Newer
Older
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! ||===\\ |
! || \\ |
! || || //==\\ || || //==|| ||/==\\ |
! || || || || || || || || || || |
! || // || || || || || || || |
! ||===// \\==// \\==\\ \\==\\ || |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! CREATE_SURF May. 2008 |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
subroutine create_surf(surface,is,debug)
!------------------------------------------------------------------------------|
!(((((((((((((((( Purpose of the routine ))))))))))))))))))))))))))))))))))))))
!------------------------------------------------------------------------------|
! for a given surfaces passed as argument, this routine computes
! the 8 fields x,y,z,xn,yn,zn,r,s for each point of the surface
! according to its type and levelt, and the triangulation
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine arguments ))))))))))))))))))))
!------------------------------------------------------------------------------|
use constants
!use mpi
use randomodule
implicit none
include 'mpif.h'
type (sheet) :: surface
integer is
integer debug
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine internal variables )))))))))))))
!------------------------------------------------------------------------------|
integer :: levelt,surface_type,nproc,iproc,ierr,i,j,seed,indix
integer :: err,ntmax,nhmax,npmax,nmax,nmode,nvmax,nnpnmax,nh,nohalt_hull,loc
integer,dimension(:), allocatable :: hulltriangles,vis_tlist,vis_elist
integer,dimension(:), allocatable :: add_tlist
integer,dimension(:,:),allocatable :: vertices,neighbour
logical*1,dimension(:),allocatable :: lt_work,ln_work
double precision :: sp01,sp02,sp03,sp04,sp05,sp06,sp07,sp08,sp09,sp10,sp11,sp12
double precision :: sp13,sp14,sp15
double precision :: delta,eps,epsil,delta_angle,delta_radius,angle
double precision :: xx,yy,xini,xend,yini,yend,dx,dy,dist
double precision,dimension(:), allocatable :: field
double precision,dimension(:,:),allocatable :: points,centres
logical clockwise
character ch
character*72 :: shift
integer nnn(1),nnlist(1),ntrilist(1)
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
call mpi_comm_size (mpi_comm_world,nproc,ierr)
call mpi_comm_rank (mpi_comm_world,iproc,ierr)
shift=' '
if (surface%surface_type.lt.0) then
!---------------------------------
! reading surface from ascii file
!---------------------------------
if (iproc.eq.0) then
write (ch,'(i1)') -surface%surface_type
write(*,*) shift//'surface-'//ch//'.txt'
open(71,file='surface-'//ch//'.txt',status='old')
read(71,*) surface%nsurface,surface%nt
write(*,*) shift//'-> nb of points :',surface%nsurface
write(*,*) shift//'-> nb of triangles:',surface%nt
end if
call mpi_bcast (surface%nsurface,1,mpi_integer,0,mpi_comm_world,ierr)
call mpi_bcast (surface%nt,1,mpi_integer,0,mpi_comm_world,ierr)
deallocate (surface%x,surface%y,surface%z)
deallocate (surface%xn,surface%yn,surface%zn)
deallocate (surface%r,surface%s)
deallocate (surface%icon)
allocate (surface%x(surface%nsurface),surface%y(surface%nsurface),surface%z(surface%nsurface))
allocate (surface%xn(surface%nsurface),surface%yn(surface%nsurface),surface%zn(surface%nsurface))
allocate (surface%r(surface%nsurface),surface%s(surface%nsurface))
allocate (surface%icon(3,surface%nt))
if (iproc.eq.0) then
write(*,*) surface%nsurface,surface%nt
do i=1,surface%nsurface
read (71,*) surface%x(i),surface%y(i),surface%z(i),surface%xn(i),surface%yn(i),surface%zn(i)
surface%r(i)=surface%x(i)
surface%s(i)=surface%y(i)
if (surface%x(i)<0 .or. surface%x(i)>1 .or. surface%y(i)<0 .or. surface%y(i)>1 .or. surface%z(i)<0 .or. surface%z(i)>1 &
.and. iproc.eq.0) &
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
print *,surface%x(i),surface%y(i),surface%z(i)
enddo
do i=1,surface%nt
read (71,*) (surface%icon(j,i),j=1,3)
enddo
close (71)
endif
call mpi_bcast(surface%x,surface%nsurface,mpi_double_precision,0,mpi_comm_world,ierr)
call mpi_bcast(surface%y,surface%nsurface,mpi_double_precision,0,mpi_comm_world,ierr)
call mpi_bcast(surface%z,surface%nsurface,mpi_double_precision,0,mpi_comm_world,ierr)
call mpi_bcast(surface%xn,surface%nsurface,mpi_double_precision,0,mpi_comm_world,ierr)
call mpi_bcast(surface%yn,surface%nsurface,mpi_double_precision,0,mpi_comm_world,ierr)
