Skip to content
Snippets Groups Projects
volume.cc 55.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    #include <stdlib.h>
    #include <ctype.h>
    #include <math.h>
    /*--------------------------------------------------------------
    
        This file contains six recursive C routines for calculating
        the volume and derivatives of a convex polyhedron in n 
        dimensions. The routines volume, volumef, volumeb and dvda are 
        fortran callable interfaces to their C counterparts cvolume,
        cvolumeb and cdvda.
    
        ROUTINE      COMMENT			CALLS 
    
        cvolume	 calculates volume of region    cvolume 
                     which satisfies Ax <= b.
    
        cvolumef	 calculates volume of region    cvolumef 
                     which satisfies Ax <= b.
                     (faster version, see below)
    
        cvolumeb     calculates volume and the      cvolume
                     derivative d(vol)/db(0).
    
        cdvda        calculates derivatives		cdvda, cvolumeb, 
                     d(vol)/da(0,j) (j=1,n).        & cvolumebj
    
        cdvdaf        calculates derivatives	cdvdaf, cvolumeb, 
                     d(vol)/da(0,j) (j=1,n).        & cvolumebj
                     (faster version, see below)
    
        cvolumebj    calculates partial volumes
                     and derivatives d(vol)/d(b(j)
                     (j=1,n). (called by cdvda.)
    
        Here b(j) is the jth element of vector b, and a(i,j) is the
        (i,j)th coefficient of the matrix A corresponding to the
        ith constraint and the jth dimension.
    
        The two faster versions cvolumef and cdvdaf do not continue down
        the recursive tree if b(j) = 0 for any j at any time. This avoids
        extra work but restricts the applicability of the routines to
        cases where the origin does not pass through any inconsistent
        constraints.
         
    				Malcolm Sambridge, April 1995.
    
      --------------------------------------------------------------*/
    
    /*--------------------------------------------------------------
    
    			ROUTINE: cvolume
    
        This routine calculates the `volume' in dimension n of the region
        bounded by a set of m linear inequality constraints of the form
        A x <= b, where a has m rows and n columns and is given by a(m,n),
        b is the n-vector and is contained in b(m). The recursive formula
        of Lasserre (1983) is used. Redundant constraints are allowed 
        If the inequality constraints are inconsistent then the volume 
        is returned as zero.  If the original polyhedron is unbounded 
        then a warning is issued and the volume is return as -1.0 
        (even though it is undefined). 
    
    			Jean Braun and Malcolm Sambridge, Jan 1995.
    
        Lasserre, J. B., 1983. "An analytical expression and an Algorithm
        for the Volume of a Convex Polyhedron in R^n.", JOTA, vol. 39, 
        no. 3, 363-377.
    
      --------------------------------------------------------------*/
    
    float cvolume (a,b,m,n,mmax,nmax)
    
    int   *n, *m, *mmax, *nmax;
    float *a, *b; 
    
    {
    
    float v,amax,pivot;
    int   i,j,t,k,l;
    int   jj,kk;
    float   *ai, *aj, *ajt, *apjj, *bi;
    int   kmm,tmm;
    int   nn,mm,nn_max,mm_max;
    int   nm1,mm1;
    float  *ap, *bp;
    int   firstmin,firstmax;
    float bmin,bmax,bb;
    float partialv;
    
    nn= *n;
    mm= *m;
    nn_max= *nmax;
    mm_max= *mmax;
    
    /* one-dimensional case (full reduction) */
    
    if (nn == 1) 
      {
      firstmin=0;
      firstmax=0;
      for (l=0;l<mm;l++)
        {
        if ( *(a+l) > 0.) 
          {
          bb= *(b+l)/ *(a+l);
          if (firstmin==0) {firstmin=1;bmin=bb;}
          else if (bb<bmin) bmin=bb;
          }
        else if ( *(a+l) < 0.)
          {
          bb= *(b+l)/ *(a+l);
          if (firstmax==0) {firstmax=1;bmax=bb;}
          else if (bb>bmax) bmax=bb;
          }
        else if ( *(b+l) < 0.)         /* Constraints are inconsistent */
          { 
           printf("Inconsistent constraints found after reduction to n = 1 \n");
           return(0.); 
          }
        }
      v=0.;
      if (firstmin*firstmax == 1) v=bmin-bmax;
      else 
        {
    /*     printf("Volume is unbounded at 1-D; volume returned as -1\n");*/
         return(-1.0);
        }
    
      if (v<0.) {v=0.;} 
    
      return(v);
      }
    
    nm1=nn-1;
    mm1=mm-1;
    v=0.;
    
    for (i=0;i<mm;i++)
      {
       ai=a+i;
       bi=b+i;
    
