Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! ||===\\ |
! || \\ |
! || || //==\\ || || //==|| ||/==\\ |
! || || || || || || || || || || |
! || // || || || || || || || |
! ||===// \\==// \\==\\ \\==\\ || |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! REFINE_SURFACE May 2008 |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
subroutine refine_surface (params,surface,threadinfo,nadd,is,istep,ref_count)
!------------------------------------------------------------------------------|
!(((((((((((((((( Purpose of the routine ))))))))))))))))))))))))))))))))))))))
!------------------------------------------------------------------------------|
! This routine builds an edge array between a set of particles on a surface.
! It uses the delaunay triangulation and then steps through the triangles
! to build the edge information.
! ed is the computed edge array
! nedge is the number of edges
! nedgepernode,nodenodenumber and nodenodenumber contain the list of edges
! that start from each node; for a given node i
! their number is nedgepernode(i), the edge number in the list of edges is
! nodeedgenumber(j,i) and the node at the end of the edge is
! nodenodenumber(j,i) for j=1,nedgepernode(i)
! this routine builds the boolean 'refine' array of length nedge (number of edges
! in the triangulation connecting the particles) that contains the list of
! edges to be refined.
! surface is the sheet/surface to be refined
! it will contain the new number of particles
! ed is the computed edge array
! refine is the integer array determining the edges to be refined
! nedge is the number of edges
! nadd is the number of edges to be changed/split
! nedgepernode, nodenodenumber,nodeedgenumber are arrays containing edge info
! nnmax is the maximum number of nn
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine arguments ))))))))))))))))))))
!------------------------------------------------------------------------------|
use threads
use definitions
implicit none
type (parameters) params
type (sheet) surface
type (thread) threadinfo
integer nadd,nrem
integer is,istep
integer ref_count
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine internal variables )))))))))))))
!------------------------------------------------------------------------------|
integer naddp,nremp
integer nnmax
type (edge), dimension(:), allocatable :: ed
type (edge), dimension(:), allocatable :: edswap
integer,dimension(:) ,allocatable :: nedgepernode
integer,dimension(:) ,allocatable :: refine_list,remove_list
integer,dimension(:,:),allocatable :: nodenodenumber,nodeedgenumber
logical,dimension(:),allocatable::refine,refinep,remove,removep
integer ie,j,jedge,kp,kpp,k,inode,inodep,inodepp,iadd,irem
integer ntriangle
integer nedge
integer nedgen,nsurfacen
double precision dist1,distmax,prod,distmin
double precision, external :: dist
integer err,ierr,iproc,nproc,i,iedge,i1,i2
integer nnodeint,nelemint,nedgeint,nelemmax,nnodemax,nedgemax
double precision,dimension(:,:),allocatable::memswap
integer,dimension(:,:),allocatable::iconswap
double precision xm,ym,zm,xyzn
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
INCLUDE 'mpif.h'
call mpi_comm_size (mpi_comm_world,nproc,ierr)
call mpi_comm_rank (mpi_comm_world,iproc,ierr)
shift=' '
!------------------------
! build edge information
!------------------------
nsurfacen=surface%nsurface
ntriangle=surface%nt
nedge=nsurfacen+ntriangle-1
nnmax=12 ! nnmax is maximum number of neighbours in triangulation (should be around 6 on average)