call mpi_bcast(surface%zn,surface%nsurface,mpi_double_precision,0,mpi_comm_world,ierr)
call mpi_bcast(surface%r,surface%nsurface,mpi_double_precision,0,mpi_comm_world,ierr)
call mpi_bcast(surface%s,surface%nsurface,mpi_double_precision,0,mpi_comm_world,ierr)
call mpi_bcast(surface%icon,surface%nt*3,mpi_integer,0,mpi_comm_world,ierr)
else
!----------------
! create surface
!----------------
seed=1234567
sp01=surface%sp01
sp02=surface%sp02
sp03=surface%sp03
sp04=surface%sp04
sp05=surface%sp05
sp06=surface%sp06
sp07=surface%sp07
sp08=surface%sp08
sp09=surface%sp09
sp10=surface%sp10
sp11=surface%sp11
sp12=surface%sp12
sp13=surface%sp13
sp14=surface%sp14
sp15=surface%sp15
surface_type=surface%surface_type
levelt=surface%levelt
! delta=2.d0**(-levelt) ! spacing between points on hull
delta=1.d0 / (2.d0**levelt +1) ! opla
epsil=(surface%stretch-1)/2.d0
if (iproc.eq.0) write(8,*) 'create_surfaces: delta=',delta
if (iproc.eq.0) write(8,*) 'create_surfaces: epsilon=',epsil
!-----building the surface-------------
! type 1 : flat surface
! type 2 : rectangular emboss
! type 3 : convex spherical emboss
! type 4 : concave spherical emboss
! type 5 : double rectangular emboss
! type 6 : sinus
! type 7 : noisy surface
! type 8 : double sinus
! type 9 : cosinus sinus
! type 10 : slope
! type 11 : 2D hill
! type 12 : rectangular emboss with specified slope
! type 14 : slope with 2 kinks, one rounded
case (1,2,5,6,7,8,9,10,11,12,13,14,15)
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
! if (surface%rand) then
indix=1
! convex hull
do i=1,2**levelt +1
surface%x(indix)=dble(i-1)*delta
surface%y(indix)=0.d0
indix=indix+1
end do
do i=1,2**levelt +1
surface%x(indix)=1.d0
surface%y(indix)=dble(i-1)*delta
indix=indix+1
end do
do i=1,2**levelt +1
surface%x(indix)=1.d0-dble(i-1)*delta
surface%y(indix)=1.d0
indix=indix+1
end do
do i=1,2**levelt +1
surface%x(indix)=0.d0
surface%y(indix)=1.d0-dble(i-1)*delta
indix=indix+1
end do
!interior nodes
if(surface%rand) then
call random_number (surface%x(indix:surface%nsurface))
call random_number (surface%y(indix:surface%nsurface))
else
surface%x(indix:surface%nsurface)=0.5d0
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
surface%y(indix:surface%nsurface)=0.5d0
end if
do j=2,2**levelt +1
do i=2,2**levelt +1
surface%x(indix)=(((surface%x(indix)-0.5d0)*2.d0)*epsil+dble(i-1))*delta
surface%y(indix)=(((surface%y(indix)-0.5d0)*2.d0)*epsil+dble(j-1))*delta
indix=indix+1
enddo
enddo
! else
! ! regular grid of points
! indix=1
! do j=1,2**levelt+1
! do i=1,2**levelt+1
! surface%x(indix)=float(i-1)*delta
! surface%y(indix)=float(j-1)*delta
! indix=indix+1
! end do
! end do
! end if
case (22)
if (surface%rand) then
indix=1
! convex hull
do i=1,2**levelt
surface%x(indix)=(i-1)*delta
surface%y(indix)=0.d0
indix=indix+1
end do
do i=1,2**levelt
surface%x(indix)=1.d0
surface%y(indix)=(i-1)*delta
indix=indix+1
end do
do i=1,2**levelt
surface%x(indix)=1.d0-(i-1)*delta
surface%y(indix)=1.d0
indix=indix+1
end do
do i=1,2**levelt
surface%x(indix)=0.d0
surface%y(indix)=1.d0-(i-1)*delta
indix=indix+1
end do
if (iproc.eq.0) write(8,*) 'nhull=',indix-1,'for surface ',is
! placing rows of points outside, on and outside the rectangle
eps=0.001
do irect=-5,3,2
xini=sp02+irect*eps
xend=sp03-irect*eps
yini=sp04+irect*eps
yend=sp05-irect*eps
dx=(xend-xini)/2**levelt
dy=(yend-yini)/2**levelt
do i=1,2**levelt
xx=xini+(i-1)*dx
yy=yini
if (xx.ge.0 .and. xx.le.1 .and. yy.ge.0 .and. yy.le.1) then
surface%x(indix)=xx
surface%y(indix)=yy
indix=indix+1
end if
end do
do i=1,2**levelt
xx=xend
yy=yini+(i-1)*dy
if (xx.ge.0 .and. xx.le.1 .and. yy.ge.0 .and. yy.le.1) then
surface%x(indix)=xx
surface%y(indix)=yy
indix=indix+1
end if
end do
do i=1,2**levelt
xx=xend-(i-1)*dx
yy=yend
if (xx.ge.0 .and. xx.le.1 .and. yy.ge.0 .and. yy.le.1) then
surface%x(indix)=xx
surface%y(indix)=yy
indix=indix+1
end if
end do
do i=1,2**levelt
xx=xini
yy=yend-(i-1)*dy
if (xx.ge.0 .and. xx.le.1 .and. yy.ge.0 .and. yy.le.1) then
surface%x(indix)=xx
surface%y(indix)=yy
indix=indix+1
end if
end do
end do
! throwing remaining points at random
do while (indix.le.surface%nsurface)
xx=ran(seed)
yy=ran(seed)
if ((xx<sp02-10*eps .or. xx>sp03+10*eps .or. yy<sp04-10*eps .or. yy>sp05+10*eps) .or. &