    /* find largest pivot */
    
      amax=0.;
      for (j=0;j<nn;j++) 
        if (fabs( *(ai+j*mm_max)) >= amax) {amax= fabs( *(ai+j*mm_max)); t=j;}
      tmm=t*mm_max;
      pivot=*(ai+tmm);
    
    /* finds contribution to v from this pivot (if not nil) */
    
      if (amax == 0.)
      {
                                     /* Constraint is inconsistent */
    
        if ( *(bi) < 0.) 
          { printf("Constraint %d is inconsistent\n",i+1); return(0.); }
    
                                     /* otherwise constraint is redundant */
    
        printf("Constraint %d is redundant\n",i+1); 
      }
      else
      {
    
    /* allocate memory */
    
      ap = (float *) malloc(4*nm1*mm1);
      bp = (float *) malloc(4*mm1);
    
    /* reduce a and b into ap and bp eliminating variable t and constraint i */
    
      jj=-1;
        for (j=0;j<mm;j++)
          if (j != i)
          {
          jj=jj+1;
          aj=a+j;
          ajt=aj+tmm;
          *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
          apjj=ap+jj;
          kk=-1;
          for (k=0;k<nn;k++)
            if (k != t)
            {
            kk=kk+1;
            kmm=k*mm_max;
            *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
            }
          }
      
    /* add contribution to volume from volume calculated in smaller dimension */
    
      partialv=cvolume(ap,bp, &mm1, &nm1, &mm1, &nm1);
      if(partialv == -1.0)return(-1.0);
      v=v+ *(bi)/amax*partialv/nn; 
    
      free(ap);
      free(bp);
      }
      }
    
    return(v);
    
    }
    
    /*--------------------------------------------------------------
    
    			ROUTINE: volume
    
       A dummy routine used to call cvolume from a fortran routine 
    
    
    			Jean Braun and Malcolm Sambridge, Jan 1995.
    
    ----------------------------------------------------------------*/
    
    volume (a,b,m,n,mmax,nmax,volume)
    
    int   *n, *m, *mmax, *nmax;
    float *a, *b;
    float *volume; 
    
    {
    
    *volume=cvolume(a,b,m,n,mmax,nmax);
    
    }
    
    /*--------------------------------------------------------------
    
    			ROUTINE: cvolumeb
    
        This routine calculates the `volume' in dimension n of the region
        bounded by a set of m linear inequality constraints of the form
        A x <= b, where a has m rows and n columns and is given by a(m,n),
        b is the n-vector and is contained in b(m). The recursive formula
        of Lasserre (1983) is used. Redundant constraints are allowed and
        a warning is issued if any are encountered. If the inequality 
        constraints are inconsistent then the volume is returned as zero.
        If the original polyhedron is unbounded then a warning is issued
        and the volume is return as zero (even though it is undefined). 
    
        This version also calculates the derivative of the volume with
        respect to the parameter b(0) using the simple formula of
        Lasserre (1983). If *opt == 2 then only the derivative is 
        calculated and not the volume.
    
        This routine is a variation from the routine `cvolume'.
    
        Calls are made to routine cvolume.
    
    				Malcolm Sambridge, March 1995.
    
