVRbW8uFCxdsPgW2tTtRfAonlRPpZY5xfEUIIZqKTSUxZ86cel97enrSv39/u86v1FS0xlpSys4zuvNQtl/YYO84QgjRqvxqSZjNZg4fPsxrr72Gm5tbS2RqUUmlyXWT+KkMMpmfEEL8wq8ek3B2dubgwYONvniurThRfBp/j46cL0399YWFEKKdsenA9cMPP8wHH3yA0Whs7jwtqtZUS2pZGv079eZi+UV7xxFCiFbnmrub4uLiiImJYeXKlZSWlrJ8+XICAgLqfarYs2dPc2dsNkmlKZgUMyoMWBSLveMIIUSrc82SWLRoETExMfzjH/9oqTwt6kTxaTq6+3JBLXefE0KIq7lmSVyehmPkyJEtEqYl1Zp0pJSlMSJ8EDsubLR3HCGEaJWuWRIWi4XDhw9zrTkAx4wZ0+ShWkJSaTImiwmVyiRnNQkhRAOuWRIGg4EXX3yxwZJQqVTs2rWrWYI1t8TiJDq6+5CulrOahBCiIdcsCU9PzzZbAtdSa9KRXHaOqPCB7Lywyd5xhBCi1bruuZvasrOlKZgsJpxUZtnVJIQQ13DNkrDhfkRtUpI6BR83b9LlrCYhhLima5ZEYmJiS+VoUUXaEsJ8gsmoaJt3nxNCiJbS7nY3KYpCiVaNr7sXRrNjXUEuhBBNrd2VhMaoRWfW4erU7l66EEI0Wrt7pyypLQXAaNbbOYkQQrR+7bAk1ABUGyrsG0QIIdqAdlkSKkCjr7J3FCGEaPXaX0lo1XT08KVcV27vKEII0eq1u5IorVUT6OmPurbM3lGEEKLVa3clUVJbSkcPH/QmOXAthBC/pl2VRK1JR41Rg7uTs72jCCFEm9CuSqL00plNJkUuohNCCFu0q5K4fPprjZz+KoQQNmlfJaGtu5BOY6i2cxIhhGgb2lVJlNaq8XbzokJXYe8oQgjRJrSrkiipVdPJ0x+1Vm3vKEII0Sa0u5Lw8/RFa9TaO4oQQrQJ7aYkDGYjFfpKPJxd7R1FCCHajHZTEpdPf1WQ25UKIYSt2l1J1Bgq7ZxECCHajnZTEpevkZDTX4UQwnbtqiQ8XTyolNNfhRDCZu2mJEpr1QR28KNMZn8VQgibtauS8PfoSJXcbEgIIWzWLkrColgo01Xg6epu7yhCCNGmtIuSqDJUY1bM7ePFCiFEE2oX75ull45DGMy1dk4ihBBtS7soibJL97OuNsjxCCGEaIx2URLq2rqS0Mo1EkII0SjtoiTKdGX4uHlRpZerrYUQojHaRUmodeX4e3akXC6kE0KIRmk3JeHn7ovGoLF3FCGEaFMcviQsioVyXQUeLm72jiKEEG2Ow5dEpb6q7hoJh3+lQgjR9Bz+rVN96fRXvdyNTgghGs3xS+LShXQao1wjIYQQjeXwJXH5QjqNocbOSYQQou1x+JJQ68rxdfOmUq6REEKIRnP8kqgtq7tG4tJV10IIIWzn0CWRV1NAVnUOAZ5+aOXAtRBCNJpLS20oIyODhQsXUlFRgZ+fH0uXLqVHjx71lvnoo4/YsmULzs7OuLi48OyzzxIdHX1d2yvUFPN+4ud4unjg695iL1MIIRxKi717vvLKK8ybN49Zs2axYcMGFi1axFdffVVvmcGDB/PYY4/h6elJamoqDz74IAcOHMDDw6PR21uZshqVCkZ07s+65B+a6mUIIUS70iK7m9RqNcnJycTExAAQExNDcnIyZWX17zcdHR2Np6cnAP369UNRFCoqKq5rm4XaYvoF9mJd8g9YFMsN5RdCiPaqRUqioKCAkJAQnJ2dAXB2diY4OJiCgoIGnxMbG0u3bt0IDQ1t9