(xx>sp02+10*eps .and. xx<sp03-10*eps .and. yy>sp04+10*eps .and. yy<sp05-10*eps)) then
surface%x(indix)=xx
surface%y(indix)=yy
indix=indix+1
end if
end do
else
! regular grid of points
indix=1
do j=1,2**levelt+1
do i=1,2**levelt+1
surface%x(indix)=float(i-1)*delta
surface%y(indix)=float(j-1)*delta
indix=indix+1
end do
end do
end if
case (3,4)
if (surface%rand) then
! convex hull
indix=1
do i=1,2**levelt
surface%x(indix)=(i-1)*delta
surface%y(indix)=0.d0
indix=indix+1
end do
do i=1,2**levelt
surface%x(indix)=1.d0
surface%y(indix)=(i-1)*delta
indix=indix+1
end do
do i=1,2**levelt
surface%x(indix)=1.d0-(i-1)*delta
surface%y(indix)=1.d0
indix=indix+1
end do
do i=1,2**levelt
surface%x(indix)=0.d0
surface%y(indix)=1.d0-(i-1)*delta
indix=indix+1
end do
nhull=indix-1
if (iproc.eq.0) write(8,*) 'nhull=',nhull,'on surface ',is
! placing rows of nhull points outside, in, and inside the circle
delta_angle=2.d0*pi/nhull
delta_radius=0.0025d0*sp04
do icircles=-4,2
do i=0,nhull-1
angle=i*delta_angle
surface%x(indix)=sp02+(sp04+icircles*delta_radius)*cos(angle)
surface%y(indix)=sp03+(sp04+icircles*delta_radius)*sin(angle)
indix=indix+1
end do
end do
! throwing the rest of the points at random provided they are not
! too close to the concentric circles so that it does not disturb
! the regular triangulation
do while (indix.le.surface%nsurface)
xx=ran(seed)
yy=ran(seed)
dist=sqrt((xx-sp02)**2+(yy-sp03)**2)
if (dist>(sp04+10*delta_radius) .or. dist<(sp04-10*delta_radius)) then
surface%x(indix)=xx
surface%y(indix)=yy
indix=indix+1
end if
end do
else
! regular grid of points
indix=1
do j=1,2**levelt+1
do i=1,2**levelt+1
surface%x(indix)=float(i-1)*delta
surface%y(indix)=float(j-1)*delta
indix=indix+1
end do
end do
end if
case default
call stop_run ('surface type not defined$')
end select
!-------------------------------------------|
!-----building icon array-------------------|
!-------------------------------------------|
! we use the NN library to compute the triangulation
! of points for the surface
ntmax=surface%nsurface*3
nhmax=surface%nsurface
npmax=surface%nsurface
nnpnmax=100
nmax=3*ntmax+npmax
nvmax=ntmax
allocate (points(2,surface%nsurface),stat=err) ; if (err.ne.0) call stop_run ('Error alloc points in create_surface$')
allocate (field(surface%nsurface),stat=err) ; if (err.ne.0) call stop_run ('Error alloc field in create_surface$')
allocate (vertices(3,ntmax),stat=err) ; if (err.ne.0) call stop_run ('Error alloc vertices in create_surface$')
allocate (centres(3,ntmax),stat=err) ; if (err.ne.0) call stop_run ('Error alloc centress in create_surface$')
allocate (neighbour(3,ntmax),stat=err) ; if (err.ne.0) call stop_run ('Error alloc neighbour in create_surface$')
allocate (hulltriangles(nhmax),stat=err) ; if (err.ne.0) call stop_run ('Error alloc hulltriangles in create_surface$')
allocate (vis_tlist(nvmax),stat=err) ; if (err.ne.0) call stop_run ('Error alloc vis_tlist in create_surface$')
allocate (vis_elist(nvmax),stat=err) ; if (err.ne.0) call stop_run ('Error alloc vis_elist in create_surface$')
allocate (add_tlist(nvmax),stat=err) ; if (err.ne.0) call stop_run ('Error alloc add_tlist in icreate_surface$')
allocate (lt_work(ntmax),stat=err) ; if (err.ne.0) call stop_run ('Error alloc lt_work in create_surface$')
allocate (ln_work(surface%nsurface),stat=err) ; if (err.ne.0) call stop_run ('Error alloc ln_work in create_surface$')
points(1,:)=surface%x
points(2,:)=surface%y
dmode=-2
nmode=0
loc=1
nohalt_hull=0
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
call nn2d_setup (surface%nsurface,ntmax,nhmax,npmax,nnpnmax,nmax, &
points,dmode,nmode,clockwise,field,nt,vertices, &
centres,neighbour,nh,hulltriangles,nohalt_hull, &
loc,nnn,nnlist,ntrilist, &
eps,nvmax,vis_tlist,vis_elist,add_tlist, &
lt_work,ln_work)
if (iproc.eq.0) write (8,*) 'surface ',is,' has ',nt,' triangles'
surface%icon(1:3,1:surface%nt)=vertices(1:3,1:nt)
deallocate (points)
deallocate (field)
deallocate (vertices)
deallocate (centres)
deallocate (neighbour)
deallocate (hulltriangles)
deallocate (vis_tlist)
deallocate (vis_elist)
deallocate (add_tlist)
deallocate (lt_work)
deallocate (ln_work)
!----------------------------------------------|
