Skip to content
Snippets Groups Projects
Commit e7d8d23c authored by Jorina Schütt's avatar Jorina Schütt
Browse files

fix logic in subduction flux calculation

parent 6e7cd838
No related branches found
No related tags found
No related merge requests found
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! ||===\\ |
! || \\ |
! || || //==\\ || || //==|| ||/==\\ |
! || || || || || || || || || || |
! || // || || || || || || || |
! ||===// \\==// \\==\\ \\==\\ || |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! DEFINE_BC_SEGMENTED_S_LINE_PARABOLA August 2015 |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
subroutine define_bc_segmented_s_line_parabola(params,osolve,vo,bcdef,nest)
!------------------------------------------------------------------------------|
!(((((((((((((((( Purpose of the routine )))))))))))))))))))))))))))))))))))))
!------------------------------------------------------------------------------|
! This routine assigns the velocity boundary conditions for the segmented s-line
! geometry
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine arguments ))))))))))))))))))))
!------------------------------------------------------------------------------|
use definitions
!use mpi
implicit none
include 'mpif.h'
type (parameters) params
type (octreesolve) osolve
type (void) vo
type (bc_definition) bcdef
type (nest_info) nest
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine internal variables )))))))))))))
!------------------------------------------------------------------------------|
integer i,iproc,nproc,ierr
double precision :: eps,lsf0,pi,lorig,h,x1,x2,phi,yend,cper,cscl,xstart,ystart
double precision :: theta,l,vin,vzfluxscl,cntvel,dxy,xend,xsym,ymax,xwidth
double precision :: ywidth,xdisp,ydisp,nb
double precision,dimension(:),allocatable :: x0,ldisp
integer ie,ij,j,jp,nelemx,nelemz
double precision :: base,startp,endp,alpha,kink1,kink2,flytt,a,d
double precision :: wmax,uend,vmag,dipangle
double precision e(1),f(1),y(1)
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
call mpi_comm_size (mpi_comm_world,nproc,ierr)
call mpi_comm_rank (mpi_comm_world,iproc,ierr)
eps=1.d-10
osolve%kfix=0
osolve%kfixt=0
pi=atan(1.d0)*4.d0
l=bcdef%bc_parameters(1)
base=bcdef%bc_parameters(2)
startp=bcdef%bc_parameters(3)
endp=bcdef%bc_parameters(4)
vin=bcdef%bc_parameters(5)
alpha=bcdef%bc_parameters(6)
kink1=bcdef%bc_parameters(7)
kink2=bcdef%bc_parameters(8)
nelemx=idint(bcdef%bc_parameters(9))
nelemz=idint(bcdef%bc_parameters(10))
nb=2**params%levelmax_oct
dxy=1.d0/2**(params%levelmax_oct+1.d0)
alpha=alpha*pi/180
flytt=(kink2-kink1) * tan(alpha)
a = (base-l) /((endp-startp)*(endp-startp))
d = startp
wmax=(2*vin*l)/(endp-startp)
uend=wmax/(2*a*(endp-startp))
vmag=sqrt(uend**2.d0+wmax**2.d0)
do i=1,osolve%nnode
if (osolve%x(i).lt.eps) then
osolve%kfix((i-1)*3+1)=1 ; osolve%u(i)=1.d0
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0
osolve%kfix((i-1)*3+3)=1 ; osolve%w(i)=0.d0
endif
if (osolve%x(i).gt.1.d0-eps) then
osolve%kfix((i-1)*3+1)=1 ; osolve%u(i)=0.d0
endif
if (osolve%y(i).lt.eps) then
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0
endif
if (osolve%y(i).gt.1.d0-eps) then
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0
endif
if (osolve%z(i).lt.eps) then
osolve%kfix((i-1)*3+1)=1 ; osolve%u(i)=0.d0
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0
osolve%kfix((i-1)*3+3)=1 ; osolve%w(i)=0.d0
osolve%kfixt(i)=1 ; osolve%temp(i)=1.d0
! Velocity in first margin-normal convergence segment
if (osolve%y(i) .lt. kink1) then
! Slab dip angle
dipangle = atan(2*a*(osolve%x(i)-startp))
