Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! ||===\\ |
! || \\ |
! || || //==\\ || || //==|| ||/==\\ |
! || || || || || || || || || || |
! || // || || || || || || || |
! ||===// \\==// \\==\\ \\==\\ || |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! DEFINE_BC_SEGMENTED_S_LINE Feb. 2009 |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
subroutine define_bc_rot_subduction(params,osolve,vo,bcdef,nest)
!------------------------------------------------------------------------------|
!(((((((((((((((( Purpose of the routine )))))))))))))))))))))))))))))))))))))
!------------------------------------------------------------------------------|
! This routine assigns the velocity boundary conditions for the rotational |
! subduction geometry |
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine arguments ))))))))))))))))))))
!------------------------------------------------------------------------------|
use definitions
!use mpi
implicit none
include 'mpif.h'
type (parameters) params
type (octreesolve) osolve
type (void) vo
type (bc_definition) bcdef
type (nest_info) nest
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine internal variables )))))))))))))
!------------------------------------------------------------------------------|
integer i,iproc,nproc,ierr,tempcase,strictflow
double precision :: eps,pi,y0,h,rx,wy,vin,vtop,vback,nelemx,nelemz,dxy,dz
double precision :: rmain,zmain,omega,theta,phi,distmain,distrot,distz0plane
double precision :: distzonerad,distzoney,distzone,distedge
double precision :: xedge,xminedge,xmaxedge,yfix_xedge, yedge,yminedge,ymaxedge
double precision :: zedge,zminedge,zmaxedge, ustart,ustart2,uend,uend2
double precision :: wstart,wstart2,wend, temp2,tempstart,tempstart2,tempend
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
call mpi_comm_size (mpi_comm_world,nproc,ierr)
call mpi_comm_rank (mpi_comm_world,iproc,ierr)
!basic constants
eps=1.d-10
pi=atan(1.d0)*4.d0
!set fixed to 0 everywhere
osolve%kfix=0
osolve%kfixt=0
!parameters from input file
y0=bcdef%bc_parameters(1)
h=bcdef%bc_parameters(2)
rx=bcdef%bc_parameters(3)
wy=bcdef%bc_parameters(4)
vin=bcdef%bc_parameters(5)
vtop=bcdef%bc_parameters(6)
vback=-bcdef%bc_parameters(7) !change in orientation
nelemx=bcdef%bc_parameters(8)
nelemz=bcdef%bc_parameters(9)
tempcase=idint(bcdef%bc_parameters(10))
temp2=bcdef%bc_parameters(11)/params%tempscale
strictflow=idint(bcdef%bc_parameters(12))
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
dxy=nelemx/2.d0**(params%levelmax_oct+1.d0) !0.5*transition width in xy
dz=nelemz*params%vex/2.d0**(params%levelmax_oct+1.d0) !0.5*transition width in z
!Derived parameters from input values
rmain=(h**2+rx**2)/(2.d0*h)
zmain=h-rmain
omega=vin/rmain
!rotating element is sphere or cylinder
!case cylinder
if(wy<0) then
wy=-wy
!setting boundary conditions
do i=1,osolve%nnode
!distance from cylinder axis
distmain=sqrt(osolve%x(i)**2+(osolve%z(i)*params%vex-zmain)**2)
!y=0 face free slip
if (osolve%y(i)<eps) then
!no flux through face
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0
if ((y0-0.5d0*wy) < eps) then
!rotating cylinder cuts y=0 face
if (distmain <= rmain) then