allocate (ed(nedge),stat=threadinfo%err); call heap (threadinfo,'ed','refine_surface',size(ed),'int',+1)
allocate (nedgepernode(nsurfacen),stat=threadinfo%err)
call heap (threadinfo,'nedgepernode','refine_surface',size(nedgepernode),'int',+1)
allocate (nodenodenumber(nnmax,nsurfacen),stat=threadinfo%err)
call heap (threadinfo,'nodenodenumber','refine_surface',size(nodenodenumber),'int',+1)
allocate (nodeedgenumber(nnmax,nsurfacen),stat=threadinfo%err)
call heap (threadinfo,'nodeedgenumber','refine_surface',size(nodeedgenumber),'int',+1)
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
ed%t1=0
ed%t2=0
nedgepernode=0
iedge=0
do ie=1,ntriangle
do k=1,3
inode=surface%icon(k,ie)
kp=mod(k,3)+1
kpp=mod(k+1,3)+1
inodep=surface%icon(kp,ie)
inodepp=surface%icon(kpp,ie)
do j=1,nedgepernode(inodep)
if (nodenodenumber(j,inodep).eq.inode) then
jedge=nodeedgenumber(j,inodep)
ed(jedge)%m2=inodepp
ed(jedge)%t2=ie
goto 111
endif
enddo
iedge=iedge+1
if (iedge.gt.nedge) call stop_run ('too many edges in delaunay2$')
nedgepernode(inode)=nedgepernode(inode)+1
if (nedgepernode(inode).gt.nnmax) then
if (iproc.eq.0) write (8,*) 'node',inode,'has',nedgepernode(inode),'neighbours'
call stop_run ('too many neighbours$')
endif
nodenodenumber(nedgepernode(inode),inode)=inodep
nodeedgenumber(nedgepernode(inode),inode)=iedge
ed(iedge)%n1=inode
ed(iedge)%n2=inodep
ed(iedge)%m1=inodepp
ed(iedge)%t1=ie
111 continue
enddo
enddo
if (iedge/=nedge) call stop_run ('pb_b in refine_surface$')
!------------------------------------
! find edges that need to be refined
!------------------------------------
!distmax=1.d0/2.d0**surface%levelt*sqrt(2.d0)*surface%stretch
distmax=1.d0/(2.d0**surface%levelt+1)*sqrt(2.d0)*surface%stretch !opla
distmin=1.d0/(2.d0**surface%levelt+4)*sqrt(2.d0)
allocate (refine(nedge),stat=err)
allocate (refinep(nedge),stat=err)
allocate (remove(nedge),stat=err)
allocate (removep(ndege),stat=err)
remove=.false.
removep=.false.
do iedge=1+iproc,nedge,nproc
i1=ed(iedge)%n1
i2=ed(iedge)%n2
dist1=dist(surface%x (i1),surface%x (i2),surface%y (i1),surface%y (i2),surface%z (i1),surface%z (i2), &
surface%xn(i1),surface%xn(i2),surface%yn(i1),surface%yn(i2),surface%zn(i1),surface%zn(i2), params%distance_exponent)
prod=surface%xn(i1)*surface%xn(i2)+surface%yn(i1)*surface%yn(i2)+surface%zn(i1)*surface%zn(i2)
!if (dist1.gt.distmax .or. prod.lt.prodmin) refinep(iedge)=1
refinep(iedge)=(dist1.gt.distmax)
removep(iedge)=(dist1.le.distmin)
enddo
call mpi_allreduce (refinep,refine,nedge,mpi_logical,mpi_lor,mpi_comm_world,ierr)
call mpi_allreduce (removep,remove,nedge,mpi_logical,mpi_lor,mpi_comm_world,ierr)
!-----------------------
! compute nadd and naddp
!-----------------------
nadd=count(refine)
nrem=count(remove)
allocate(remove_list(nrem))
irem=0
nremp=0
do iedge=1,nedge
if (refine(iedge)) then
iadd=iadd+1
if (ed(iedge)%t1.eq.0 .or. ed(iedge)%t2.eq.0) naddp=naddp+1
refine_list(iadd)=iedge
endif
if (remove(iedge)) then
irem=irem+1
if (ed(iedge)%t1.eq.0 .or. ed(iedge)%t2.eq.0) nremp=nremp+1
remove_list(irem)=iedge
endif
enddo
if (iadd/=nadd) call stop_run ('pb_b in refine_surface$')
if (irem/=nrem) call stop_run ('pb_b in refine_surface$')
deallocate (remove)
deallocate (removep)
if (iproc.eq.0 .and. params%debug>=1) write(*,'(a,i2,a,i4,a)') shift//'S.',is,':', nadd,' added ptcls in refine_surface'
!-----------------------------------
! resizing ed (allocate/deallocate)
!-----------------------------------
nedgen=(surface%nsurface+nadd)+(surface%nt+(nadd-naddp)*2+naddp)-1
! Not sure this is correct...