! Velocity before transition to subduction
if (osolve%x(i) .le. startp-real(nelemz)*dxy) then
osolve%u(i) = vin
! Velocity in transition to subduction
elseif (osolve%x(i) .le. startp+real(nelemz)*dxy) then
! Velocity contribution from incoming horizontal velocity
! (diminishes to zero across transition)
osolve%u(i) = vin * (1.d0 - (osolve%x(i)-(startp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy))
! Velocity contribution from subduction region
! (increases from zero to full magnitude across transition)
osolve%u(i) = osolve%u(i) + vmag*cos(dipangle) * (osolve%x(i)-(startp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy)
osolve%w(i) = vmag*sin(dipangle) * (osolve%x(i)-(startp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy)
! Velocity in subduction region
elseif (osolve%x(i) .le. endp-real(nelemz)*dxy) then
osolve%u(i) = vmag*cos(dipangle)
osolve%w(i) = vmag*sin(dipangle)
! Velocity in transition from subduction region
elseif (osolve%x(i) .le. endp+real(nelemz)*dxy) then
! Velocity contribution from subduction region
! (decreases to zero across transition)
osolve%u(i) = vmag*cos(dipangle) * (1.d0 - (osolve%x(i)-(endp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy))
osolve%w(i) = vmag*sin(dipangle) * (1.d0 - (osolve%x(i)-(endp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy))
endif
! Velocity in oblique convergence segment
elseif (osolve%y(i) .lt. kink2) then
! Slab dip angle
dipangle = atan(2*a*(osolve%x(i)-((osolve%y(i)-kink1)*tan(alpha)+startp)))
! Velocity before transition to subduction
if (osolve%x(i) .le. (osolve%y(i)-kink1)*tan(alpha)+startp-real(nelemz)*dxy) then
osolve%u(i) = vin
! Velocity in transition to subduction
elseif (osolve%x(i) .le. (osolve%y(i)-kink1)*tan(alpha)+startp+real(nelemz)*dxy) then
! Velocity contribution from incoming horizontal velocity
! (diminishes to zero across transition)
osolve%u(i)= vin * (1.d0 - (osolve%x(i)-((osolve%y(i)-kink1)*tan(alpha)+startp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy))
! Velocity contribution from subduction region
! (increases from zero to full magnitude across transition)
osolve%u(i)= osolve%u(i) + vmag*cos(dipangle) * (osolve%x(i)-((osolve%y(i)-kink1)*tan(alpha)+startp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy)
osolve%w(i) = vmag*sin(dipangle) * (osolve%x(i)-((osolve%y(i)-kink1)*tan(alpha)+startp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy)
! Velocity in subduction region
elseif (osolve%x(i) .le. (osolve%y(i)-kink1)*tan(alpha)+endp-real(nelemz)*dxy) then
osolve%u(i) = vmag*cos(dipangle)
osolve%w(i) = vmag*sin(dipangle)
! Velocity in transition from subduction region
elseif (osolve%x(i) .le. (osolve%y(i)-kink1)*tan(alpha)+endp+real(nelemz)*dxy) then
! Velocity contribution from subduction region
! (decreases to zero across transition)
osolve%u(i) = vmag*cos(dipangle) * (1.d0 - (osolve%x(i)-((osolve%y(i)-kink1)*tan(alpha)+endp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy))
osolve%w(i) = vmag*sin(dipangle) * (1.d0 - (osolve%x(i)-((osolve%y(i)-kink1)*tan(alpha)+endp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy))
endif
! Velocity in second margin-normal convergence segment
else
! Slab dip angle
dipangle = atan(2*a*(osolve%x(i)-(flytt+startp)))
! Velocity before transition to subduction
if (osolve%x(i) .le. flytt+startp-real(nelemz)*dxy) then
osolve%u(i) = vin
! Velocity in transition to subduction
elseif (osolve%x(i) .le. flytt+startp+real(nelemz)*dxy) then
! Velocity contribution from incoming horizontal velocity
! (diminishes to zero across transition)