    
      --------------------------------------------------------------*/
    
    float cvolumeb (a,b,m,n,mmax,nmax,opt,dvdb)
    
    int   *n, *m, *opt, *mmax, *nmax;
    float *a, *b; 
    float *dvdb; 
    
    {
    
    float v,amax,pivot;
    int   i,j,t,k,l;
    int   jj,kk;
    float   *ai, *aj, *ajt, *apjj, *bi;
    int   kmm,tmm;
    int   nn,mm,nn_max,mm_max;
    int   nm1,mm1;
    int   lmin,lmax;
    float  *ap, *bp;
    int   firstmin,firstmax;
    float bmin,bmax,bb;
    float vol;
    
    nn= *n;
    mm= *m;
    nn_max= *nmax;
    mm_max= *mmax;
    
    /* one-dimensional case (full reduction) */
    
    if (nn == 1) 
      {
      firstmin=0;
      firstmax=0;
      lmax=0;
      lmin=0;
      for (l=0;l<mm;l++)
        {
        if ( *(a+l) > 0.) 
          {
          bb= *(b+l)/ *(a+l);
          if (firstmin==0) {firstmin=1;bmin=bb;lmin=l;}
          else if (bb<bmin) {bmin=bb;lmin=l;}
          }
        else if ( *(a+l) < 0.)
          {
          bb= *(b+l)/ *(a+l);
          if (firstmax==0) {firstmax=1;bmax=bb;lmax=l;}
          else if (bb>bmax) {bmax=bb;lmax=l;}
          }
        else if ( *(b+l) < 0.) 
          { 
                                  /* Constraints are inconsistent.  
                                     Set volume and derivative to zero. */
    
           printf("Inconsistent constraints found after reduction to n = 1 \n");
          *dvdb = 0.; 
          return(0.);
          }
        }
      v=0.;
      *dvdb = 0.; 
      if (firstmin*firstmax == 1) v=bmin-bmax;
      else 
        {
         printf("Volume is unbounded; volume returned as -1\n derivatives returned as zero\n");
         return(-1.0);
        }
    
      if (v<0.) {v=0.;*dvdb=0.;} 
      else if (v>0. && lmin == 0) *dvdb = 1. / *a;
      else if (v>0. && lmax == 0) *dvdb = -1. / *a;
      return(v);
      }
    
    nm1=nn-1;
    mm1=mm-1;
    v=0.;
    
    /*  perform main loop over constraints */
    
    for (i=0;i<mm;i++)
      {
       ai=a+i;
       bi=b+i;
    
    /* find largest pivot */
    
      amax=0.;
      for (j=0;j<nn;j++) 
        if (fabs( *(ai+j*mm_max)) >= amax) {amax= fabs( *(ai+j*mm_max)); t=j;}
      tmm=t*mm_max;
      pivot=*(ai+tmm);
    
    /* finds contribution to v from this pivot (if not nil) */
    
      if (amax == 0.)
      {
                                     /* Constraint is inconsistent */
    
        if ( *(bi) < 0.) 
           {
            printf("Constraint %d is inconsistent\n",i+1); 
            return(0.);
           } 
    
                                     /* otherwise constraint is redundant */
    
        printf("Constraint %d is redundant\n",i+1); 
      }
      else
      {
    
    /* allocate memory */
    
      ap = (float *) malloc(4*nm1*mm1);
      bp = (float *) malloc(4*mm1);
    
    /* reduce a and b into ap and bp eliminating variable t and constraint i */
    
      jj=-1;
        for (j=0;j<mm;j++)
          if (j != i)
          {
          jj=jj+1;
          aj=a+j;
          ajt=aj+tmm;
          *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
          apjj=ap+jj;
          kk=-1;
          for (k=0;k<nn;k++)
            if (k != t)
            {
            kk=kk+1;
            kmm=k*mm_max;
            *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
            }
          }
      
    /* add contribution to volume from volume calculated in smaller dimension */
    
      vol=cvolume(ap,bp, &mm1, &nm1, &mm1, &nm1);
      if(vol == -1.0)
         {
          *dvdb = 0.;
          return(-1.0);
         }
      v=v+ *(bi)/amax*vol/nn;
    
      free(ap);
      free(bp);
    
    /* calculate derivatives for first constraint only */
    
                                        /* calculate volume and derivative 
                                           with respect to b_0 */
      if (i == 0) *dvdb = vol/amax; 
                                        /* calculate derivative with respect 
                                           to b_0 but not volume */
      if (*opt == 2) return (0.); 
      }
      }
    
    return(v);
    
    }
    
    /*--------------------------------------------------------------
    
    			ROUTINE: volumeb
    
       A dummy routine used to call cvolumeb from a fortran routine 
    
    ----------------------------------------------------------------*/
    
    volumeb (a,b,m,n,mmax,nmax,opt,volume,dvdb)
    
    int   *n, *m, *mmax, *nmax, *opt;
    float *a, *b;
    float *volume; 
    float *dvdb; 
    