!----computing z coordinate--------------------|
!----------------------------------------------|
call zpoints (surface%nsurface,surface%x,surface%y,surface%z,surface_type, &
sp01,sp02,sp03,sp04,sp05,sp06,sp07,sp08,sp09,sp10,sp11,sp12, &
sp13,sp14,sp15)
!----------------------------------------------|
!----computing the normals---------------------|
!----------------------------------------------|
call compute_normals (surface%nsurface,surface%x,surface%y,surface%z, &
surface%nt,surface%icon,surface%xn,surface%yn,surface%zn)
if (debug>=2) call output_surf (surface,is,'init',-1,-1)
end if
end subroutine create_surf
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
subroutine zpoints (ns,x,y,z,surface_type,sp01,sp02,sp03,sp04,sp05,sp06,sp07, &
sp08,sp09,sp10,sp11,sp12,sp13,sp14,sp15)
!------------------------------------------------------------------------------|
!(((((((((((((((( Purpose of the routine ))))))))))))))))))))))))))))))))))))))
!------------------------------------------------------------------------------|
! knowing the two-dimensional spatial distribution of points on the plane (x,y)
! this routine computes the z-coordinate accordingly to the surface type.
! ns is the number of points
! x,y,z are the coordinates of the points
! surface_type is the type of surface under consideration
! sp01..sp15 are the surface parameters (not all are necessarily used)
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine arguments ))))))))))))))))))))
!------------------------------------------------------------------------------|
use constants
implicit none
integer ns
double precision x(ns),y(ns),z(ns)
integer surface_type
double precision sp01,sp02,sp03,sp04,sp05,sp06,sp07,sp08,sp09,sp10,sp11,sp12
double precision sp13,sp14,sp15
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine internal variables )))))))))))))
!------------------------------------------------------------------------------|
integer :: i,iproc
double precision :: dist,ran,m,x1a,x1b,x2a,x2b,y1a,y1b,y2a,y2b,zx,xsym
double precision :: psi,theta1,theta2,theta1s,theta2s,psis,y0s,y1s,y2s,x0,y0w
double precision :: y0a,y0b,y0,y1,y2,a1,b1,bb1,c1,m1,a2,b2,bb2,c2,m2,a3,b3,bb3
double precision :: c3,m3,a4,b4,bb4,c4,m4,eps,psi2,psi2s,psi3,psi3s,dz1,dz2,dz3
double precision :: dz4,psi1,psi1s,y0u,y0l,y1u,y1l,y2u,y2l,x0ut
double precision :: x0ub,x0lt,x0lb,x1ut,x1ub,x1lt,x1lb,x2ut,x2ub,x2lt,x2lb,y12mt
double precision :: y12mb,y2as,y2bs,y2au,y2al,y2bu,y2bl,x2aut,x2aub,x2alt,x2alb
double precision :: x2but,x2blt,x2bub,x2blb,y2rad
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
iproc=0
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
select case(surface_type)
case (1)
! a flat surface,
! sp01 is the z level
z=sp01
case (2)
! rectangular emboss,
! sp01 is the z level
! sp02 and 03 are x1,x2
! sp04 and 05 are y1,y2
! sp06 is the thickness
do i=1,ns
if ((x(i)-sp02)*(x(i)-sp03).le.0.d0 .and. (y(i)-sp04)*(y(i)-sp05).le.0.d0) then
z(i)=sp01-sp06
else
z(i)=sp01
end if
end do
case (3)
! convex spherical emboss,
! sp01 is the z level
! sp02 and 03 are x0,y0
! sp04 is the radius
do i=1,ns
dist=sqrt((x(i)-sp02)**2+(y(i)-sp03)**2)
if (dist.le.sp04) then
z(i)=sp01+sp04*sin(acos(dist/sp04))
else
z(i)=sp01
endif
end do
case (4)
! convex spherical emboss,
! sp01 is the z level
! sp02 and 03 are x0,y0
! sp04 is the radius
do i=1,ns
dist=sqrt((x(i)-sp02)**2+(y(i)-sp03)**2)
if (dist.le.sp04) then
z(i)=sp01-sp04*sin(acos(dist/sp04))
else
z(i)=sp01
endif
end do
case (5)
! double rectangular emboss,
! sp01 is the z level
! sp02 and 03 are x1,x2
! sp04 and 05 are x3,x4
! sp06 and 07 are y1,y2
! sp08 and 09 are y3,y4
! sp10 is the thickness
z=sp01
do i=1,ns
if ((x(i)-sp02)*(x(i)-sp03).le.0.d0 .and. (y(i)-sp06)*(y(i)-sp07).le.0.d0) then
z(i)=z(i)-sp10
endif
if ((x(i)-sp04)*(x(i)-sp05).le.0.d0 .and. (y(i)-sp08)*(y(i)-sp09).le.0.d0) then
z(i)=z(i)-sp10
endif
end do
case (6)
! a sinus,
! sp01 is the z level
! sp02 is the wavelength
! sp03 is the amplitude
! sp04 is the phase
z(i)=sp01+sp03*sin(2.d0*pi*(x(i)/sp02+sp04))
end do
case (7)
! a noisy surface,
! sp01 is the z level
! sp02 is the noise amplitude
do i=1,ns
call random_number (ran)
z(i)=sp01+ran*sp02
end do
case (8)
! a double sinus.
! sp01 is the z level