!angle of rotation
theta=asin(osolve%x(i)/distmain)
!set x velocity
osolve%kfix((i-1)*3+1)=1
osolve%u(i)=distmain*omega*cos(theta)
!set z velocity
osolve%kfix((i-1)*3+3)=1
osolve%w(i)=-osolve%x(i)*omega
end if
end if
end if
!y=1 face free slip
if (osolve%y(i)>(1.d0-eps)) then
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0
if ((y0+0.5d0*wy) > (1.d0-eps)) then
!rotating cylinder cuts y=1 face
if (distmain <= rmain) then
!angle of rotation
theta=asin(osolve%x(i)/distmain)
!set x velocity
osolve%kfix((i-1)*3+1)=1
osolve%u(i)=distmain*omega*cos(theta)
!set z velocity
osolve%kfix((i-1)*3+3)=1
osolve%w(i)=-osolve%x(i)*omega
end if
end if
end if
!x=0 face
if (osolve%x(i)<eps) then
!set y and z velocity
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0 !y-direction
osolve%kfix((i-1)*3+3)=1 ; osolve%w(i)=0.d0 !z-direction
!transition zone in y-direction >1 for outside, <0 for inside
distzone=(abs(osolve%y(i)-y0)-0.5d0*wy+dxy)/(2.d0*dxy)
if (distzone > 1.d0) then
!outside rotating cylinder y-wise
osolve%kfix((i-1)*3+1)=1
osolve%u(i)=vback !x-direction
elseif (distzone < 0.d0) then
!inside rotating cylinder y-wise
if (osolve%z(i)*params%vex>(h+dz)) then
!above rotating cylinder z-wise
osolve%kfix((i-1)*3+1)=1 ; osolve%u(i)=vtop
elseif (osolve%z(i)*params%vex<(h-dz)) then
!within rotating cylinder z-wise
osolve%kfix((i-1)*3+1)=1
osolve%u(i)=omega*(osolve%z(i)*params%vex-zmain)
else
!transition zone z-wise
distzone=(osolve%z(i)*params%vex-(h-dz))/(2.d0*dz)
ustart=omega*(h-dz-zmain)
uend=vtop
osolve%kfix((i-1)*3+1)=1
osolve%u(i)=ustart+distzone*(uend-ustart)
end if
else
!transition zone y-wise at both sides (symmetry)
if (osolve%z(i)*params%vex>(h+dz)) then
!above rotating cylinder z-wise
osolve%kfix((i-1)*3+1)=1
ustart=vtop
uend=vback
osolve%u(i)=ustart+distzone*(uend-ustart)
elseif (osolve%z(i)*params%vex<(h-dz)) then
!within rotating cylinder z-wise
ustart=omega*(osolve%z(i)*params%vex-zmain)
uend=vback
osolve%kfix((i-1)*3+1)=1
osolve%u(i)=ustart+distzone*(uend-ustart)
else
!transition at corner
!start velocity scales according to z-transition zone
ustart2=omega*(h-dz-zmain)
ustart=ustart2+(osolve%z(i)*params%vex-(h-dz))/(2.d0*dz)*(vtop-ustart2)
!y transition to vback
uend=vback
osolve%kfix((i-1)*3+1)=1
osolve%u(i)=ustart+distzone*(uend-ustart)
end if
end if
end if
!z=0 face
if (osolve%z(i)*params%vex<eps) then
!set velocity
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0 !y-direction
!transition zone in y-direction >1 for outside, <0 for inside
distzone=(abs(osolve%y(i)-y0)-0.5d0*wy+dxy)/(2.d0*dxy)
if (distzone > 1.d0) then
!outside rotating cylinder y-wise
osolve%kfix((i-1)*3+1)=1 ; osolve%u(i)=vback !x-direction
osolve%kfix((i-1)*3+3)=1 ; osolve%w(i)=0.d0 !z-direction
select case(tempcase)
case (0,2,3,4)
osolve%kfixt(i)=1
osolve%temp(i)=1.d0
case (1)
osolve%kfixt(i)=1
osolve%temp(i)=osolve%x(i)*(1.0d0-temp2)+temp2
case default
osolve%kfixt(i)=1
osolve%temp(i)=1.d0
end select
elseif (distzone < 0.d0) then
!inside rotating cylinder y-wise
if (osolve%x(i)>(rx+dxy)) then
!outside rotating cylinder x-wise
osolve%kfix((i-1)*3+1)=1 ; osolve%u(i)=vback
osolve%kfix((i-1)*3+3)=1 ; osolve%w(i)=0.d0
select case(tempcase)