!nedgen=(surface%nsurface+(nadd-nrem))+(surface%nt+(((nadd-naddp)*2+naddp)-((nrem-nremp)*2+nremp))-1
allocate (edswap(nedgen),stat=err) ; if (err.ne.0) call stop_run ('Error alloc edswap in main$')
edswap(1:nedge)=ed(1:nedge)
deallocate (ed)
allocate (ed(nedgen),stat=err) ; if (err.ne.0) call stop_run ('Error alloc edswap in main$')
ed(1:nedge)=edswap(1:nedge)
deallocate (edswap)
!----------------------------------
! prepare memory for the refinment
!----------------------------------
nnodemax=surface%nsurface+nadd
nelemmax=surface%nt+(nadd-naddp)*2+naddp
!nnodemax=surface%nsurface+(nadd-nrem)
!nelemmax=surface%nt+((nadd-naddp)*2+naddp)-((nrem-nremp)*2+nremp)
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
nedgemax=nnodemax+nelemmax-1
if (nedgemax.ne.nedgen) call stop_run ('error in counting number of edges in refine_surface$')
allocate (memswap(surface%nsurface,8),stat=err) ; if (err.ne.0) call stop_run('Error alloc memswap in refine_surface$')
allocate (iconswap(3,surface%nt),stat=err) ; if (err.ne.0) call stop_run('Error alloc iconswap in refine_surface$')
memswap(:,1)=surface%x
memswap(:,2)=surface%y
memswap(:,3)=surface%z
memswap(:,4)=surface%xn
memswap(:,5)=surface%yn
memswap(:,6)=surface%zn
memswap(:,7)=surface%r
memswap(:,8)=surface%s
iconswap(1:3,1:surface%nt)=surface%icon(1:3,1:surface%nt)
deallocate (surface%x)
deallocate (surface%y)
deallocate (surface%z)
deallocate (surface%xn)
deallocate (surface%yn)
deallocate (surface%zn)
deallocate (surface%r)
deallocate (surface%s)
deallocate (surface%icon)
allocate (surface%x(nnodemax), stat=err) ; if (err.ne.0) call stop_run ('Error alloc x in refine_surface$')
allocate (surface%y(nnodemax), stat=err) ; if (err.ne.0) call stop_run ('Error alloc y in refine_surface$')
allocate (surface%z(nnodemax), stat=err) ; if (err.ne.0) call stop_run ('Error alloc z in refine_surface$')
allocate (surface%xn(nnodemax),stat=err) ; if (err.ne.0) call stop_run ('Error alloc xn in refine_surface$')
allocate (surface%yn(nnodemax),stat=err) ; if (err.ne.0) call stop_run ('Error alloc yn in refine_surface$')
allocate (surface%zn(nnodemax),stat=err) ; if (err.ne.0) call stop_run ('Error alloc zn in refine_surface$')
allocate (surface%r(nnodemax), stat=err) ; if (err.ne.0) call stop_run ('Error alloc r in refine_surface$')
allocate (surface%s(nnodemax), stat=err) ; if (err.ne.0) call stop_run ('Error alloc s in refine_surface$')
allocate (surface%icon(3,nelemmax),stat=err) ; if (err.ne.0) call stop_run ('Error alloc icon in refine_surface$')
surface%x(1:surface%nsurface)=memswap(:,1)
surface%y(1:surface%nsurface)=memswap(:,2)
surface%z(1:surface%nsurface)=memswap(:,3)
surface%xn(1:surface%nsurface)=memswap(:,4)
surface%yn(1:surface%nsurface)=memswap(:,5)