! sp02 is the x-wavelength
! sp03 is the x-amplitude
! sp04 is the y-wavelength
! sp05 is the y-amplitude
do i=1,ns
z(i)=sp01+sp03*sin(x(i)*2.*pi/sp02)+sp05*sin(y(i)*2.*pi/sp04)
end do
case (9)
! a cosinus,
! sp01 is the z level
! sp02 is the wavelength
! sp03 is the amplitude
! sp04 is the phase
z(i)=sp01+sp03*cos(2.d0*pi*(x(i)/sp02+sp04))
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
end do
case (10)
! a 2D embankment
! sp01 is z0
! sp02 is y0
! sp03 is psi
! sp04 is the thickness
do i=1,ns
if (y(i)<sp02) then
z(i)=sp01
else
z(i)=sp01+min((y(i)-sp02)*tan(sp03*pi/180.d0),sp04)
end if
end do
case (11)
! a 2D hill
! sp01 is z level
! sp02 height
! sp03 is y0
! sp04 is width
do i=1,ns
if (y(i)>sp03-sp04/2.d0 .and. y(i)<sp03+sp04/2.d0) then
z(i)=sp01+sp02*(sin(pi*((y(i)-sp03)/sp04+0.5d0)))**2
else
z(i)=sp01
end if
end do
! rectangular emboss with specified slope
! sp01 is the z level
! sp02 and 03 are x1,x2
! sp04 and 05 are y1,y2
! sp06 is the thickness
! sp07 is the slope
m=tan(sp07*pi/180.d0)
x1a=sp02+(sp06/(2.d0*m))
x1b=sp02-(sp06/(2.d0*m))
x2a=sp03+(sp06/(2.d0*m))
x2b=sp03-(sp06/(2.d0*m))
y1a=sp04+(sp06/(2.d0*m))
y1b=sp04-(sp06/(2.d0*m))
y2a=sp05+(sp06/(2.d0*m))
y2b=sp05-(sp06/(2.d0*m))
do i=1,ns
if (x(i).le.x1a) then
zx=sp01
elseif (x(i).le.x1b) then
elseif (x(i).le.x2a) then
zx=sp01-sp06
elseif (x(i).le.x2b) then
else
zx=sp01
endif
if (y(i).le.y1a) then
z(i)=sp01
elseif (y(i).le.y1b) then
elseif (y(i).le.y2a) then
z(i)=min(sp01-sp06,zx)
elseif (y(i).le.y2b) then
else
z(i)=sp01
endif
end do
! a 3D embankment of finite length and with 2 kinks
! sp03 is slope angle (psi)
! sp04 is x value for the center of the slope (x0)
! sp05 is the x width of the narrow end of the plateau (y0w)
! sp06 is the y position for the start of the slope (y0)
! sp07 is the y position of the first kink (y1)
! sp08 is the angle of the first kink (theta1)
! sp09 is the y position of the second kink (y2)
! sp10 is the angle of the second kink (theta2)
! sp11 is the reference elevation (elevation of the lower outer dip change)
! sp12 is the dip angle of the lower outer dip panel
! sp13 is the reference elevation (elevation of the upper outer flat)
! sp14 is the dip angle of the upper outer dip panel
dz3=sp01-sp13
dz4=dz3-dz2
psis=sign(tan(psi),dz1)
psi2s=sign(tan(psi2),dz2)
theta1s=tan(theta1)
theta2s=tan(theta2)
y0s=1.d0
y1s=tan(theta1/2.d0)
y2s=tan((theta1+theta2)/2.d0)
x0=sp04
y0w=sp05+dz1/(2.d0*psis)
y0=sp06+dz1/(2.d0*psis)
y0a=y0+dz1/(2.d0*psis)
y0b=y0-dz1/(2.d0*psis)
y1=sp07+(dz1/(2.d0*psis))*y1s
y2=sp09+(dz1/(2.d0*psis))*y2s
m1=((y2+(dz1/(2.d0*psis))*y1s)-(y1+(dz1/(2.d0*psis))*y1s))/&
((x0-y0w-(y1-y2)*theta1s-(dz1/(2.d0*psis)))-(x0-y0w-(dz1/(2.d0*psis))))
bb1=(y1+(dz1/(2.d0*psis))*y1s)-m1*(x0-y0w-(dz1/(2.d0*psis)))
a1=-m1
b1=1
c1=-bb1
m2=((y2-(dz1/(2.d0*psis))*y1s)-(y1-(dz1/(2.d0*psis))*y1s))/&
((x0-y0w-(y1-y2)*theta1s+(dz1/(2.d0*psis)))-(x0-y0w+(dz1/(2.d0*psis))))
bb2=(y1-(dz1/(2.d0*psis))*y1s)-m1*(x0-y0w+(dz1/(2.d0*psis)))
a2=-m2
b2=1
c2=-bb2
m3=((y2-(dz1/(2.d0*psis))*y1s)-(y1-(dz1/(2.d0*psis))*y1s))/&
((x0+y0w+(y1-y2)*theta1s-(dz1/(2.d0*psis)))-(x0+y0w-(dz1/(2.d0*psis))))
bb3=(y1-(dz1/(2.d0*psis))*y1s)-m3*(x0+y0w-(dz1/(2.d0*psis)))
a3=-m3
b3=1
c3=-bb3
m4=((y2+(dz1/(2.d0*psis))*y1s)-(y1+(dz1/(2.d0*psis))*y1s))/&
((x0+y0w+(y1-y2)*theta1s+(dz1/(2.d0*psis)))-(x0+y0w+(dz1/(2.d0*psis))))
bb4=(y1+(dz1/(2.d0*psis))*y1s)-m3*(x0+y0w+(dz1/(2.d0*psis)))
do i=1,ns
z(i)=sp01
if (y(i).ge.-y0s*x(i)+(y0+(x0-y0w)) .and. y(i).ge.y0s*x(i)+(y0-(x0+y0w))) then
if (y(i).ge.y0a+(dz2/psi2s)) then
if (dz4.gt.eps) then
z(i)=max(sp01-dz2-psi3s*(y(i)-(y0a+(dz2/psi2s))),sp13)
else
z(i)=min(sp01-dz2-psi3s*(y(i)-(y0a+(dz2/psi2s))),sp13)
endif
else
z(i)=sp01-psi2s*(y(i)-y0a)
! if (dz2.gt.eps) then
! z(i)=max(sp01-psi2s*(y(i)-y0a),sp11)
! else
! z(i)=min(sp01-psi2s*(y(i)-y0a),sp11)
! endif
elseif (y(i).ge.y0b) then
endif
elseif (y(i).ge.-y1s*x(i)+(y1s*(x0-y0w)+y1) .and. y(i).ge.y1s*x(i)+(-y1s*(x0+y0w)+y1)) then
if (x(i).lt.((x0-y0w)-(dz1/(2.d0*psis)))) then
if (x(i).lt.((x0-y0w)-(dz1/(2.d0*psis)))-(dz2/psi2s)) then
else
z(i)=sp01-psi2s*(((x0-y0w)-(dz1/(2.d0*psis)))-x(i))
! if ((dz2).gt.eps) then
! z(i)=max(sp01-psi2s*(((x0-y0w)-(dz1/(2.d0*psis)))-x(i)),sp11)
! else