case (0,2,3,4)
osolve%kfixt(i)=1
osolve%temp(i)=1.d0
case (1)
osolve%kfixt(i)=1
osolve%temp(i)=osolve%x(i)*(1.0d0-temp2)+temp2
case default
osolve%kfixt(i)=1
osolve%temp(i)=1.d0
end select
elseif (osolve%x(i)<(rx-dxy)) then
!within rotating cylinder x-wise
distmain=sqrt(osolve%x(i)**2+zmain**2)
theta=asin(osolve%x(i)/distmain)
!set x velocity
osolve%kfix((i-1)*3+1)=1
osolve%u(i)=distmain*omega*cos(theta)
!set z velocity
osolve%kfix((i-1)*3+3)=1
osolve%w(i)=-osolve%x(i)*omega
select case(tempcase)
case (0)
osolve%kfixt(i)=1
osolve%temp(i)=1.d0
case (1)
osolve%kfixt(i)=1
osolve%temp(i)=osolve%x(i)*(1.0d0-temp2)+temp2
case (2)
osolve%kfixt(i)=1
osolve%temp(i)=temp2
case (3,4)
osolve%kfixt(i)=1
osolve%temp(i)=osolve%x(i)/rx*(temp2-1.0d0)+1.0d0
case default
osolve%kfixt(i)=1
osolve%temp(i)=1.d0
end select
else
!transition zone x-wise
!redefine transition zone in x-direction
distzone=(osolve%x(i)-(rx-dxy))/(2.d0*dxy)
!values for start of transition zone
distmain=sqrt((rx-dxy)**2+zmain**2)
theta=asin((rx-dxy)/distmain)
ustart=distmain*omega*cos(theta)
uend=vback
wstart=-(rx-dxy)*omega
wend=0.d0
!set velocities
osolve%kfix((i-1)*3+1)=1
osolve%u(i)=ustart+distzone*(uend-ustart)
osolve%kfix((i-1)*3+3)=1
osolve%w(i)=wstart+distzone*(wend-wstart)
!calculating temperature
select case(tempcase)
case (0)
osolve%kfixt(i)=1
osolve%temp(i)=1.d0
case (1)
osolve%kfixt(i)=1
osolve%temp(i)=osolve%x(i)*(1.0d0-temp2)+temp2
case (2)
osolve%kfixt(i)=1
osolve%temp(i)=distzone*(1.0d0-temp2)+temp2
case (3,4)
tempstart=(rx-dxy)/rx*(temp2-1.0d0)+1.0d0
tempend=1.0d0
osolve%kfixt(i)=1
osolve%temp(i)=tempstart+distzone*(tempend-tempstart)
case default
osolve%kfixt(i)=1
osolve%temp(i)=1.d0
end select
end if
else
!transition zone y-wise at both sides (symmetry)
if (osolve%x(i)>(rx+dxy)) then
!outside rotating cylinder x-wise
osolve%kfix((i-1)*3+1)=1 ; osolve%u(i)=vback !x-direction
osolve%kfix((i-1)*3+3)=1 ; osolve%w(i)=0.d0 !z-direction
select case(tempcase)
case (0,2,3,4)
osolve%kfixt(i)=1
osolve%temp(i)=1.d0
case (1)
osolve%kfixt(i)=1
osolve%temp(i)=osolve%x(i)*(1.0d0-temp2)+temp2
case default
osolve%kfixt(i)=1
osolve%temp(i)=1.d0
end select
elseif (osolve%x(i)<(rx-dxy)) then
!inside rotating cylinder x-wise
!values for start of transition zone
distmain=sqrt(osolve%x(i)**2+zmain**2)
theta=asin(osolve%x(i)/distmain)
ustart=distmain*omega*cos(theta)
uend=vback
wstart=-osolve%x(i)*omega
wend=0.d0
!set velocities
osolve%kfix((i-1)*3+1)=1
osolve%u(i)=ustart+distzone*(uend-ustart)
osolve%kfix((i-1)*3+3)=1
osolve%w(i)=wstart+distzone*(wend-wstart)
select case(tempcase)
case (0)
osolve%kfixt(i)=1
osolve%temp(i)=1.d0
case (1)
osolve%kfixt(i)=1
osolve%temp(i)=osolve%x(i)*(1.0d0-temp2)+temp2
case (2)
osolve%kfixt(i)=1
osolve%temp(i)=distzone*(1.0d0-temp2)+temp2
case (3,4)
tempstart=osolve%x(i)/rx*(temp2-1.0d0)+1.0d0
tempend=1.0d0
osolve%kfixt(i)=1
osolve%temp(i)=tempstart+distzone*(tempend-tempstart)
case default
osolve%kfixt(i)=1
osolve%temp(i)=1.d0
end select
else
!transition at corner
distmain=sqrt((rx-dxy)**2+zmain**2)
theta=asin((rx-dxy)/distmain)
!start velocities scale according to x-transition zone
ustart2=distmain*omega*cos(theta)
wstart2=-(rx-dxy)*omega