    {
    
    if(*opt == 1)                      /* calculate volume and derivative with
                                           respect to b(0) */
      {
       *volume=cvolumeb(a,b,m,n,mmax,nmax,opt,dvdb);
      }
    else if(*opt == 2)                /* calculate derivative with respect to b(0) 
                                           but not volume */
      {
       *volume=cvolumeb(a,b,m,n,mmax,nmax,opt,dvdb);
      }
    else 
      {
       printf(" Warning: routine volumeb called with an invalid option parameter\n");
       printf("          valid options are 1 and 2, option given = %d \n",*opt);
      } 
    
    }
    
    /*--------------------------------------------------------------
    
    			ROUTINE: cvolumebj
    
        This routine only calculates the j-th outer loop of the recursive
        routine cvolumeb. It returns the partial volume for projection 
        onto the j-th constraint and the derivative of the total volume 
        with respect to parameter b(j) using the simple formula of 
        Lasserre(1983). (See cvolumeb for more details.)
        
        The reason for this routine is so that the derivatives
        with respect to parameter b(j) can be calculated and passed back
        to a fortran routine without creating and an extra array of size
        m (because only one derivative is calculated per call). In
        this way it also avoids recalculating the total volume m times
        (which would be the case if we used a simple variation of routine
         cvolumeb).
    
        To calculate the total volume this routine must be called m times
        and the partial volume summed
    
        Constraint j is determined by the value of *con.
    
        Calls are made to routine cvolume.
    
    				Malcolm Sambridge, March 1995.
    
      --------------------------------------------------------------*/
    
    float cvolumebj (a,b,m,n,mmax,nmax,con,dvdb)
    
    int   *n, *m, *mmax, *nmax, con;
    float *a, *b; 
    float *dvdb; 
    
    {
    
    float v,amax,pivot;
    int   i,j,t,k,l;
    int   jj,kk;
    float   *ai, *aj, *ajt, *apjj, *bi;
    int   kmm,tmm;
    int   nn,mm,nn_max,mm_max;
    int   nm1,mm1;
    int   lmin,lmax;
    float  *ap, *bp;
    int   firstmin,firstmax;
    float bmin,bmax,bb;
    float vol;
    
    nn= *n;
    mm= *m;
    nn_max= *nmax;
    mm_max= *mmax;
    
    /* one-dimensional case (full reduction) */
    
    if (nn == 1) 
      {
      firstmin=0;
      firstmax=0;
      lmax=0;
      lmin=0;
      for (l=0;l<mm;l++) 
        {
        if ( *(a+l) > 0.) 
          {
          bb= *(b+l)/ *(a+l);
          if (firstmin==0) {firstmin=1;bmin=bb;lmin=l;}
          else if (bb<bmin) {bmin=bb;lmin=l;}
          }
        else if ( *(a+l) < 0.)
          {
          bb= *(b+l)/ *(a+l);
          if (firstmax==0) {firstmax=1;bmax=bb;lmax=l;}
          else if (bb>bmax) {bmax=bb;lmax=l;}
          }
        else if ( *(b+l) < 0.) 
          { 
                                  /* Constraints are inconsistent.  
                                     Set volume and derivative to zero. */
    
           printf("Inconsistent constraints found after reduction to n = 1 \n");
          *dvdb = 0.; 
          return(0.);
          }
        }
      v=0.;
      *dvdb = 0.; 
      if (firstmin*firstmax == 1) v=bmin-bmax;
      else 
        {
         printf("Volume is unbounded; volume returned as -1\n derivatives returned as zero\n");
         return(-1.0);
        }
    
      if (v<0.) {v=0.;*dvdb=0.;} 
      else if (v>0. && lmin == con) *dvdb = 1. / *(a+lmin);
      else if (v>0. && lmax == con) *dvdb = -1. / *(a+lmax);
      return(v);
      }
    
    nm1=nn-1;
    mm1=mm-1;
    v=0.;
    
    /*  perform main loop over constraints */
    
    /* for (i=0;i<mm;i++) */
    
      i = con;
    
       ai=a+i;
       bi=b+i;
    