! z(i)=min(sp01-psi2s*(((x0-y0w)-(dz1/(2.d0*psis)))-x(i)),sp11)
! endif
elseif (x(i).ge.((x0-y0w)-(dz1/(2.d0*psis))) .and. x(i).lt.((x0-y0w)+(dz1/(2.d0*psis)))) then
z(i)=sp01+psis*(x(i)-((x0-y0w)-(dz1/(2.d0*psis))))
elseif (x(i).ge.((x0-y0w)+(dz1/(2.d0*psis))) .and. x(i).lt.((x0+y0w)-(dz1/(2.d0*psis)))) then
z(i)=sp02
elseif (x(i).ge.((x0+y0w)-(dz1/(2.d0*psis))) .and. x(i).lt.((x0+y0w)+(dz1/(2.d0*psis)))) then
z(i)=sp01-psis*(x(i)-((x0+y0w)+(dz1/(2.d0*psis))))
if (x(i).lt.((x0+y0w)+(dz1/(2.d0*psis)))+(dz2/psi2s)) then
z(i)=sp01-psi2s*(x(i)-((x0+y0w)+(dz1/(2.d0*psis))))
else
endif
endif
! if ((dz2).gt.eps) then
! z(i)=max(sp01-psi2s*(x(i)-((x0+y0w)+(dz1/(2.d0*psis)))),sp11)
! else
! z(i)=min(sp01-psi2s*(x(i)-((x0+y0w)+(dz1/(2.d0*psis)))),sp11)
! endif
endif
elseif (y(i).ge.-y2s*x(i)+(y2s*(x0-y0w-(y1-y2)*theta1s)+y2) .and. y(i).ge.y2s*x(i)+(-y2s*(x0+y0w+(y1-y2)*theta1s)+y2)) then
if (y(i).ge.m1*x(i)+bb1) then
dist=abs(a1*x(i)+b1*y(i)+c1)/sqrt(a1**2.d0+b1**2.d0)
if (dist.lt.(dz2/psi2s)) then
z(i)=sp01-psi2s*dist
else
if (dz4.gt.eps) then
z(i)=max(sp01-dz2-psi3s*(dist-(dz2/psi2s)),sp13)
else
z(i)=min(sp01-dz2-psi3s*(dist-(dz2/psi2s)),sp13)
endif
endif
endif
! if ((dz2).gt.eps) then
! z(i)=max(sp01-psi2s*dist,sp11)
! else
! z(i)=min(sp01-psi2s*dist,sp11)
! endif
elseif (y(i).ge.m2*x(i)+bb2 .and. y(i).lt.m1*x(i)+bb1) then
dist=abs(a1*x(i)+b1*y(i)+c1)/sqrt(a1**2.d0+b1**2.d0)
z(i)=sp01+dist*psis
elseif (y(i).lt.m2*x(i)+bb2 .and. y(i).lt.m3*x(i)+bb3) then
elseif (y(i).ge.m3*x(i)+bb3 .and. y(i).lt.m4*x(i)+bb4) then
dist=abs(a4*x(i)+b4*y(i)+c4)/sqrt(a4**2.d0+b4**2.d0)
z(i)=sp01+dist*psis
else
dist=abs(a4*x(i)+b4*y(i)+c4)/sqrt(a4**2.d0+b4**2.d0)
if (dist.lt.(dz2/psi2s)) then
z(i)=sp01-psi2s*dist
else
if (dz4.gt.eps) then
z(i)=max(sp01-dz2-psi3s*(dist-(dz2/psi2s)),sp13)
else
z(i)=min(sp01-dz2-psi3s*(dist-(dz2/psi2s)),sp13)
endif
endif
endif
! if ((dz2).gt.eps) then
! z(i)=max(sp01-psi2s*dist,sp11)
! else
! z(i)=min(sp01-psi2s*dist,sp11)
! endif
elseif (x(i).lt.x0-y0w-(y1-y2)*theta1s-dz1/(2.d0*psis)) then
if (x(i).lt.x0-y0w-(y1-y2)*theta1s-dz1/(2.d0*psis)-(dz2/psi2s)) then
z(i)=max(sp01-dz2-psi3s*(((x0-y0w)-(y1-y2)*theta1s-(dz2/psi2s))-x(i)),sp13)
z(i)=min(sp01-dz2-psi3s*(((x0-y0w)-(y1-y2)*theta1s-(dz2/psi2s))-x(i)),sp13)
else
z(i)=sp01-psi2s*((x0-y0w-(y1-y2)*theta1s-dz1/(2.d0*psis))-x(i))
! if ((dz2).gt.eps) then
! z(i)=max(sp01-psi2s*((x0-y0w-(y1-y2)*theta1s-dz1/(2.d0*psis))-x(i)),sp11)
! else
! z(i)=min(sp01-psi2s*((x0-y0w-(y1-y2)*theta1s-dz1/(2.d0*psis))-x(i)),sp11)
! endif
elseif (x(i).ge.((x0-y0w-(y1-y2)*theta1s)-(dz1/(2.d0*psis))) .and. x(i).lt.((x0-y0w-(y1-y2)*theta1s)+(dz1/(2.d0*psis)))) then
z(i)=sp01+psis*(x(i)-((x0-y0w-(y1-y2)*theta1s)-(dz1/(2.d0*psis))))
elseif (x(i).ge.((x0-y0w-(y1-y2)*theta1s)+(abs(dz1)/(2.d0*psis))) .and. x(i).lt.((x0+y0w+(y1-y2)*theta1s)-(abs(dz1)/(2.d0*psis)))) then
z(i)=sp02
elseif (x(i).ge.((x0+y0w+(y1-y2)*theta1s)-(abs(dz1)/(2.d0*psis))) .and. x(i).lt.((x0+y0w+(y1-y2)*theta1s)+(abs(dz1)/(2.d0*psis)))) then
z(i)=sp01-psis*(x(i)-((x0+y0w+(y1-y2)*theta1s)+(dz1/(2.d0*psis))))
if (x(i).gt.x0+y0w+(y1-y2)*theta1s-dz1/(2.d0*psis)+(dz2/psi2s)) then
z(i)=max(sp01-dz2-psi3s*(x(i)-(x0+y0w+(y1-y2)*theta1s+(dz2/psi2s))),sp13)
z(i)=min(sp01-dz2-psi3s*(x(i)-(x0+y0w+(y1-y2)*theta1s+(dz2/psi2s))),sp13)
!z(i)=sp01-psi2s*(x(i)-(x0-y0w-(y1-y2)*theta1s-dz1/(2.d0*psis)))
z(i)=sp01-psi2s*(x(i)-(x0+y0w+(y1-y2)*theta1s+dz1/(2.d0*psis)))
! if ((dz2).gt.eps) then
! z(i)=max(sp01-psi2s*(x(i)-(x0-y0w-(y1-y2)*theta1s-dz1/(2.d0*psis))),sp11)
! else
! z(i)=min(sp01-psi2s*(x(i)-(x0-y0w-(y1-y2)*theta1s-dz1/(2.d0*psis))),sp11)
! endif
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
case (14)
! a 3D embankment of finite length and with rounded 2 kinks
! sp01 is the z level
! sp02 is the z level 2
! sp03 is slope angle (psi)
! sp04 is x value for the center of the slope (xsym)
! sp05 is the x width of the narrow end of the plateau (y0w)
! sp06 is the y position for the start of the slope (y0)
! sp07 is the y position of the first kink (y1)
! sp08 is the angle of the first kink (theta1)
! sp09 is the y position of the second kink (y2)
! sp10 is the angle of the second kink (theta2)
! sp11 is the reference elevation (elevation of the lower outer dip change)
