-
Dave Whipp authoredDave Whipp authored
make_cut.f90 12.68 KiB
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! ||===\\ |
! || \\ |
! || || //==\\ || || //==|| ||/==\\ |
! || || || || || || || || || || |
! || // || || || || || || || |
! ||===// \\==// \\==\\ \\==\\ || |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! MAKE_CUT Nov. 2006 |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
recursive subroutine make_cut (level,levelmax,ndof,ael,bel,icon,x,y,z,kfix,mat,&
u,v,w,temp,pressure,strain,is_plastic,nnode,f, &
lsf,nlsf,r0,s0,t0,rst,icut,ileaves,eviscosity, &
vbounded,params,threadinfo,weightel)
!------------------------------------------------------------------------------|
!(((((((((((((((( Purpose of the routine ))))))))))))))))))))))))))))))))))))))
!------------------------------------------------------------------------------|
! this subroutine is a intermediary routine between build_system and make_matrix
! to take into account the complex geometry of cut cells
! if we are in a non cut cell, make-matrix is called
! if we are in a cut cell but at a level that it smaller than levelmax, the
! cell is further cut and make_cut is recursively called
! if we are in a cut cell and level is equal to levelmax, we call make_matrix
! with material properties that have been interpolated from the
! various materail properties contribnuting to the cut cell
! level : current level in cut cell algorithm. It varies between 0 and levelmax.
! levelapprox : used to improve the postitive volutme calculation by further division
! mpe : number of nodes per element (8)
! ndof : number of degrees of freedom per node (3)
! ael : computed finite element matrix
! bel : computed rhs vector
! icon : connectivity array for the current element
! xg,yg,zg : global coordinate arrays of length nnode
! penalty : penalty factor used to impose the boundary conditions
! tempscale : temperature scaling parameter
! kfix : bc array of length ndof*nnode (kfix=1 means the dof is fixed to the value stored in velo)
! mat : material matrix for the nmat materials
! materialn : contains the material number associated to each lsf
! dt : time step length (only needed for the temperature calculations)
! u,v,w : velocity array (obtained from previous time step or at least containing the proper velocity at the fixed dofs)
! nnode : number of nodes
! f : global rhs vector
! lsf : global array of level set functions defining the surfaces
! nlsf : number of lsfs
! r0,s0,t0 : bottom left back corner of the part of the element. (we are now integrating in local r,s,t coordinates)
! rst : size of the part of the element we are integrating
! icut : returned, 0 if homogeneous element - 1 if cut element
! ileaves : current leaf number (useless except for debugging)
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine arguments ))))))))))))))))))))
!------------------------------------------------------------------------------|
use threads
use definitions
implicit none
type(parameters) params
integer level
integer levelmax
integer ndof
double precision ael(params%mpe*ndof,params%mpe*ndof)
double precision bel(params%mpe*ndof)
integer icon(params%mpe)
double precision x(nnode),y(nnode),z(nnode)
integer kfix(nnode*ndof)
type (material) mat(0:params%nmat)
double precision u(nnode),v(nnode),w(nnode)
double precision temp(nnode)
double precision pressure