    /* find largest pivot */
    
      amax=0.;
      for (j=0;j<nn;j++) 
        if (fabs( *(ai+j*mm_max)) >= amax) {amax= fabs( *(ai+j*mm_max)); t=j;}
      tmm=t*mm_max;
      pivot=*(ai+tmm);
    
    /* finds contribution to v from this pivot (if not nil) */
    
      if (amax == 0.)
      {
                                     /* Constraint is inconsistent */
    
        if ( *(bi) < 0.) 
           {
            printf("Constraint %d is inconsistent\n",i+1); 
            *dvdb = 0.; 
            return(0.);
           } 
    
                                     /* otherwise constraint is redundant */
    
        printf("Constraint %d is redundant\n",i+1); 
        *dvdb = 0.; 
      }
      else
      {
    
    /* allocate memory */
    
      ap = (float *) malloc(4*nm1*mm1);
      bp = (float *) malloc(4*mm1);
    
    /* reduce a and b into ap and bp eliminating variable t and constraint i */
    
      jj=-1;
        for (j=0;j<mm;j++)
          if (j != i)
          {
          jj=jj+1;
          aj=a+j;
          ajt=aj+tmm;
          *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
          apjj=ap+jj;
          kk=-1;
          for (k=0;k<nn;k++)
            if (k != t)
            {
            kk=kk+1;
            kmm=k*mm_max;
            *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
            }
          }
      
                                        /* calculate partial volume */ 
    
      vol=cvolume(ap,bp, &mm1, &nm1, &mm1, &nm1);
      if(vol == -1.0)
         {
          *dvdb = 0.;
          return(-1.0);
         }
      v=*(bi)/amax*vol/nn;
    
                                        /* calculate derivative of total volume
                                           with respect to current constraint */
      *dvdb = vol/amax; 
    
      free(ap);
      free(bp);
      }
    
    return(v);
    
    }
    
    /*--------------------------------------------------------------
    
    			ROUTINE: volumebj
    
       A dummy routine used to call cvolumebj from a fortran routine
    
    ----------------------------------------------------------------*/
    
    volumebj (a,b,m,n,mmax,nmax,con,volume,dvdb)
    
    int   *n, *m, *mmax, *nmax,*con;
    float *a, *b;
    float *volume; 
    float *dvdb; 
    
    {
    
    int tcon;
    tcon = *con - 1;
                                        /* calculate partial volume and 
                                           derivative with respect to b(con) */
    
       *volume=cvolumebj(a,b,m,n,mmax,nmax,tcon,dvdb);
    
    }
    /*--------------------------------------------------------------
    
    			ROUTINE: cdvda
    
        This routine calculates the derivative with respect to a(0,tdim)
        of the `volume' in dimension n of the region bounded by a set 
        of m linear inequality constraints of the form A x <= b, where 
        a has m rows and n columns and is given by a(m,n), b is the 
        n-vector and is contained in b(m). The derivative expression
        is recursive and derived from the formula of Lasserre (1983). 
    
        Redundant constraints are allowed and a warning is issued if any are 
        encountered. If the inequality constraints are inconsistent then the 
        derivative is returned as zero.  If any constraint is orthogonal to 
        the component a(0,idim) then the reduction can only take place onto 
        variable idim. A special case is used to handle this which involves
        no further recursive calls.
    
        If the original polyhedron is unbounded then a warning is issued
        and the derivative is return as zero. 
    
        Note: This code takes advantage of the fact that during recursive calls
        constraint 0 does not change its position in the list of remaining 
        constraints (if it has not been eliminated), i.e. it is always the 
        first constraint.  This would not be the case if the algorithm were 
        adapated to deal with other constraints, i.e. evaluate dvda_i,j 
        where i .ne. 0.
    
        Calls itself cvolumeb, and cvolumebj.
     
    				Malcolm Sambridge, March 1995.
    