! sp12 is the dip angle of the lower outer dip panel
! sp13 is the reference elevation (elevation of the upper outer flat)
! sp14 is the dip angle of the upper outer dip panel
! sp15 is the radius used for rounding the second kink
dz1=sp02-sp01
dz2=sp01-sp11
dz3=sp01-sp13
dz4=dz3-dz2
psi1=sp03*pi/180.d0
psi2=sp12*pi/180.d0
psi3=sp14*pi/180.d0
theta1=sp08*pi/180.d0
theta2=sp10*pi/180.d0
y2rad=sp15
psi1s=sign(tan(psi1),dz1)
psi2s=sign(tan(psi2),dz2)
psi3s=sign(tan(psi3),dz3)
theta1s=tan(theta1)
theta2s=tan(theta2)
y0s=1.d0
y1s=tan(theta1/2.d0)
y2s=tan((theta1+theta2)/2.d0)
xsym=sp04
y0w=sp05
y0=sp06
y1=sp07
y2=sp09
y0u=y0
y0l=y0+dz1/psi1s
y1u=y1
y1l=y1+(dz1/psi1s)*y1s
y2u=y2
y2l=y2+(dz1/psi1s)*y2s
! if (iproc == 0) write (*,*) 'y0u: ',y0u
! if (iproc == 0) write (*,*) 'y0l: ',y0l
! if (iproc == 0) write (*,*) 'y1u: ',y1u
! if (iproc == 0) write (*,*) 'y1l: ',y1l
! if (iproc == 0) write (*,*) 'y2u: ',y2u
! if (iproc == 0) write (*,*) 'y2l: ',y2l
! if (iproc == 0) write (*,*) 'y2rad: ',y2rad
x0ut=xsym+y0w
x0lt=xsym+y0w+dz1/psi1s
x0ub=xsym-y0w
x0lb=xsym-y0w-dz1/psi1s
x1ut=x0ut
x1lt=x0lt
x1ub=x0ub
x1lb=x0lb
x2ut=x1ut+(y1-y2)*theta1s
x2lt=x1lt+(y1-y2)*theta1s
x2ub=x1ub-(y1-y2)*theta1s
x2lb=x1lb-(y1-y2)*theta1s
! if (iproc == 0) write (*,*) 'x0ut: ',x0ut
! if (iproc == 0) write (*,*) 'x0lt: ',x0lt
! if (iproc == 0) write (*,*) 'x0ub: ',x0ub
! if (iproc == 0) write (*,*) 'x0lb: ',x0lb
! if (iproc == 0) write (*,*) 'x1ut: ',x1ut
! if (iproc == 0) write (*,*) 'x1lt: ',x1lt
! if (iproc == 0) write (*,*) 'x1ub: ',x1ub
! if (iproc == 0) write (*,*) 'x1lb: ',x1lb
! if (iproc == 0) write (*,*) 'x2ut: ',x2ut
! if (iproc == 0) write (*,*) 'x2lt: ',x2lt
! if (iproc == 0) write (*,*) 'x2ub: ',x2ub
! if (iproc == 0) write (*,*) 'x2lb: ',x2lb
y12mt=(y2u-y1u)/(x2ut-x1ut)
y12mb=(y2u-y1u)/(x2ub-x1ub)
! if (iproc == 0) write (*,*) 'y12mt: ',y12mt
! if (iproc == 0) write (*,*) 'y12mb: ',y12mb
if (abs(theta1).gt.eps) then
y2as=tan(pi/2.d0-theta1)
else
y2as=1.d0
endif
if (abs(theta2).gt.eps) then
y2bs=tan(pi/2.d0-theta2)
else
y2bs=1.d0
endif
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
! if (iproc == 0) write (*,*) 'y2as: ',y2as
! if (iproc == 0) write (*,*) 'y2bs: ',y2bs
y2au=y2u+(y2rad*tan((theta1-theta2)/2.d0))*cos(theta1)
if (abs(theta1).gt.eps) then
y2al=y2u+(dz1/psi1s*y2as)+(y2rad*tan((theta1-theta2)/2.d0))*cos(theta1)
else
y2al=y2au
endif
y2bu=y2u-y2rad*tan((theta1-theta2)/2.d0)
! if (abs(theta2).gt.eps) then
! y2bl=y2u-(dz1/psi1s*y2as)-(y2rad*tan((theta1-theta2)/2.d0))
! else
y2bl=y2bu
! endif
! SHOULD THE y12mb's BELOW BE sin(theta1)'s INSTEAD?????????
x2aut=x2ut-(y2rad*tan((theta1-theta2)/2.d0))*y12mb
if (abs(theta1).gt.eps) then
x2alt=x2ut+(dz1/psi1s*(1.d0/y2as))-(y2rad*tan((theta1-theta2)/2.d0))*y12mb
else
x2alt=x2ut+dz1/psi1s-(y2rad*tan((theta1-theta2)/2.d0))*y12mb
endif
x2but=x2ut
x2blt=x2lt
x2aub=x2ub+(y2rad*tan((theta1-theta2)/2.d0))*y12mb
if (abs(theta2).gt.eps) then
x2alb=x2ub-(dz1/psi1s*(1.d0/y2as))+(y2rad*tan((theta1-theta2)/2.d0))*y12mb
else
x2alb=x2ub-dz1/psi1s+(y2rad*tan((theta1-theta2)/2.d0))*y12mb
endif
x2bub=x2ub
x2blb=x2lb
! if (iproc == 0) write (*,*) 'y2au: ',y2au
! if (iproc == 0) write (*,*) 'y2al: ',y2al
! if (iproc == 0) write (*,*) 'y2bu: ',y2bu
! if (iproc == 0) write (*,*) 'y2bl: ',y2bl
! if (iproc == 0) write (*,*) 'x2aut: ',x2aut
! if (iproc == 0) write (*,*) 'x2alt: ',x2alt
! if (iproc == 0) write (*,*) 'x2but: ',x2but
! if (iproc == 0) write (*,*) 'x2blt: ',x2blt
! if (iproc == 0) write (*,*) 'x2aub: ',x2aub
! if (iproc == 0) write (*,*) 'x2alb: ',x2alb
! if (iproc == 0) write (*,*) 'x2bub: ',x2bub
! if (iproc == 0) write (*,*) 'x2blb: ',x2blb
m1=(y2l-y1l)/(x2lb-x1lb)
!bb1=(y1l+(dz1/psi1s)*y1s)-m1*(x1lb-(dz1/psi1s))
bb1=y1l-m1*x1lb
a1=-m1
b1=1
c1=-bb1
m2=(y2u-y1u)/(x2ub-x1ub)
bb2=y1u-m2*x1ub
a2=-m2
b2=1
c2=-bb2
m3=(y2u-y1u)/(x2ut-x1ut)
bb3=y1u-m3*x1ut
a3=-m3
b3=1
c3=-bb3
m4=(y2l-y1l)/(x2lt-x1lt)
bb4=(y1l+(dz1/psi1s)*y1s)-m4*(x1lt+dz1/psi1s)
a4=-m4
b4=1
c4=-bb4
do i=1,ns
z(i)=sp01
if (y(i).ge.-y0s*x(i)+(y0u+x0ub) .and. y(i).ge.y0s*x(i)+(y0u-x0ut)) then
if (y(i).ge.y0l) then
if (y(i).ge.y0l+(dz2/psi2s)) then
if (abs(dz4).gt.eps) then
if (dz4.gt.eps) then
z(i)=max(sp01-dz2-psi3s*(y(i)-(y0l+(dz2/psi2s))),sp13)
else
z(i)=min(sp01-dz2-psi3s*(y(i)-(y0l+(dz2/psi2s))),sp13)