PZ0Jj21Jh3OTiopCCGEuAGtcmf9kSNHeO+991i2bFmjnxsY6I2+qu6aCJWTBbd2eDyiPb7mq5FxkDGA9j0Grm43/tpbZPTCwsIoKirCbDbj7OyM2WymuLiYsLCwK5ZNTEzkL3/5Cx9//DG9evVq9LbU6hrSS/MB0OhrMOhNN5y/LXFzd2l3r/lqZBxkDEDGwOh646+9RXY3BQYGEhERQVxcHABxcXFEREQQEBBQb7nTp0/z7LPP8v777zNgwIDr3l7FpQvnao1ylbUQQtyIFrtOYvHixaxcuZKpU6eycuVKlixZAsD8+fNJSkoCYMmSJeh0OhYtWsSsWbOYNWsW586da/S2KvR18zTVyrURQghxQ1SKoij2DtGU1Ooavk1Zx/Hik7ioasipzLF3pBbV3j9eXybjIGMAMgYh3sF8NXvFDa3DIa+4rtBX0tHdhyqdzPwqhBA3wiFLQmPU4uXmSbWh2t5RhBCiTXPIktCZdLg5u8k1EkIIcYMcsiRqTTpcnZztHUMIIdo8By2JWpylJIQQ4oY5XElYFAs6sx4nlcreUYQQos1zuJLQmw0AqHCoM3uFEMIuHK8kTHoAOWgthBBNwPFKwlJXEmbFaOckQgjR9jlcSegufZIwXtrtJIQQ4vo5XkmYdQAYpCSEEOKGOV5JXPokYbLI7iYhhLhRDlcSerOUhBBCNBWHK4n/HZPQ2zmJEEK0fY5XEmY9zion66mwQgghrp/DlUStSY+Hi4d1t5MQQojr54AlocXLrQNauSudEELcMIcrCY1Ri5erp5SEEEI0AYcrCa1JRwdXD4xmObtJCCFulOOVhFGLq7OrvWMIIYRDcLiSqDXV4uLkcC9LCCHswuHeTS2KBbmThBBCNA2HKwkAi2K2dwQhhHAIDlkSJotcIyGEEE3BIUtCZ9LZO4IQQjgEhywJk0wTLoQQTcLhSsLPwxe1ttTeMYQQwiE4XEl09gklpyrb3jGEEMIhOFxJgIJFsdg7hBBCOASHKwkVir0jCCGEw3C4kkAupRNCiCbjgCUhhBCiqTheScgHCSGEaDKOVxJyTEIIIZqMA5aEEEKIpuJi7wBNTpFPEo5IUWD/X75Epw4BYOwbT+AdnmP9/vZHfwRg9JLf49vtIgCJ779MSeJYes1aSZ+7vqlbj8WJ7B13kn9oMprCzjg5m/EKy6H77esJHbWvSTPXlgaT+s2TlKUMReVkIXDgcfo/8CnuHcuvuvyF2Ae4uOHBq34v+h8P49mpGICycwNJX///qMzoi0ql4BWWw6Df/h2v0DwUBS5unEf+oUnoyzvh7KHF/6Yz9Lv/P9bnX3Yxbi4X1j4CQL/ffEb322MBMNZ4c+77J1CfHYahxhd333KChx3ipvuW4eRqpCqzNxdiH6I6uzfGal/cOpYTOnIffe7+GifXupt9HX17KeXnBtfbnlfnTMa9/hQABYdvIWd3DJqCrpgN7ngGFdLj9vV0nrAdAEO1Lyc/fAlNXndMOk/cfCoJHJBIv/s/x9W7xrrOa43F1TIAeAQWMeGdute978//+5m6rNOQBIb9cTEAWTvupCB+ItricBSTC15hOfS681uCIxOsy5sNblxY/xBFRyagr/THzaeK8PHb6XvvVwDU5HUjbc1jVKb3x2JyJSDiJP3nfWb99yg8Ek36hgfRqYNQFBWenYroOmkT3SZuvurPQktzvJKQYxIOqfzcoHr/mQsOTaTv7BWNWodiUXHyg5cpOTkalbOJToOO4updTeXF/hQk3NKkJaFYVJz416to8rsTOOA4FpMrRUcnoCsLYtRLf7rqc/x6p