      --------------------------------------------------------------*/
    
    float cdvda (a,b,m,n,mmax,nmax,tdim,temp,jval,code)
    
    int   *n, *m, *nmax, *mmax, *tdim, *jval, *code;
    float *a, *b, *temp; 
    
    {
    
    float v,amax,pivot;
    int   i,j,t,k,l;
    int   jj,kk;
    float   *ai, *aj, *ajt, *apjj, *bi;
    int   kmm,tmm;
    int   nn,mm,nn_max,mm_max,ttdim;
    int   nm1,mm1;
    int   lmin,lmax, jjval, kval;
    float  *ap, *bp, *ttemp;
    int   firstmin,firstmax;
    float bmin,bmax,bb;
    float deriv, junk, vol, dvdb, dbda;
    int   special, opt;
    
    nn= *n;
    mm= *m;
    nn_max= *nmax;
    mm_max= *mmax;
    
    /* one-dimensional case (full reduction) */
    
    *code = 0;
    
    if (nn == 1) 
      {
      firstmin=0;
      firstmax=0;
      lmax=0;
      lmin=0;
      for (l=0;l<mm;l++)
        {
        if ( *(a+l) > 0.) 
          {
          bb= *(b+l)/ *(a+l);
          if (firstmin==0) {firstmin=1;bmin=bb;lmin=l;}
          else if (bb<bmin) {bmin=bb;lmin=l;}
          }
        else if ( *(a+l) < 0.)
          {
          bb= *(b+l)/ *(a+l);
          if (firstmax==0) {firstmax=1;bmax=bb;lmax=l;}
          else if (bb>bmax) {bmax=bb;lmax=l;}
          }
        else if ( *(b+l) < 0.) 
          {
                                       /* Constraint is inconsistent.
                                          Set derivative to zero. */
    
           printf("Inconsistent constraints found after reduction to n = 1 \n");
           *code = 1;
           return(0.);
          }
        }
      v=0.;
      if (firstmin*firstmax == 1) v=bmin-bmax;
      else 
        {
         printf("Volume is unbounded; derivative returned is zero\n");
         *code = -1;
         return(0.);
        }
    
      if (v<0.) return(0.);       
    
      if(*jval == 1)           /* Constraint 0 has not yet been encountered */
        {
         if (lmin == 0) deriv = -bmin/ *a;
         else if (lmax == 0) deriv = bmax/ *a;
         else deriv = 0.;
         return(deriv); 
        }
      else if(*jval == 0)     /* Constraint 0  has already been encountered */
        {
         deriv =  ( *(temp+lmax) * (bmax/ *(a+lmax)) ) -
                  ( *(temp+lmin) * (bmin/ *(a+lmin)) );
         return(deriv); 
        }
      }
    nm1=nn-1;
    mm1=mm-1;
    v=0.;
     
                                     /*  perform main loop over constraints */
    
    for (i=0;i<mm;i++)
      {
       ai=a+i;
       bi=b+i;
       ttdim = *tdim;
       special = 0;
    
    /* find largest pivot */
    
      amax=0.;
      t = 0;
      for (j=0;j<nn;j++) 
        if (fabs( *(ai+j*mm_max)) >= amax && j != ttdim) 
            {amax= fabs( *(ai+j*mm_max)); t=j;}
    
                                     /* finds contribution to v from 
                                        this pivot (if not nil) */
    
      if (amax == 0.)
      {
       if(*(ai + ttdim * mm_max) == 0.0) 
         { 
                                     /* Constraint is inconsistent */
           if ( *(bi) < 0.)
             {
              printf("Constraint %d is inconsistent\n",i+1);
              *code = 1;
              return(0.);
             }
    
                                     /* otherwise constraint is redundant */
    
           printf("Constraint %d is redundant\n",i+1); 
         }
       else
         {
                                     /* if projection can only be peformed
                                        on dimension tdim then activate 
                                        special case */ 
    
         special = 1;
         t = ttdim;
         amax = fabs(*(ai+t * mm_max));
    