osolve%u(i) = vin * (1.d0 - (osolve%x(i)-((flytt+startp)-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy))
! Velocity contribution from subduction region
! (increases from zero to full magnitude across transition)
osolve%u(i) = osolve%u(i) + vmag * cos(dipangle) * (osolve%x(i)-((flytt+startp)-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy)
osolve%w(i) = vmag * sin(dipangle) * (osolve%x(i)-((flytt+startp)-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy)
! Velocity in subduction region
elseif (osolve%x(i) .le. flytt+endp-real(nelemz)*dxy) then
osolve%u(i) = vmag * cos(dipangle)
osolve%w(i) = vmag * sin(dipangle)
! Velocity in transition from subduction region
elseif (osolve%x(i) .le. flytt+endp+real(nelemz)*dxy) then
! Velocity contribution from subduction region
! (decreases to zero across transition)
osolve%u(i) = vmag * cos(dipangle) * (1.d0 - (osolve%x(i)-((flytt+endp)-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy))
osolve%w(i) = vmag * sin(dipangle) * (1.d0 - (osolve%x(i)-((flytt+endp)-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy))
endif
endif
endif
if (osolve%z(i).gt.1.d0-eps) then
osolve%kfix((i-1)*3+1)=1 ; osolve%u(i)=0.d0
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0
osolve%kfix((i-1)*3+3)=1 ; osolve%w(i)=0.d0
osolve%kfixt(i)=1 ; osolve%temp(i)=0.d0
endif
if (.not.vo%influid(i)) then
osolve%kfixt(i)=1
osolve%temp(i)=0.d0
endif
if (abs(bcdef%utrans).gt.eps) then
if (osolve%kfix((i-1)*3+1)==1) osolve%u(i)=osolve%u(i)+bcdef%utrans
endif
if (abs(bcdef%vtrans).gt.eps) then
if (osolve%kfix((i-1)*3+2)==1) osolve%v(i)=osolve%v(i)+bcdef%vtrans
endif
if (osolve%kfix((i-1)*3+1)==1) osolve%u(i)=osolve%u(i)*vin
if (osolve%kfix((i-1)*3+2)==1) osolve%v(i)=osolve%v(i)*vin
if (osolve%kfix((i-1)*3+3)==1) osolve%w(i)=osolve%w(i)*vin
enddo
if (params%isobc) then
call define_isostasy_bc(params,osolve,bcdef)
endif
end
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! ||===\\ |
! || \\ |
! || || //==\\ || || //==|| ||/==\\ |
! || || || || || || || || || || |
! || // || || || || || || || |
! ||===// \\==// \\==\\ \\==\\ || |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! DEFINE_BC_SEGMENTED_S_LINE_PARABOLA August 2015 |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
subroutine define_bc_segmented_s_line_parabola(params,osolve,vo,bcdef,nest)
!------------------------------------------------------------------------------|
!(((((((((((((((( Purpose of the routine )))))))))))))))))))))))))))))))))))))
!------------------------------------------------------------------------------|
! This routine assigns the velocity boundary conditions for the segmented s-line
! geometry
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine arguments ))))))))))))))))))))
!------------------------------------------------------------------------------|
use definitions
!use mpi
implicit none
include 'mpif.h'
type (parameters) params
type (octreesolve) osolve
type (void) vo
type (bc_definition) bcdef
type (nest_info) nest
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine internal variables )))))))))))))
!------------------------------------------------------------------------------|
integer i,iproc,nproc,ierr
double precision :: eps,lsf0,pi,lorig,h,x1,x2,phi,yend,cper,cscl,xstart,ystart
double precision :: theta,l,vin,vzfluxscl,cntvel,dxy,xend,xsym,ymax,xwidth
double precision :: ywidth,xdisp,ydisp,nb
double precision,dimension(:),allocatable :: x0,ldisp
integer ie,ij,j,jp,nelemx,nelemz
double precision :: base,startp,endp,alpha,kink1,kink2,flytt,a,d
double precision :: wmax,uend,vmag,dipangle
double precision e(1),f(1),y(1)