ustart=ustart2+(osolve%x(i)-(rx-dxy))/(2.d0*dxy)*(vback-ustart2)
wstart=wstart2+(osolve%x(i)-(rx-dxy))/(2.d0*dxy)*(-wstart2)
!y transition to (vback,0,0)
uend=vback
wend=0.d0
osolve%kfix((i-1)*3+1)=1
osolve%u(i)=ustart+distzone*(uend-ustart)
osolve%kfix((i-1)*3+3)=1
osolve%w(i)=wstart+distzone*(wend-wstart)
select case(tempcase)
case (0)
osolve%kfixt(i)=1
osolve%temp(i)=1.d0
case (1)
osolve%kfixt(i)=1
osolve%temp(i)=osolve%x(i)*(1.0d0-temp2)+temp2
case (2)
osolve%kfixt(i)=1
tempstart=temp2+(osolve%x(i)-(rx-dxy))/(2*dxy)*(1.0d0-temp2)
tempend=1.0d0
osolve%temp(i)=tempstart+distzone*(tempend-tempstart)
case (3,4)
tempstart2=(rx-dxy)/rx*(temp2-1.0d0)+1.0d0
tempstart=tempstart2+(osolve%x(i)-(rx-dxy))/(2*dxy)*(1.0d0-tempstart2)
tempend=1.0d0
osolve%kfixt(i)=1
osolve%temp(i)=tempstart+distzone*(tempend-tempstart)
case default
osolve%kfixt(i)=1
osolve%temp(i)=1.d0
end select
end if
end if
end if
!x=1 face with influx vback
if (osolve%x(i)>1.d0-eps) then
osolve%kfix((i-1)*3+1)=1 ; osolve%u(i)=vback
!osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0
!osolve%kfix((i-1)*3+3)=1 ; osolve%w(i)=0.d0
end if
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
if (osolve%z(i)>1.d0-eps) then
osolve%kfix((i-1)*3+1)=1 ; osolve%u(i)=0.d0 !x-direction
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0 !y-direction
osolve%kfix((i-1)*3+3)=1 ; osolve%w(i)=0.d0 !z-direction
osolve%kfixt(i)=1
osolve%temp(i)=0.d0
end if
if (.not.vo%influid(i)) then
osolve%kfixt(i)=1
osolve%temp(i)=0.d0
endif
end do
!case sphere
else
do i=1,osolve%nnode
!distance from center of sphere
distmain=sqrt(osolve%x(i)**2+((osolve%y(i)-y0)*rx/(0.5d0*wy))**2 + &
(osolve%z(i)*params%vex-zmain)**2)
!distance from axis of rotation
distrot=sqrt(osolve%x(i)**2+(osolve%z(i)*params%vex-zmain)**2)
!y=0 face free slip
if (osolve%y(i)<eps) then
!no flux through face
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0
!strictflow: flow fixed to (vback, 0 0)
if (strictflow == 1) then
osolve%kfix((i-1)*3+1)=1 ; osolve%u(i)=vback
osolve%kfix((i-1)*3+3)=1 ; osolve%w(i)=0.d0
end if
!rotating sphere cuts y=0 face
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
if (y0-0.5d0*wy < 0.d0) then
!calculate geometry for face
distedge = sqrt(max(0.0d0, rmain**2 - ((-y0)*rx/(0.5d0*wy))**2))
if (strictflow == 1) then
distzonerad = max(0.d0,min(1.d0,(distrot-distedge+dz)/(2*dz)))
else
if (distrot > distedge) then
distzonerad = 1.d0
else
distzonerad = 0.d0
end if
end if
!Setting velocities for inside and tranistion
!angle of rotation
theta=asin(osolve%x(i)/distrot)
!inside rotating cylinder
if (distzonerad < eps) then
!set x velocity
osolve%kfix((i-1)*3+1)=1
osolve%u(i)=distrot*omega*cos(theta)
!set z velocity
osolve%kfix((i-1)*3+3)=1
osolve%w(i)=-osolve%x(i)*omega
!in transition zone, only occurs for strictflow = 1
else if (distzonerad < 1.d0) then
xminedge = osolve%x(i)*(distedge-dz)/distrot
!set x velocity
ustart=(distedge-dz)*omega*cos(theta)
uend=vback
osolve%u(i)=ustart+distzonerad*(uend-ustart)
!set z velocity
wstart=-xminedge*omega
wend=0.d0
osolve%w(i)=wstart+distzonerad*(wend-wstart)
end if
end if
end if
!y=1 face free slip
if (osolve%y(i)>(1.d0-eps)) then
!no flux through face