         }
      }
    
      tmm=t*mm_max;
      pivot=*(ai+tmm);
    
      if(t < ttdim) ttdim = ttdim -1;
    
    
      if (amax != 0)
      {
    
                     /* determine if constraint 0 has been encountered */
     
       kval = 0;
       if ( i == 0 && *jval == 1)
          {
                                         /* This is the first encounter of
                                            constraint 0 on this path so we 
                                            allocate memory and store parameters 
                                            to be used when n = 1 */
    
           if (special == 0) 
              {
               ttemp = (float *) malloc(4*mm1);
               for (j=0;j<mm1;j++) *(ttemp+j) = - *(a+j+1+tmm)/pivot;
               kval = 1;
              }
           jjval = 0;
          }
       else if (*jval == 0)             /* Constraint 0 has already been
                                            encountered */
          {
            jjval = 0;  
                                        /* perform recursive update of component
                                           derivative array temp. This eliminates 
                                           row i and copies into a new vector */
    
            if(special == 0)
              {
               ttemp = (float *) malloc(4*mm1);
               for (j=0;j<i;j++) *(ttemp+j) = *(temp+j) 
                                              -(*(temp+i) * *(a+j+tmm)/pivot);
               for (j=i;j<mm1;j++) *(ttemp+j) = *(temp+j+1)
                                              -(*(temp+i) * *(a+j+1+tmm)/pivot);
              }
          }
       else 
          {                             /* Constraint 0 has not yet been 
                                            encountered */
          jjval = 1;                
          }
    
    
    /* allocate memory */
    
      ap = (float *) malloc(4*nm1*mm1);
      bp = (float *) malloc(4*mm1);
    
    /* reduce a and b into ap and bp eliminating variable t and constraint i */
    
      jj=-1;
        for (j=0;j<mm;j++)
          if (j != i)
          {
          jj=jj+1;
          aj=a+j;
          ajt=aj+tmm;
          *(bp+jj)= *(b+j) - *(bi) * *(ajt) / pivot;
          apjj=ap+jj;
          kk=-1;
          for (k=0;k<nn;k++)
            if (k != t)
            {
            kk=kk+1;
            kmm=k*mm_max;
            *(apjj+kk*mm1)= *(aj+kmm)- *(ajt) * *(ai+kmm)/ pivot;
            }
          }
      
    /* add contribution to derivative from that calculated in smaller dimension */
    
      					/* Normal case method */
      if(special == 0)
        {
         deriv=cdvda(ap,bp, &mm1, &nm1, &mm1, &nm1, &ttdim, ttemp, &jjval,code);
         v=v+ *(bi)/amax*deriv/nn;
         if (kval == 1 || *jval == 0) free(ttemp);
         if(*code != 0)return (0.);
    
        }
      else					/* Use special case method */
        {
         if( *jval == 1)                    
           {                     
            if(i == 0)                      /* This is constraint 0 */
              {
               deriv = 0.; 
               vol = 0.; 
               dvdb = 0.;
               for (j=1;j<mm;j++) 
                  {
                   k = j - 1;
                   junk=cvolumebj(ap,bp,&mm1,&nm1,&mm1,&nm1,k,&dvdb);
                   if(junk == -1.)
                     {
                      *code = -1;
                      return(0.);
                     }
                   deriv = deriv + dvdb * *(a + j + tmm) ;
                   vol = vol + junk;
                  }
               if(nm1 == 1)vol = junk;
               deriv = *(bi) * deriv/pivot;
               deriv = (deriv - vol) /pivot; 
               v=v+ *(bi)/amax*deriv/nn;
    
              }
            else				/* Constraint 0 not yet encountered */
              {
               opt = 2;
               junk=cvolumeb(ap,bp,&mm1,&nm1,&mm1,&nm1,&opt,&deriv);
               if(junk == -1.)
                 {
                  *code = -1;
                  return(0.);
                 }
               deriv= -(deriv *  *(bi)/pivot);
               v=v+ *(bi)/amax*deriv/nn;
              }
           }
         else if( *jval == 0)               /* Constraint 0 already encountered */
           {
            vol = 0.; 
            deriv = 0.; 
            for (j=0;j<i;j++) 
               {
                junk=cvolumebj(ap,bp,&mm1,&nm1,&mm1,&nm1,j,&dvdb);
                if(junk == -1.)
                  {
                   *code = -1;
                   return(0.);
                  }
                dbda = (*(a+j+tmm) * *(temp+i)/pivot) - *(temp+j);
                deriv = deriv + dvdb*dbda;
                vol = vol + junk;
               }
            for (j=i+1;j<mm;j++) 
               {
                k = j - 1;
                junk=cvolumebj(ap,bp,&mm1,&nm1,&mm1,&nm1,k,&dvdb);
                if(junk == -1.)
                  {
                   *code = -1;
                   return(0.);
                  }