surface%zn(1:surface%nsurface)=memswap(:,6)
surface%r(1:surface%nsurface)=memswap(:,7)
surface%s(1:surface%nsurface)=memswap(:,8)
surface%icon(1:3,1:surface%nt)=iconswap(1:3,1:surface%nt)
deallocate (memswap)
deallocate (iconswap)
!---------------------
! updates the surface
!---------------------
nnodeint=surface%nsurface
nelemint=surface%nt
nedgeint=nedge
do i=1,nadd
iedge=refine_list(i)
i1=ed(iedge)%n1
i2=ed(iedge)%n2
call middle (xm,ym,zm,i1,i2,surface%x,surface%y,surface%z, &
surface%xn,surface%yn,surface%zn,nnodeint)
nnodeint=nnodeint+1
surface%x(nnodeint)=xm
surface%y(nnodeint)=ym
surface%z(nnodeint)=zm
surface%r(nnodeint)=(surface%r(i1)+surface%r(i2))/2.d0
surface%s(nnodeint)=(surface%s(i1)+surface%s(i2))/2.d0
xm=(surface%xn(i1)+surface%xn(i2))/2.d0
ym=(surface%yn(i1)+surface%yn(i2))/2.d0
zm=(surface%zn(i1)+surface%zn(i2))/2.d0
xyzn=sqrt(xm**2+ym**2+zm**2)
surface%xn(nnodeint)=xm/xyzn
surface%yn(nnodeint)=ym/xyzn
surface%zn(nnodeint)=zm/xyzn
call update_icon (surface%icon,nelemmax,ed,nedgemax,iedge,nnodeint,nelemint,nedgeint)
enddo
if (iproc.eq.0 .and. params%debug>=1) write(*,'(a,i2,a,i4,a)') shift//'S.',is,':', nrem,' removed ptcls in refine_surface'
do i=1,nrem
iedge=remove_list(i)
i1=ed(iedge)%n1
i2=ed(iedge)%n2
call remove_point(i1,surface,1,surface0)
end do
if (.not.params%normaladvect) then
call compute_normals (surface%nsurface,surface%x,surface%y,surface%z, &
surface%nt,surface%icon,surface%xn,surface%yn,surface%zn)
end if
if (nnodeint.ne.nnodemax) call stop_run ('Error counting nodes in refine_surface$')
if (nelemint.ne.nelemmax) call stop_run ('Error counting elements in refine_surface$')
surface%nsurface=nnodemax
surface%nt=nelemmax
nedge=nedgemax
deallocate(refine_list)
deallocate(remove_list)
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
call heap (threadinfo,'ed','refine_surface',size(ed),'int',-1) ; deallocate (ed)
call heap (threadinfo,'nedgepernode','refine_surface',size(nedgepernode),'int',-1) ; deallocate (nedgepernode)
call heap (threadinfo,'nodenodenumber','refine_surface',size(nodenodenumber),'int',-1) ; deallocate (nodenodenumber)
call heap (threadinfo,'nodeedgenumber','refine_surface',size(nodeedgenumber),'int',-1) ; deallocate (nodeedgenumber)
if (params%debug .ge.2) call output_surf(surface,is,'after_refine',istep,ref_count)
end subroutine
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
subroutine middle (xm,ym,zm,i1,i2,xx,yy,zz,xxn,yyn,zzn,nnode)
implicit none
double precision xx(nnode),yy(nnode),zz(nnode)
double precision xxn(nnode),yyn(nnode),zzn(nnode)
double precision xm,ym,zm,xnm,ynm,znm,alpha,dist12,prod,xyzn
integer i1,i2,nnode
xm=(xx(i2)+xx(i1))/2.d0
ym=(yy(i2)+yy(i1))/2.d0
zm=(zz(i2)+zz(i1))/2.d0
return
! what follows is an attempt at defining the middle of the segment
! outside of the euclidian line
!xnm=(xxn(i2)+xxn(i1))/2.d0
!ynm=(yyn(i2)+yyn(i1))/2.d0
!znm=(zzn(i2)+zzn(i1))/2.d0
!xyzn=sqrt(xnm**2+ynm**2+znm**2)
!xnm=xnm/xyzn
!ynm=ynm/xyzn
!znm=znm/xyzn
!dist12=sqrt((xx(i2)-xx(i1))**2+(yy(i2)-yy(i1))**2+(zz(i2)-zz(i1))**2)
!prod=xxn(i1)*xxn(i2)+yyn(i1)*yyn(i2)+zzn(i1)*zzn(i2)
!alpha=dist12*(1./prod**2-1.)/4.d0
!xm=xm+xnm*alpha
!ym=ym+ynm*alpha
!zm=zm+ynm*alpha
end subroutine
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
subroutine update_icon (icon,nelemmax,ed,nedgemax,iedge,nnodeint,nelemint,nedgeint)
use definitions
implicit none
integer icon(3,nelemmax),nelemmax,nedge,iedge,nnodeint,nelemint
integer jedge,nedgemax,nedgeint
type(edge) ed(nedgemax)
integer k,k12,k21
integer n1,n2,m1,m2,t1,t2,t1n,t2n
nedge=nedgeint
n1=ed(iedge)%n1
n2=ed(iedge)%n2
m1=ed(iedge)%m1
m2=ed(iedge)%m2
t1=ed(iedge)%t1
t2=ed(iedge)%t2
if (t1.ne.0) then
do k=1,3
if (icon(k,t1).eq.n1) k12=k
enddo
icon(k12,t1)=nnodeint
nelemint=nelemint+1
t1n=nelemint
icon(1,nelemint)=m1
icon(2,nelemint)=n1
icon(3,nelemint)=nnodeint
endif
if (t2.ne.0) then
do k=1,3
if (icon(k,t2).eq.n2) k21=k
enddo
icon(k21,t2)=nnodeint
nelemint=nelemint+1
t2n=nelemint
icon(1,nelemint)=m2
icon(2,nelemint)=n2
icon(3,nelemint)=nnodeint
endif
ed(iedge)%n2=nnodeint
if (t1.ne.0) then
ed(iedge)%t1=t1n
else
ed(iedge)%t1=0
endif
if (t1.ne.0) then
nedgeint=nedgeint+1
ed(nedgeint)%n1=m1
ed(nedgeint)%n2=nnodeint
ed(nedgeint)%m1=n2
ed(nedgeint)%m2=n1
ed(nedgeint)%t1=t1
ed(nedgeint)%t2=t1n
endif
nedgeint=nedgeint+1
ed(nedgeint)%n1=n2
ed(nedgeint)%n2=nnodeint
if (t1.ne.0) then
ed(nedgeint)%m2=m1
ed(nedgeint)%t2=t1
else
ed(nedgeint)%t2=0
endif
if (t2.ne.0) then
ed(nedgeint)%m1=m2
ed(nedgeint)%t1=t2n
else
ed(nedgeint)%t1=0
endif
if (t2.ne.0) then
nedgeint=nedgeint+1
ed(nedgeint)%n1=m2
ed(nedgeint)%n2=nnodeint
ed(nedgeint)%m1=n1
ed(nedgeint)%m2=n2
ed(nedgeint)%t1=t2
ed(nedgeint)%t2=t2n
endif
do jedge=1,nedge
if (t1.ne.0) then
if (ed(jedge)%t1.eq.t1) then
if (ed(jedge)%n1.eq.m1) then
ed(jedge)%m1=nnodeint
ed(jedge)%t1=t1n
endif
if (ed(jedge)%n1.eq.n2) ed(jedge)%m1=nnodeint
endif
if (ed(jedge)%t2.eq.t1) then
if (ed(jedge)%n1.eq.n1) then
ed(jedge)%m2=nnodeint
ed(jedge)%t2=t1n
endif
if (ed(jedge)%n1.eq.m1) ed(jedge)%m2=nnodeint
endif
endif
if (t2.ne.0) then
if (ed(jedge)%t1.eq.t2) then
if (ed(jedge)%n1.eq.m2) then
ed(jedge)%m1=nnodeint
ed(jedge)%t1=t2n
endif
if (ed(jedge)%n1.eq.n1) ed(jedge)%m1=nnodeint
endif
if (ed(jedge)%t2.eq.t2) then
if (ed(jedge)%n1.eq.n2) then
ed(jedge)%m2=nnodeint
ed(jedge)%t2=t2n
endif
if (ed(jedge)%n1.eq.m2) ed(jedge)%m2=nnodeint
endif
endif
enddo
return
end
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|