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0
!strictflow: flow fixed to (vback, 0 0)
if (strictflow == 1) then
osolve%kfix((i-1)*3+1)=1 ; osolve%u(i)=vback
osolve%kfix((i-1)*3+3)=1 ; osolve%w(i)=0.d0
end if
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
!rotating sphere cuts y=1 face
if (y0+0.5d0*wy > 1.d0) then
!calculate geometry for face
distedge = sqrt(max(0.0d0, rmain**2 - ((1.d0-y0)*rx/(0.5d0*wy))**2))
if (strictflow == 1) then
distzonerad = max(0.d0,min(1.d0,(distrot-distedge+dz)/(2*dz)))
else
if (distrot > distedge) then
distzonerad = 1.d0
else
distzonerad = 0.d0
end if
end if
!Setting velocities for inside and transition
!angle of rotation
theta=asin(osolve%x(i)/distrot)
!inside rotating cylinder
if (distzonerad < eps) then
!set x velocity
osolve%kfix((i-1)*3+1)=1
osolve%u(i)=distrot*omega*cos(theta)
!set z velocity
osolve%kfix((i-1)*3+3)=1
osolve%w(i)=-osolve%x(i)*omega
!in transition zone, only occurs for strictflow = 1
else if (distzonerad < 1.d0) then
xminedge = osolve%x(i)*(distedge-dz)/distrot
!set x velocity
ustart=(distedge-dz)*omega*cos(theta)
uend=vback
osolve%u(i)=ustart+distzonerad*(uend-ustart)
!set z velocity
wstart=-xminedge*omega
wend=0.d0
osolve%w(i)=wstart+distzonerad*(wend-wstart)
end if
end if
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
end if
!x=0 face
if (osolve%x(i)<eps) then
!set y and z velocity
osolve%kfix((i-1)*3+1)=1 !x-direction fixed
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0 !y-direction
osolve%kfix((i-1)*3+3)=1 ; osolve%w(i)=0.d0 !z-direction
!outline of indenter
zedge = max(0.d0, zmain+sqrt(max(0.d0,rmain**2-((osolve%y(i)-y0)*rx/(0.5d0*wy))**2)))
zminedge = max(0.d0,zedge-dz)
zmaxedge = max(0.d0,zedge+dz)
!position relative to radial and y transition zones
! (0 inside, 1 outside, linear transition in zone)
distzonerad = max(0.d0,min(1.d0,(osolve%z(i)*params%vex-zminedge)/(zmaxedge-zminedge+eps)))
distzoney=min(1.d0,max(0.d0,(abs(osolve%y(i)-y0)-0.5d0*wy+dxy)/(2.d0*dxy)))
!outside rotating sphere radially
if (distzonerad > 1.d0-eps) then
ustart = vtop
uend = vback
osolve%u(i)=ustart+distzoney*(uend-ustart)
!within rotating sphere radially
elseif (distzonerad < eps) then
osolve%u(i)=omega*(osolve%z(i)*params%vex-zmain)
!inside transition zone radially
else
!uend depends on upper gradient (see distzonerad > 1)
ustart2=vtop
uend2=vback
uend=ustart2+distzoney*(uend2-ustart2)
!ustart is gradient from urot to uback
ustart2 = omega*(osolve%z(i)*params%vex-zmain)
uend2=vback
ustart=ustart2+distzoney*(uend2-ustart2)
osolve%u(i)=ustart+distzonerad*(uend-ustart)
end if
end if
!z=0 face
if (osolve%z(i)*params%vex < eps) then
!fix all velocities and temp, set v to 0
osolve%kfix((i-1)*3+1)=1
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0 !y-direction
osolve%kfix((i-1)*3+3)=1
osolve%kfixt(i)=1
!calculating radial transition zone: radial belt of width 2dxy at indenter edge,
!circle origin is (x0, y0, 0)
!finding intersections with indenter edge radial direction
distz0plane = sqrt(osolve%x(i)**2+((osolve%y(i)-y0)*rx/(0.5d0*wy))**2)
if (distz0plane < eps) then
xedge = rx
yedge = y0
else
xedge = osolve%x(i)*rx/distz0plane
yedge = y0+(osolve%y(i)-y0)*rx/distz0plane