9JtSqz1a01BF9RnonDx1ODqUwlAedoAjv/jTRSLE0FDjuDesZzqnF4Yq30hNI/8g5NJj30IJ1c9oVHxlF+4ieLj4zHWdGTEwr9a112V1Zv02AdQOZtQzPXfBs59/wT5B6fg1rGM0Kj9lJwaSfbOu3DpoKHP3Supzu1JeepgAiJO4uJRS+HRaDJ/nINicaLf/V/UW9fPX497xzLr39VnhlNbEkqngccxVPuhPjuMs8ufxdW3kuChCZgN7ph1ngRFHkalUig6MZb8g1NQFBWD5r9r01iERB3Ar2cGZnPdL47q5KFo8nrQISS/XkZnDy2do7dbv/bunGX9e/HxcRg1PgQPPYymsAuV6RGc+uglRr38R3y7p6MocPLDl1AnjcAzqIDwcTsx1XpRWxwOgFHrxfF33kBf0YlOQxJwcjFSfHw82uJwxr76O1ROCrXqYDwCi/Dvl4SurBOlp0aR+vXTeIflEBBx+uo/YC3I4UpCPkg4poL42wDw6XaB6uw+FBy+jT73rkDViF8KCo9OoOTkaAAin3mFToNOWL+nKehy1ecYa7xJ3/hAg+sMG/0THXulXfF4ycnRaPK7490lg2HPvQSKE/v/uozK9AjKUgcR0D/piud0GnScToOOW78++eGLAHSO3oaLe93Mxud/eATF7MqA/3uXzuN3XrGO2uKwunUNOcqwP7xDXsIwEt9bQm1psHUZs9GVpM//in+/MyhmF8rPDaq3Du2ldfSK+Z5ukzdx7vvHydp2L7WldSXt1yeZ6L8/iptvXXF5huRzccODqM8OuyJP/3mfXXXcuk7axM2PvI+Tiwn43yePsrORBA9NwDOwhDFL/mBd3qtzFmnfP2HNYMtYdJu8CTd3Fwx6ExaTC/v/8uWlxzfUW87Vq7rBnH3nLKdjz3OonBQUixMHFn5BbUkYZamD8e2eTlnKUNRJI/AKy2b0kqdxdq1/2+SK8zejr+iER6dC66eT+EUfUp3Tm+ITYwmJOkjP6WvpOX2t9TmHXv6Ymtye1JaEgpRE01OQq60djcXoStGx8QD0u/8/nPzoJXTqEMrPXf3NtiElJ0cB0LF3Sr2CAPAKy73qc0y6DmTvuKvBdfp0S79qSVRl9QbAt8f5uiJTWfDtno5OHUJ1du9fzV1bGkxJ4hhUTma6Tt4I1O3WqEyPAKD4xBjOffuk9bfg3rO+QeWkEDZ2N7l7p1F6agQnPvgz5el9UTmb6BWzyrru86sfQ1/pz/DnXiTp879cse1uUzZQebEfF+PupzK9PyWnRuLqXUm3SZvqxiq0/m/iiqnubcTD/8o503b/fnXdOHRPp+/s5dax6tjzfL3lLJfW4f6LdaR++1tMtR0oThyDk6veukvMlrH4ucIjE9BXBNIhOI+gIUfqfU9fEciup9bi5GLEr08yN839L16heUDdp7ur5bz8WsuShwDg7K4jftHH6CsC8O1+gf7zPsWnW4Z195uxxhdtcShOLiZ0FYEAVOf0IiTqIACVF2+iIP42tCVh1OT2xCs8m6Bh8VeMpz04YEnIRwlHU3JqJCatD26+5fj3SyJoSAIFhyZTEH9bo0rCUNURAM/A4l9Z8n88OxVz+/Lpjc5sqPID6t48LnN2q/u7vtL/V5+fvfNOFIszwcMP0CGoCACjxhvF4gxAVWZfQkbso+jYeC5ufABXrxq63x6LR2AxIVEHydk9k/z4W4C6T1++vc4BoD4bSfauOxn826V4BFx9IsyOvc7h1yeF8nODKTg8EYCQqP14BhdcsWz5+ZvJ2n43Tq56+tzzv91/zh61dBqSgId/KRXpEZSlDOX4P19n3Bu/veKYTOa2u6lMv5kOwXl0vW1L/XH4WUF37JWKV2iuzWNRfz2zAOg2ZWO9AnH1rsK353ncvKpQpwyl5OQYavJ6MPaN317xqeDcd/PRlwfh1+cswcPr3twNNR0vZbiJoMhDuPuVUp46lBP/fpVxbz2Of7/T+PU9S8X5ARz42/J66/v5z0FNfjeyd156rSoznQYew8Wj9orxtgfHKwm5K53DKYive6MKGpKAykkheFg8BYcmU3Q0mogHP8HJ1YiTqx6L0d36Wy2AxeQKgLNb3a6ay7tHatXB2Op6dze5+VYAYNZ7WB8zXfp7QweurcvpPMjbNxWg3pudm08VqMygONPvN58TOuIAHULzOL/6cYoTR9H99ljS1z9Ezu6ZBA2NZ/iCf5KXMJykzxaS+K9XmfDu/6Pg8K04uRjJj59IfvxEanJ7AJC7d5p1e6c+foGqi/3pO3sZ3aZsIG3V4+TsngkqhSG/e8uap+TUCE59/AKoFIb+4TV8e6Rbvxf5zGLrrkCLyYUDC79Apw6hLGUwYaP3WpdLj51H+oaH8AwqYPhfn8fFU1tvLG5fPh2jtgOZP84mI+43nHx/EeOXPm7TWFxWnjaAqsybcPGsIXz89nrrH/3KAmtOo9aLvc+upLYkjOqs3vj1qfsUoVicSP7yD+Ttn4ZvjzQi/7gYJ2fLpX+Tup8pr/AsIhe8hsXsxJ4/rEZf3omqzL4E9DtD1F//RtHRCdTkd8MjoJjytEEUHr7N+lyAzuN3Ej52F7UloZz65Hmytt+Dq3c1vWZ+f82flZbgcCVRa2wd7SuahlHjTcnpEQDk7Z9G3v5p1u+Zar0pPjmK0BEH8AwuQJPXg4oLEXTslYZZ7051dt0unw7BdbtHgoYkUHj4NirTIyg9M4xOA392TKIw/IrdKHD9u5t8Lp1hVZlxU91xMsWJ6qw+dd/rWvc9fYU/plovXLyqcff93xtG/oHbMdV649sjDf+bzlofd3Ix4RWah6ag2/82pNS9w7l41H1KqcnvZt2+i4eOjpd2l+grAjFqvUBRYTG6U3pqVL28mvzuVGf3qvt7Xneg7hOFs5sB3x7nLy3T9X8ZD03k7LJncfHQEvnHV6xvqABmvTtGrRce/mX8ksqp7s1VsahIWfk7cn+KwafbBYb9aVG98jTVeuLiWfd/2bWDlqAhR8iI+w21paFYTM42jcVlWdvvAqDzhG31vmeo8UGlUnD1quGXLuc0G105/clCShLHEjjgBEOefq3eOny6ZFzx3Mtc3C+/F6kIG/NT3TarOnJh3cMABN6cWO+1qpwUOoQU0LHHeaqz+qIp7NzguluSw5WE3iwl4UgKj0SjmFxx8dTg3/+U9XFNfje0RV0oODSR0BEH6DJhK+e+e5K0VfMpOhqNriwYQ2UAHoFF1oPBoSP3URA/kdLTI0n89xI6DTqKm08lVVl98QgsInLBa1ds/3p3NwVHxuMVlo0mrwcn3n0Di8kVXVkwvr1SrWesnP/hUfIPTqHblFjrgVNFgeydM4H6ZwZd1mP6D5xd9ifOffcE6jPDKDped6wmbOwuoO6gcumpUWRtvxtjVRDl6XXF5BWWjZt3NQMf/ycDH/+ndX2XDxj//BRYvz7JqM8O5+zyPxJ4cyLFiWPqHr8pGYDSM8M488VzoDjh2+schUduofBI3a6t/vM+w1DdkQPPf0FAxEk8A4upSI9Apw7BzbeMgIi6f8ML6/8fuT/FgMqMb/d0MjbfB9QVerfJm8jcdg/Fx8bh2/M8KpVCyamRAAREnMLJxWzTWABoS4Ksx3a6XTq2c1lNbg8S/72EgIiTuHcsR50yFIvBA6/wLGvJn132LCWJY3Fy1dMhJM/6Bt+x5znCxuwhOOoAnsH5aPK7k/j+y5h1HTDVeuHTLR3vrnUFcvydN3D1qcLVU0NpUhTGmo50GpJg/Tk4vOR9PDsV4RlciL48kJJTdb8UdRp4nNbA4UpC7krnWAoO153V1OXWLdx03zLr42Wpgzi29O+UJkVhqPGh2+RNoFLI2zuNquzeuHbQEDzsIH3nLMf50plBKieFoQuWkL3jLgoOTUR9dhgqZzNe4dlNfo2Eykkh8tlFpH7zFOWpg0GlEBx1gP7zPrnm80pPjURb1AV3PzWhI6/M1Dl6B0atN9k7ZlEQPxHP4AL63V+3uwXq3jjNeg8KE24l7+CtOHtoCR52iL5z/mtz9oGPv0vamscoS44k7+AU3H3L6TpxI33n1O1T11cEgFJ3Ha46aQTqpBHW5/af9xmuXtWEj91JWcpQylMH4+KpIXjYIfrcs6JuNxGgL687eIviTN7+qdbn+/c7TbfJm/DtdpGSxNEUHRuPYnbG3a+MblNi6T3rG5vHAiBz+8y6YztRB664TqRDcAFBkYepSBuAusoPV58qwsbupO89K6xnXV3OaTG61+1yuyR83A7CxuzBydnC8D+9ROo3T6E+Owxndx2ho/Zw09wvrLukfLpmUHhkAkaND+4dy+gxYzW971ppXVfAzScpPT2CsnODcXbX4dvzPF1v20zYmD02/5s1J5WiONZJoy9sf5Hj+Sd+fUEHdfmUv/ZOxkHGAGQMQryD+aqR1xP9ksNNy2G0tN8fCCGEaGoOVxIms5SEEEI0FYcrCbl1qRBCNB0pCSGEEA1yuJKQ+0kIIUTTcbiSsDjWyVpCCGFXDlcSRrlOQgghmozDlYQQQoimIyUhhBCiQVISQgghGiQlIYQQokEtVhIZGRnMnTuXqVOnMnfuXDIzM69Yxmw2s2TJEiZPnsyUKVNYs2ZNS8UTQghxFS1WEq+88grz5s1j27ZtzJs3j0WLFl2xzKZNm8jOzmb79u2sWrWKDz74gNzcq99WUgghRPNrkZJQq9UkJycTExMDQExMDMnJyZSV1b8pyZYtW5gzZw5OTk4EBAQwefJktm7d2hIRhRBCXEWL3E+ioKCAkJAQnJ3r7knr7OxMcHAwBQUFBAQE1FsuPDzc+nVYWBiFhYWN2lZgh0B0Zt2vL+igXN1cMLrKJIcyDjIGIGPQqUOnG16Hw9106K2pb9o7ghBCOIwW2d0UFhZGUVERZnPdbQfNZjPFxcWEhYVdsVx+/v/uM1xQUEBoaGhLRBRCCHEVLVISgYGBREREEBcXB0BcXBwRERH1djUBTJs2jTVr1mCxWCgrK2Pnzp1MnTr1aqsUQgjRAlrs9qXp6eksXLiQqqoqfH19Wbp0Kb169WL+/PksWLCAQYMGYTabefXVVzl48CAA8+fPZ+7cuS0RTwghxFU43D2uhRBCNB254loIIUSDpCSEEEI0SEpCCCFEg6QkhBBCNEhKQgghRIPaXEnIbLK2jcFHH33EHXfcwZ133sk999zD/v37Wz5oM7NlHC67ePEiQ4YMYenSpS0XsAXYOgZbtmxh5syZxMTEMHPmTEpLS1s2aDOyZQzUajVPPPEEM2fOZNq0aSxevBiTyXGm61i6dCkTJ06kX79+pKWlXXWZ635fVNqYhx56SImNjVUURVFiY2OVhx566Ipl1q9frzz22GOK2WxW1Gq1Eh0dreTk5LR01GZjyxjs27dP0Wq1iqIoSkpKijJ8+HCltra2RXM2N1vGQVEUxWQyKQ8++KDypz/9SXn77bdbMmKzs2UMTp8+rUyfPl0pLi5WFEVRqqqqFJ1O16I5m5MtY/D6669b/+0NBoMye/ZsZfPmzS2aszkdPXpUyc/PV2677Tbl3LlzV13met8X29QnCZlN1vYxiI6OxtPTE4B+/fqhKAoVFRUtHbfZ2DoOAJ9//jm33norPXr0aOGUzcvWMfjyyy957LHHCAoKAsDHxwd3d/cWz9scbB0DlUqFRqPBYrFgMBgwGo2EhITYI3KziIqKumKao1+63vfFNlUS15pN9pfL3ehssq2VrWPwc7GxsXTr1s2h5sGydRxSU1M5cOAAjzzyiB1SNi9bxyA9PZ2cnBweeOAB7r77bj7++GMUB7mG1tYx+N3vfkdGRgbjx4+3/hk+fLg9ItvN9b4vtqmSEI135MgR3nvvPd599117R2lxRqORl19+mSVLlljfRNojs9nMuXPnWL58OV9//TX79u1jw4YN9o7VorZu3Uq/fv04cOAA+/bt49ixYw6zd6G5tamSkNlkbR8DgMTERP7yl7/w0Ucf0atXr5aO2qxsGYeSkhKys7N54oknmDhxIitWrGD16tW8/PLL9ordpGz9WQgPD2fatGm4ubnh7e3NpEmTOH36tD0iNzlbx2DlypXceeedODk54ePjw8SJE0lISLBHZLu53vfFNlUSMpus7WNw+vRpnn32Wd5//30GDBhgj6jNypZxCA8PJyEhgd27d7N7924efvhh7rvvPl577TV7xW5Stv4sxMTEcODAARRFwWg0cvjwYfr372+PyE3O1jHo0qUL+/btA8BgMBAfH0/fvn1bPK89Xff7YpMeYm8BFy5cUGbPnq3cfvvtyuzZs5X09HRFURTl8ccfV06fPq0oSt3ZLIsWLVImTZqkTJo0Sfn+++/tGbnJ2TIG99xzjzJq1CjlzjvvtP5JTU21Z+wmZ8s4/Nz777/vcGc32TIGZrNZefPNN5Vp06YpM2bMUN58803FbDbbM3aTsmUMsrKylEceeUSJiYlRpk+frixevFgxGo32jN2kXnvtNSU6OlqJiIhQxo4dq8yYMUNRlKZ5X5RZYIUQQjSoTe1uEkII0bKkJIQQQjRISkIIIUSDpCSEEEI0SEpCCCFEg6QkRJvy0EMPtfpZfTdu3Mhjjz3W4PePHTvmMNftCMcnJSHsZuLEiQwePJjIyEjrn6KiohbP8dBDDzFo0CAiIyMZNWoUTz/9NMXFxde9vjvvvJNly5ZZv+7Xrx9ZWVnWr6Oioti2bdsNZb6aDz74gAEDBhAZGUlUVBT3338/iYmJNj//lzmFACkJYWeffvopiYmJ1j/2mplz0aJFJCYmsm3bNqqqqnjrrbfskuNGTZ8+ncTERA4fPsyoUaN45pln7B1JtHFSEqJVqays5Le//S2jR49mxIgR/Pa3v21wpsqsrCwefPBBhg8fzqhRo/jjH/9o/V56ejqPPvooI0eOZOrUqWzZssWm7fv5+TF16lTOnz8PwIkTJ7j33nsZPnw49957LydOnLAuu27dOiZNmkRkZCQTJ05k48aN1sd/85vfAPDAAw8AMGvWLCIjI9myZQsJCQlMmDABqJvGfMGCBfUyvP7667z++usAVFdX88ILLzB+/Hiio6P517/+ZZ2n6FpcXFyYOXMmRUVF1mmzT58+zdy5c4mKimL8+PG8+uqrGAyGBnMC/PTTT8yaNcv6ySQ1NdWmcRQOpJmuEhfiV912223KwYMH6z1WVlambN26VdFqtUp1dbXyhz/8QXnqqaes33/wwQeV1atXK4qiKM8++6zy8ccfK2azWdHpdMrRo0cVRVEUjUajTJgwQfnhhx8Uo9GonDlzRhk5cqSSlpZ21Rw/X6darVYeeugh5c9//rNSXl6uREVFKevXr1eMRqOyadMmJSoqSikrK1M0Go0SGRlpnQKiqKjIuv61a9cq999/v3X9N910k5KZmWn9+vDhw0p0dLSiKIqSm5urDB48WKmurlYUpW7qhHHjximJiYmKoijKU089pbz88suKRqNRSktLlXvvvVf57rvvrvo63n//feW5555TFEVR9Hq98o9//EMZOXKkdfqJpKQkJTExUTEajUpOTo4ybdo0Zfny5Q3mPHPmjDJ69Gjl5MmTislkUtatW6fcdtttil6vv+r2hWOSTxLCrn7/+98TFRVFVFQUv/vd7/D392fq1Kl4enri7e3NU089xdGjR6/6XBcXF/Lz8ykuLsbd3Z2oqCgA9uzZQ+fOnbn33ntxcXFhwIABTJ069ZrHAV5//XWioqKYNWsWQUFBPP/88+zZs4fu3btz11134eLiQkxMDL169eKnn34CwMnJifPnz6PT6QgODr6uCeM6d+7MzTffzM6dOwE4fPgwHh4eDB06lNLSUvbt28cLL7xAhw4dCAwM5JFHHmHz5s0Nrm/r1q1ERUUxZMgQ1qxZw/vvv4+LiwsAAwcOZOjQobi4uNClSxfmzp3b4NgCrF69mrlz5zJkyBCcnZ25++67cXV15eTJk41+naLtcrF3ANG+ffTRR4wdO9b6dW1tLW+99Rb79++nsrISAI1Gg9lsvuKeEH/5y1947733mD17Nh07duTRRx9l9uzZ5OXlcfr0aWtpQN0U0nfeeWeDOV566SXmzJlT77Hi4uJ6N2mBuplli4qK6NChA//6179YtmwZL774IsOGDeNvf/sbvXv3bvQYxMTEEBcXx1133UVcXJz1Lmv5+fmYTCbGjx9vXdZisVzzDmTTpk3jnXfeoaysjAULFnD27FlGjRoF1N0L+u233+bMmTPU1tZiNpuvOUNwfn4+sbGxrFy50vqY0Wi8oYP6ou2RkhCtyrJly8jIyGD16tUEBQWRkpLCXXfdddU7qQUFBVn33R87doxHH32UESNGEBYWxogRI1i+fPkNZQkODq43/z7UzcEfHR0N1N0iNjo6Gp1Ox7///W9efvllvv3220ZvZ/r06SxdupTCwkJ27NjBqlWrAAgNDcXNzY3Dhw9bPw3YKiAggCVLljB79mxiYmIIDg5m8eLF3Hzzzbz77rt4e3vz5ZdfXvPTVVhYGE8++SRPPfVUo1+TcByyu0m0KhqNBnd3d3x9famoqODDDz9scNkff/zRelC7Y8eOqFQqnJycuPXWW8nMzCQ2Nhaj0YjRaOT06dOkp6c3Ksstt9xCZmYmmzZtwmQysWXLFi5cuMCtt95KaWkpu3btQqvV4ubmRocOHRq8+12nTp3IyclpcDsBAQGMHDmS559/ni5dulg/jQQHBzNu3DjefvttampqsFgsZGdnc+TIEZvy9+7dm+joaL744gugbmy9vLzw8vIiPT2d77777po558yZw/fff8+pU6dQFAWtVsuePXuoqamxafvCMUhJiFbl4YcfRq/XM3r0aObOnWv9rf1qkpKSmDNnDpGRkTz11FO8+OKLdO3aFW9vb/773/+yZcsWoqOjGT9+PO+88471TB5b+fv78+mnn7J8+XJGjRrFF198waeffkpAQAAWi4Xly5cTHR3NyJEjOXr0KK+88spV1/P000+zcOFCoqKiGjzLKiYmhkOHDll3NV3297//HaPRyIwZMxgxYgQLFiygpKTE5tfwf//3f6xevRq1Ws3f/vY34uLiGDZsGC+//DIzZsy4Zs5Bgwbx2muv8eqrrzJixAhuv/121q1bZ/O2hWOQ+0kIIYRokHySEEII0SApCSGEEA2SkhBCCNEgKQkhhBANkpIQQgjRICkJIYQQDZKSEEII0SApCSGEEA2SkhBCCNGg/w9ytVO/WjR4bwAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 504x432 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# For binary classification, construct y vector for a sigle selected tumor type\n",
    "\n",
    "target_type = \"Biliary-AdenoCA\"\n",
    "\n",
    "y_prf = profile_mut_all[\"tumor_types\"].values\n",
    "\n",
    "# Encode for classificaiton to two classes: if the type is the desired type, set to 1 otherwise 0\n",
    "y_prf_bin = [1 if tumor_type == target_type else 0 for tumor_type in y_prf]\n",
    "\n",
    "# Split the data for fitting and prediction, use simple splitting here\n",
    "X_prf_train, X_prf_test, y_prf_train, y_prf_test = train_test_split(X_prf, y_prf_bin, test_size = 0.3, random_state=898)\n",
    "\n",
    "print(f\"Dimension of the training data {X_prf_train.shape} and test data {X_prf_test.shape}\")\n",
    "\n",
    "# Make a model\n",
    "model_rfs = RandomForestClassifier()\n",
    "\n",
    "# Fit the model \n",
    "clf= model_rfs.fit(X_prf_train, y_prf_train)\n",
    "\n",
    "# Predict with unused (test) data \n",
    "y_prf_pred = model_rfs.predict(X_prf_test)\n",
    "\n",
    "# What we got \n",
    "plot_trn_tst_dist(y_prf_bin, y_prf_train, y_prf_test, y_prf_pred, in_cols=True)\n",
    "print(f\"Accuracy:\", accuracy_score(y_prf_test, y_prf_pred))\n",
    "print(classification_report(y_prf_test, y_prf_pred))\n",
    "\n",
    "# Plot some results\n",
    "plot_confusion_mat(y_prf_test, y_prf_pred, labs=[\"0\", \"1\"])\n",
    "plot_roc_auc(X_prf_test, y_prf_test, model_rfs)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
Loading
Loading full blame...