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
call mpi_comm_size (mpi_comm_world,nproc,ierr)
call mpi_comm_rank (mpi_comm_world,iproc,ierr)
eps=1.d-10
osolve%kfix=0
osolve%kfixt=0
pi=atan(1.d0)*4.d0
l=bcdef%bc_parameters(1)
base=bcdef%bc_parameters(2)
startp=bcdef%bc_parameters(3)
endp=bcdef%bc_parameters(4)
vin=bcdef%bc_parameters(5)
alpha=bcdef%bc_parameters(6)
kink1=bcdef%bc_parameters(7)
kink2=bcdef%bc_parameters(8)
nelemx=idint(bcdef%bc_parameters(9))
nelemz=idint(bcdef%bc_parameters(10))
nb=2**params%levelmax_oct
dxy=1.d0/2**(params%levelmax_oct+1.d0)
alpha=alpha*pi/180
flytt=(kink2-kink1) * tan(alpha)
a = (base-l) /((endp-startp)*(endp-startp))
d = startp
wmax=(2*(vin+bcdef%utrans)*l)/(endp-startp)
uend=wmax/(2*a*(endp-startp))
vmag=sqrt(uend**2.d0+wmax**2.d0)
do i=1,osolve%nnode
if (osolve%x(i).lt.eps) then
osolve%kfix((i-1)*3+1)=1 ; osolve%u(i)=1.d0
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0
osolve%kfix((i-1)*3+3)=1 ; osolve%w(i)=0.d0
endif
if (osolve%x(i).gt.1.d0-eps) then
osolve%kfix((i-1)*3+1)=1 ; osolve%u(i)=0.d0
endif
if (osolve%y(i).lt.eps) then
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0
endif
if (osolve%y(i).gt.1.d0-eps) then
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0
endif
if (osolve%z(i).lt.eps) then
osolve%kfix((i-1)*3+1)=1 ; osolve%u(i)=0.d0
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0
osolve%kfix((i-1)*3+3)=1 ; osolve%w(i)=0.d0
osolve%kfixt(i)=1 ; osolve%temp(i)=1.d0
! Velocity in first margin-normal convergence segment
if (osolve%y(i) .lt. kink1) then
! Slab dip angle
dipangle = atan(2*a*(osolve%x(i)-startp))
! Velocity before transition to subduction
if (osolve%x(i) .le. startp-real(nelemz)*dxy) then
osolve%u(i) = vin
! Velocity in transition to subduction
elseif (osolve%x(i) .le. startp+real(nelemz)*dxy) then
! Velocity contribution from incoming horizontal velocity
! (diminishes to zero across transition)
osolve%u(i) = vin * (1.d0 - (osolve%x(i)-(startp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy))
! Velocity contribution from subduction region
! (increases from zero to full magnitude across transition)
osolve%u(i) = osolve%u(i) + vmag*cos(dipangle) * (osolve%x(i)-(startp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy)
osolve%w(i) = vmag*sin(dipangle) * (osolve%x(i)-(startp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy)
! Velocity in subduction region
elseif (osolve%x(i) .le. endp-real(nelemz)*dxy) then
osolve%u(i) = vmag*cos(dipangle)
osolve%w(i) = vmag*sin(dipangle)
! Velocity in transition from subduction region
elseif (osolve%x(i) .le. endp+real(nelemz)*dxy) then
! Velocity contribution from subduction region
! (decreases to zero across transition)
osolve%u(i) = vmag*cos(dipangle) * (1.d0 - (osolve%x(i)-(endp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy))
osolve%w(i) = vmag*sin(dipangle) * (1.d0 - (osolve%x(i)-(endp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy))
endif
! Velocity in oblique convergence segment
elseif (osolve%y(i) .lt. kink2) then
! Slab dip angle
dipangle = atan(2*a*(osolve%x(i)-((osolve%y(i)-kink1)*tan(alpha)+startp)))
! Velocity before transition to subduction
if (osolve%x(i) .le. (osolve%y(i)-kink1)*tan(alpha)+startp-real(nelemz)*dxy) then
osolve%u(i) = vin
! Velocity in transition to subduction
elseif (osolve%x(i) .le. (osolve%y(i)-kink1)*tan(alpha)+startp+real(nelemz)*dxy) then
! Velocity contribution from incoming horizontal velocity
! (diminishes to zero across transition)
osolve%u(i)= vin * (1.d0 - (osolve%x(i)-((osolve%y(i)-kink1)*tan(alpha)+startp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy))