double precision strain(nnode)
logical is_plastic
integer nnode
double precision f(nnode*ndof)
double precision lsf(params%mpe,nlsf)
integer nlsf
double precision r0,s0,t0,rst
integer icut
integer ileaves
double precision eviscosity
logical vbounded
type (thread) threadinfo
double precision weightel
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine internal variables )))))))))))))
!------------------------------------------------------------------------------|
double precision volmax
double precision r(params%mpe),s(params%mpe),t(params%mpe)
double precision aelp(params%mpe*ndof,params%mpe*ndof),belp(params%mpe*ndof)
double precision h(params%mpe),vol_lsf0,prod
double precision r0p,s0p,t0p,rstp
double precision viscosity,density,penal,expon,diffusivity,heat,activ,expan
character (len=8) plasticity_type
double precision plasticity_parameters(9)
double precision,dimension(:,:),allocatable::lsfp
double precision,dimension(:),allocatable::vol_lsf
integer i,j,k,ii,jj,kk,jcut,levelp, err
integer matel
double precision eviscosityp
logical is_plastic_temp,vbounded_temp
double precision weight
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------
if (level.eq.0) then
ael=0.d0
bel=0.d0
eviscosity=0.d0
if (ndof.eq.3) weightel=0.d0
endif
matel=params%materialn(0)
if (.not.params%excl_vol) then
do i=1,nlsf
prod=lsf(1,i)
do k=2,params%mpe
if (prod*lsf(k,i).le.0.d0) goto 222
enddo
if (prod.lt.0.d0) then
matel=params%materialn(i)
endif
enddo
else
!check whether this is a cut cell
do i=1,nlsf
prod=lsf(1,i)
do k=2,params%mpe
if (prod*lsf(k,i).le.0.d0) goto 222
enddo
end do
!assign material to plain cell, since at that point we know that this is a plain cell
do i=1,nlsf
if (lsf(1,i).lt.0.d0) matel=params%materialn(i)
end do
!if (lsf(1,1).lt.0) matel=params%materialn(1)
!if (lsf(1,2).lt.0) matel=params%materialn(2)
end if
!=====[end new stuff]=====
call make_matrix (params,ndof,aelp,belp,icon,x,y,z, &
kfix,mat(matel)%viscosity,mat(matel)%density, &
mat(matel)%penalty,mat(matel)%expon, &
mat(matel)%activationenergy,mat(matel)%expansion, &
mat(matel)%diffusivity,mat(matel)%heat, &
mat(matel)%plasticity_type, &
mat(matel)%plasticity_parameters, &
u,v,w,temp,pressure,strain,is_plastic_temp,nnode, &
f,r0,s0,t0,rst,ileaves,eviscosityp,vbounded_temp,threadinfo, &
weight)
ael=ael+aelp/(8.d0**level)
bel=bel+belp/(8.d0**level)
eviscosity=eviscosity+eviscosityp/(8.d0**level)
is_plastic=(is_plastic.or.is_plastic_temp)
vbounded=(vbounded.or.vbounded_temp)
if (ndof.eq.3) weightel=weightel+weight/(8.d0**level)
icut=0
return
!--------------------------------------------------------
222 continue
icut=1
! when we get to the bottom of the division we use an approximate algorithm
if (level.eq.levelmax) then
allocate (vol_lsf(nlsf),stat=err) ; if (err.ne.0) call stop_run ('Error alloc vol_lsf in make_cut$')
do i=1,nlsf
call compute_positive_volume (lsf(1,i),vol_lsf(i),params%levelapprox)
enddo
vol_lsf=1.d0-vol_lsf
if (.not.params%excl_vol) then
do i=1,nlsf-1
vol_lsf(i)=vol_lsf(i)-vol_lsf(i+1)
enddo
end if
! this is a little fix that is necessary due to the finite precision with
! which we compute the positive volumes and could lead to a contributing volume being
! either marginally negative or greater than 1
do i=1,nlsf
vol_lsf(i)=max(vol_lsf(i),0.d0)
vol_lsf(i)=min(vol_lsf(i),1.d0)
enddo
viscosity=0.d0
density=0.d0
penal=0.d0
expon=0.d0
activ=0.d0
expan=0.d0
diffusivity=0.d0
heat=0.d0
do i=1,nlsf
matel=params%materialn(i)
viscosity=viscosity+vol_lsf(i)*mat(matel)%viscosity
density=density+vol_lsf(i)*mat(matel)%density
penal=penal+vol_lsf(i)*mat(matel)%penalty
expon=expon+vol_lsf(i)*mat(matel)%expon
activ=activ+vol_lsf(i)*mat(matel)%activationenergy
expan=expan+vol_lsf(i)*mat(matel)%expansion
diffusivity=diffusivity+vol_lsf(i)/mat(matel)%diffusivity
heat=heat+vol_lsf(i)*mat(matel)%heat
enddo
vol_lsf0=1.d0-sum(vol_lsf)
matel=params%materialn(0)
viscosity=viscosity+vol_lsf0*mat(matel)%viscosity
density=density+vol_lsf0*mat(matel)%density
penal=penal+vol_lsf0*mat(matel)%penalty
expon=expon+vol_lsf0*mat(matel)%expon
activ=activ+vol_lsf0*mat(matel)%activationenergy
expan=expan+vol_lsf0*mat(matel)%expansion
heat=heat+vol_lsf0*mat(matel)%heat
diffusivity=diffusivity+vol_lsf0/mat(matel)%diffusivity
diffusivity=1.d0/diffusivity! note that some properties add geometrically not algebraically
volmax=0.d0
matel=params%materialn(0)
plasticity_type=mat(matel)%plasticity_type
plasticity_parameters=mat(matel)%plasticity_parameters
do i=1,nlsf
if (vol_lsf(i).gt.volmax) then
volmax=vol_lsf(i)
matel=params%materialn(i)
plasticity_type=mat(matel)%plasticity_type
plasticity_parameters=mat(matel)%plasticity_parameters
endif
enddo
! if (plasticity_type/='No') then
! print *,vol_lsf
! call stop_run ('pb$')
! end if
call make_matrix (params,ndof,aelp,belp,icon,x,y,z,kfix,viscosity,density, &
penal,expon,activ,expan,diffusivity,heat,plasticity_type,&
plasticity_parameters,u,v,w,temp,pressure,strain, &
is_plastic_temp,nnode,f,r0,s0,t0,rst,ileaves,eviscosityp,&
vbounded_temp,threadinfo,weight)
is_plastic=(is_plastic.or.is_plastic_temp)
vbounded=(vbounded.or.vbounded_temp)
ael=ael+aelp/(8.d0**level)
bel=bel+belp/(8.d0**level)
eviscosity=eviscosity+eviscosityp/(8.d0**level)
if (ndof.eq.3) weightel=weightel+weight/(8.d0**level)
deallocate (vol_lsf)
return
endif
!-----------------------------------------------------------------
! If we are not at the bottom level, we keep dividing
allocate (lsfp(params%mpe,nlsf),stat=err) ; if (err.ne.0) call stop_run ('Error alloc lsfp in make_cut$')
do kk=1,2
t(1:4)=-1.d0+float(kk-1)
t(5:8)=float(kk-1)
do jj=1,2
s(1:2)=-1.d0+float(jj-1)
s(3:4)=float(jj-1)
s(5:6)=-1.d0+float(jj-1)
s(7:8)=float(jj-1)
do ii=1,2
r(1)=-1.d0+float(ii-1)
r(2)=float(ii-1)
r(3)=-1.d0+float(ii-1)
r(4)=float(ii-1)
r(5)=-1.d0+float(ii-1)
r(6)=float(ii-1)
r(7)=-1.d0+float(ii-1)
r(8)=float(ii-1)
do k=1,8
h(1)=(1.d0-r(k))*(1.d0-s(k))*(1.d0-t(k))/8.d0
h(2)=(1.d0+r(k))*(1.d0-s(k))*(1.d0-t(k))/8.d0
h(3)=(1.d0-r(k))*(1.d0+s(k))*(1.d0-t(k))/8.d0
h(4)=(1.d0+r(k))*(1.d0+s(k))*(1.d0-t(k))/8.d0
h(5)=(1.d0-r(k))*(1.d0-s(k))*(1.d0+t(k))/8.d0
h(6)=(1.d0+r(k))*(1.d0-s(k))*(1.d0+t(k))/8.d0
h(7)=(1.d0-r(k))*(1.d0+s(k))*(1.d0+t(k))/8.d0
h(8)=(1.d0+r(k))*(1.d0+s(k))*(1.d0+t(k))/8.d0
lsfp(k,:)=0.d0
do i=1,nlsf
do j=1,8
lsfp(k,i)=lsfp(k,i)+h(j)*lsf(j,i)
enddo
enddo
enddo
r0p=r0+rst*(r(1)+1.d0)/2.d0
s0p=s0+rst*(s(1)+1.d0)/2.d0
t0p=t0+rst*(t(1)+1.d0)/2.d0
rstp=rst/2.d0
levelp=level+1
call make_cut (levelp,levelmax, &
ndof,ael,bel,icon,x,y,z, &
kfix,mat, &
u,v,w,temp,pressure,strain,is_plastic,nnode, &
f,lsfp,nlsf,r0p,s0p,t0p,rstp,jcut,ileaves,eviscosity,vbounded,params,threadinfo, &
weightel)
enddo
enddo
enddo
deallocate (lsfp)
return
end
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------