end if
!finding intersection with indenter edge for given x in y direction
yfix_xedge=sqrt(max(0.d0,rmain**2-((osolve%y(i)-y0)*rx/(0.5d0*wy))**2-zmain**2))
!start of transition zone radially
xminedge = xedge-dxy*xedge/sqrt(xedge**2+(yedge-y0)**2)
yminedge = yedge-dxy*(yedge-y0)/sqrt(xedge**2+(yedge-y0)**2)
!transition zone in radial >1 for outside, <0 for inside
distzonerad=(sqrt((osolve%y(i)-y0)**2+osolve%x(i)**2) - &
sqrt((yminedge-y0)**2+(xminedge)**2))/(2.d0*dxy)
!outside rotating sphere radially
if (distzonerad > 1.d0) then
!velocity
osolve%u(i) = vback
osolve%w(i) = 0.d0
!temperature
select case(tempcase)
case (1)
osolve%temp(i) = temp2+osolve%x(i)*(1.0d0-temp2)
osolve%temp(i)=1.d0
case default
osolve%temp(i)=1.d0
end select
!within rotating sphere radially
elseif (distzonerad < 0.d0) then
distrot = sqrt(osolve%x(i)**2+zmain**2)
theta = asin(osolve%x(i)/distrot)
!set x velocity
osolve%u(i) = distrot*omega*cos(theta)
!set z velocity
osolve%w(i) = -osolve%x(i)*omega
select case(tempcase)
case (1)
osolve%temp(i) = temp2+osolve%x(i)*(1.0d0-temp2)
case (2)
osolve%temp(i) = temp2
case (3)
osolve%temp(i) = 1.d0+osolve%x(i)/rx*(temp2-1.0d0)
case (4)
osolve%temp(i) = 1.d0+osolve%x(i)/yfix_xedge*(temp2-1.0d0)
case (5)
osolve%temp(i) = 1.d0+distz0plane/rx*(temp2-1.0d0)
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
case default
osolve%temp(i)=1.d0
end select
!transition zone radially
else
!start value at inner edge of transition zone
distrot = sqrt(xminedge**2+zmain**2)
theta = asin(xminedge/distrot)
ustart = distrot*omega*cos(theta)
uend = vback
wstart = -xminedge*omega
wend = 0.d0
!setting velocities
osolve%u(i)=ustart+distzonerad*(uend-ustart)
osolve%w(i)=wstart+distzonerad*(wend-wstart)
!setting temperature
select case(tempcase)
case (1)
osolve%temp(i) = temp2+osolve%x(i)*(1.0d0-temp2)
case (2)
tempstart = temp2
tempend = 1.d0
osolve%temp(i)=tempstart+distzonerad*(tempend-tempstart)
case (3)
tempstart = 1.d0+xminedge/rx*(temp2-1.0d0)
tempend = 1.d0
osolve%temp(i)=tempstart+distzonerad*(tempend-tempstart)
case (4)
yfix_xedge = sqrt(max(0.d0,rmain**2-((yminedge-y0)*rx/(0.5d0*wy))**2-zmain**2))
tempstart = 1.d0+xminedge/yfix_xedge*(temp2-1.0d0)
tempend = 1.d0
osolve%temp(i)=tempstart+distzonerad*(tempend-tempstart)
case (5)
distz0plane = sqrt(xedge**2+((yedge-y0)*rx/(0.5d0*wy))**2)
tempstart = 1.d0+distz0plane/rx*(temp2-1.0d0)
tempend = 1.d0
osolve%temp(i)=tempstart+distzonerad*(tempend-tempstart)
case default
osolve%temp(i)=1.d0
end select
end if
end if
!x=1 face with influx vback
if (osolve%x(i)>1.d0-eps) then
osolve%kfix((i-1)*3+1)=1 ; osolve%u(i)=vback
if (strictflow == 1) then
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0
osolve%kfix((i-1)*3+3)=1 ; osolve%w(i)=0.d0
end if
end if
!z=1 face
if (osolve%z(i) > 1.d0-eps) then
osolve%kfix((i-1)*3+1)=1 ; osolve%u(i)=0.d0 !x-direction
osolve%kfix((i-1)*3+2)=1 ; osolve%v(i)=0.d0 !y-direction
osolve%kfix((i-1)*3+3)=1 ; osolve%w(i)=0.d0 !z-direction
osolve%kfixt(i)=1 ; osolve%temp(i)=0.d0
end if
if (.not.vo%influid(i)) then
osolve%kfixt(i)=1
osolve%temp(i)=0.d0
endif
end do
end if
end
!------------------------------------------------------------------------------|