! Velocity contribution from subduction region
! (increases from zero to full magnitude across transition)
osolve%u(i)= osolve%u(i) + vmag*cos(dipangle) * (osolve%x(i)-((osolve%y(i)-kink1)*tan(alpha)+startp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy)
osolve%w(i) = vmag*sin(dipangle) * (osolve%x(i)-((osolve%y(i)-kink1)*tan(alpha)+startp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy)
! Velocity in subduction region
elseif (osolve%x(i) .le. (osolve%y(i)-kink1)*tan(alpha)+endp-real(nelemz)*dxy) then
osolve%u(i) = vmag*cos(dipangle)
osolve%w(i) = vmag*sin(dipangle)
! Velocity in transition from subduction region
elseif (osolve%x(i) .le. (osolve%y(i)-kink1)*tan(alpha)+endp+real(nelemz)*dxy) then
! Velocity contribution from subduction region
! (decreases to zero across transition)
osolve%u(i) = vmag*cos(dipangle) * (1.d0 - (osolve%x(i)-((osolve%y(i)-kink1)*tan(alpha)+endp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy))
osolve%w(i) = vmag*sin(dipangle) * (1.d0 - (osolve%x(i)-((osolve%y(i)-kink1)*tan(alpha)+endp-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy))
endif
! Velocity in second margin-normal convergence segment
else
! Slab dip angle
dipangle = atan(2*a*(osolve%x(i)-(flytt+startp)))
! Velocity before transition to subduction
if (osolve%x(i) .le. flytt+startp-real(nelemz)*dxy) then
osolve%u(i) = vin
! Velocity in transition to subduction
elseif (osolve%x(i) .le. flytt+startp+real(nelemz)*dxy) then
! Velocity contribution from incoming horizontal velocity
! (diminishes to zero across transition)
osolve%u(i) = vin * (1.d0 - (osolve%x(i)-((flytt+startp)-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy))
! Velocity contribution from subduction region
! (increases from zero to full magnitude across transition)
osolve%u(i) = osolve%u(i) + vmag * cos(dipangle) * (osolve%x(i)-((flytt+startp)-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy)
osolve%w(i) = vmag * sin(dipangle) * (osolve%x(i)-((flytt+startp)-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy)
! Velocity in subduction region
elseif (osolve%x(i) .le. flytt+endp-real(nelemz)*dxy) then
osolve%u(i) = vmag * cos(dipangle)
osolve%w(i) = vmag * sin(dipangle)
! Velocity in transition from subduction region
elseif (osolve%x(i) .le. flytt+endp+real(nelemz)*dxy) then
! Velocity contribution from subduction region
! (decreases to zero across transition)
osolve%u(i) = vmag * cos(dipangle) * (1.d0 - (osolve%x(i)-((flytt+endp)-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy))
osolve%w(i) = vmag * sin(dipangle) * (1.d0 - (osolve%x(i)-((flytt+endp)-real(nelemz)*dxy))/(2.0*real(nelemz)*dxy))
endif
endif
endif
if (osolve%z(i).gt.1.d0-eps) then
osolve%kfix((i-1)*3+1)=1 ; osolve%u(i)=0.d0
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0
osolve%kfix((i-1)*3+3)=1 ; osolve%w(i)=0.d0
osolve%kfixt(i)=1 ; osolve%temp(i)=0.d0
endif
if (.not.vo%influid(i)) then
osolve%kfixt(i)=1
osolve%temp(i)=0.d0
endif
if (abs(bcdef%utrans).gt.eps) then
if (osolve%kfix((i-1)*3+1)==1) osolve%u(i)=osolve%u(i)+bcdef%utrans
endif
if (abs(bcdef%vtrans).gt.eps) then
if (osolve%kfix((i-1)*3+2)==1) osolve%v(i)=osolve%v(i)+bcdef%vtrans
endif
if (osolve%kfix((i-1)*3+1)==1) osolve%u(i)=osolve%u(i)*vin
if (osolve%kfix((i-1)*3+2)==1) osolve%v(i)=osolve%v(i)*vin
if (osolve%kfix((i-1)*3+3)==1) osolve%w(i)=osolve%w(i)*vin
enddo
if (params%isobc) then
call define_isostasy_bc(params,osolve,bcdef)
endif
end
!------------------------------------------------------------------------------|
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment