-
Douglas Guptill authoredDouglas Guptill authored
define_bc_parallipipede.f90 3.89 KiB
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! ||===\\ |
! || \\ |
! || || //==\\ || || //==|| ||/==\\ |
! || || || || || || || || || || |
! || // || || || || || || || |
! ||===// \\==// \\==\\ \\==\\ || |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! DEFINE_BC_SPHERE Apr. 2007 |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
subroutine define_bc_parallipipede (nnode,kfix,kfixt,x,y,z,u,v,w,temp,vo)
!------------------------------------------------------------------------------|
!(((((((((((((((( Purpose of the routine ))))))))))))))))))))))))))))))))))))))
!------------------------------------------------------------------------------|
! this routine assigns the boundary condition for the Stokes sphere experiment
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine arguments ))))))))))))))))))))
!------------------------------------------------------------------------------|
use definitions
implicit none
integer nnode
integer kfix(nnode*3)
integer kfixt(nnode)
double precision x(nnode),y(nnode),z(nnode)
double precision u(nnode),v(nnode),w(nnode)
double precision temp(nnode)
type (void) vo
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine internal variables )))))))))))))
!------------------------------------------------------------------------------|
integer i
double precision eps
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
eps=1.d-10
do i=1,nnode
if (x(i).lt.eps) then
kfix((i-1)*3+1)=1 ; u(i)=0.d0
kfix((i-1)*3+2)=0 ; v(i)=0.d0
kfix((i-1)*3+3)=0 ; w(i)=0.d0
endif
if (x(i).gt.1.d0-eps) then
! kfix((i-1)*3+1)=1 ; u(i)=0.d0
if (y(i).ge.0.5667 .and. y(i).le.0.7667) then
kfix((i-1)*3+1)=1 ; u(i)=-2.8d-1
end if
! kfix((i-1)*3+3)=1 ; w(i)=0.d0
endif
if (y(i).lt.eps) then
! kfix((i-1)*3+1)=1 ; u(i)=0.d0
kfix((i-1)*3+2)=1 ; v(i)=0.d0
! kfix((i-1)*3+3)=1 ; w(i)=0.d0
endif
if (y(i).gt.1.d0-eps) then
! kfix((i-1)*3+1)=1 ; u(i)=0.d0
kfix((i-1)*3+2)=1 ; v(i)=0.d0
! kfix((i-1)*3+3)=1 ; w(i)=0.d0
endif
if (z(i).lt.eps) then
! kfix((i-1)*3+1)=1 ; u(i)=0.d0
! kfix((i-1)*3+2)=1 ; v(i)=0.d0
kfix((i-1)*3+3)=1 ; w(i)=0.d0
kfixt(i)=1
temp(i)=1.d0
endif
if (z(i).gt.1.d0-eps) then
kfix((i-1)*3+1)=1 ; u(i)=0.d0
! kfix((i-1)*3+2)=1 ; v(i)=0.d0
! kfix((i-1)*3+3)=1 ; w(i)=0.d0
kfixt(i)=1
temp(i)=0.d0
endif
if (.not.vo%influid(i)) then
kfixt(i)=1
temp(i)=0.d0
endif
end do
return
end
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------