endif
else
z(i)=sp13
endif
else
z(i)=sp01-psi2s*(y(i)-y0l)
endif
elseif (y(i).ge.y0u) then
z(i)=sp01+psi1s*(y0l-y(i))
elseif (y(i).lt.y0u) then
z(i)=sp02
endif
elseif (y(i).ge.-y1s*x(i)+(y1s*x1ub+y1u) .and. y(i).ge.y1s*x(i)+(-y1s*x1ut+y1u)) then
if (x(i).lt.x1lb) then
if (x(i).lt.x1lb-dz2/psi2s) then
if (abs(dz4).gt.eps) then
if (dz4.gt.eps) then
z(i)=max(sp01-dz2-psi3s*(x1ub-dz2/psi2s)-x(i),sp13)
else
z(i)=min(sp01-dz2-psi3s*(x1ub-dz2/psi2s)-x(i),sp13)
endif
else
z(i)=sp13
endif
else
z(i)=sp01-psi2s*(x1lb-x(i))
endif
elseif (x(i).ge.x1lb .and. x(i).lt.x1ub) then
z(i)=sp01+psi1s*(x(i)-x1lb)
elseif (x(i).ge.x1ub .and. x(i).lt.x1ut) then
z(i)=sp02
elseif (x(i).ge.x1ut .and. x(i).lt.x1lt) then
z(i)=sp01-psi1s*(x(i)-x1lt)
else
if (x(i).lt.x1lt+(dz2/psi2s)) then
z(i)=sp01-psi2s*(x(i)-x1lt)
else
if (abs(dz4).gt.eps) then
if (dz4.gt.eps) then
z(i)=max(sp01-dz2-psi3s*(x(i)-x1lt),sp13)
else
z(i)=min(sp01-dz2-psi3s*(x(i)-x1lt),sp13)
endif
else
z(i)=sp13
endif
endif
endif
elseif (y(i).ge.-y2as*x(i)+(y2as*x2aub+y2au) .and. y(i).ge.y2as*x(i)+(-y2as*x2aut+y2au)) then
! elseif (y(i).ge.-y2s*x(i)+(y2s*x2ub+y2u) .and. y(i).ge.y2s*x(i)+(-y2s*x2ut+y2u)) then
! z(i)=0.13d0
if (y(i).ge.m1*x(i)+bb1) then
dist=abs(a1*x(i)+b1*y(i)+c1)/sqrt(a1**2.d0+b1**2.d0)
if (dist.lt.(dz2/psi2s)) then
z(i)=sp01-psi2s*dist
else
if (abs(dz4).gt.eps) then
if (dz4.gt.eps) then
z(i)=max(sp01-dz2-psi3s*(dist-(dz2/psi2s)),sp13)
else
z(i)=min(sp01-dz2-psi3s*(dist-(dz2/psi2s)),sp13)
endif
else
z(i)=sp13
endif
endif
elseif (y(i).ge.m2*x(i)+bb2 .and. y(i).lt.m1*x(i)+bb1) then
dist=abs(a1*x(i)+b1*y(i)+c1)/sqrt(a1**2.d0+b1**2.d0)
z(i)=sp01+dist*psi1s
elseif (y(i).lt.m2*x(i)+bb2 .and. y(i).lt.m3*x(i)+bb3) then
z(i)=sp02
elseif (y(i).ge.m3*x(i)+bb3 .and. y(i).lt.m4*x(i)+bb4) then
dist=abs(a4*x(i)+b4*y(i)+c4)/sqrt(a4**2.d0+b4**2.d0)
z(i)=sp01+dist*psi1s
else
dist=abs(a4*x(i)+b4*y(i)+c4)/sqrt(a4**2.d0+b4**2.d0)
if (dist.lt.(dz2/psi2s)) then
z(i)=sp01-psi2s*dist
else
if (abs(dz4).gt.eps) then
if (dz4.gt.eps) then
z(i)=max(sp01-dz2-psi3s*(dist-(dz2/psi2s)),sp13)
else
z(i)=min(sp01-dz2-psi3s*(dist-(dz2/psi2s)),sp13)
endif
else
z(i)=sp13
endif
endif
endif
!elseif (y(i).ge.-y2as*x(i)+(y2as*x2aub+y2au) .and. y(i).ge.y2as*x(i)+(-y2as*x2aut+y2au)) then
elseif (y(i).ge.y2bu) then
dist=sqrt((x(i)-(x2bub+y2rad))**2.d0+(y(i)-y2bu)**2.d0)
if (dist <= y2rad) then
z(i)=sp02
elseif (dist <= y2rad+dz1/psi1s) then
z(i)=sp01+((y2rad+dz1/psi1s)-dist)*psi1s
elseif (dist <= y2rad+dz1/psi1s+dz2/psi2s) then
z(i)=sp01-psi2s*(dist-(y2rad+dz1/psi1s))
else
if (abs(dz4) > eps) then
if (dz4 > eps) then
z(i)=max(sp01-dz2-psi3s*((y2rad+dz1/psi1s+dz2/psi2s+dz3/psi3s)-dist),sp13)
else
z(i)=min(sp01-dz2-psi3s*((y2rad+dz1/psi1s+dz2/psi2s+dz3/psi3s)-dist),sp13)
endif
else
z(i)=sp13
endif
endif
elseif (x(i) < x2lb) then
if (x(i) < x2lb-(dz2/psi2s)) then
if (abs(dz4).gt.eps) then
if (dz4.gt.eps) then
z(i)=max(sp01-dz2-psi3s*(x2lb-(dz2/psi2s)-x(i)),sp13)
else
z(i)=min(sp01-dz2-psi3s*(x2lb-(dz2/psi2s)-x(i)),sp13)
endif
else
z(i)=sp13
endif
else
z(i)=sp01-psi2s*(x2lb-x(i))
endif
elseif (x(i).ge.x2lb .and. x(i).lt.x2ub) then
z(i)=sp01+psi1s*(x(i)-x2lb)
elseif (x(i).ge.x2ub .and. x(i).lt.x2ut) then
z(i)=sp02
elseif (x(i).ge.x2ut .and. x(i).lt.x2lt) then
z(i)=sp01+psi1s*(x2lb-x(i))
else
if (x(i) > x2ut+(dz2/psi2s)) then
if (abs(dz4).gt.eps) then
if (dz4.gt.eps) then
z(i)=max(sp01-dz2-psi3s*(x(i)-(x2ut+(dz2/psi2s))),sp13)
else
z(i)=min(sp01-dz2-psi3s*(x(i)-(x2ut+(dz2/psi2s))),sp13)
endif
else
z(i)=sp13
endif
else
z(i)=sp01-psi2s*(x(i)-x2lt)
endif
endif
enddo
case (15)
! sp01 is the z base level (z0)
! sp02 is the x position of the peak (x0)
! sp03 is the y position of the peak (y0)
! sp04 is the elevation of the peak above base level (h)
! sp05 is the x radius (distance from peak to base) (rx)
! sp06 is the y width (distance from base to base) (ry)
! negative values create a cylinder of length -ry
! sp07 is the angle of slope in x-direction at the base in degree (phi)
! note that for ry<rx the slope at the base will be steeper in y direction
! also ensure that rx > h/tan(phi)
! phi<0 creates a dome unscaled in z-direction (doesn't force angle)
! sp08 is a radial offset from the specified surface (for spherical shells)
!spherical shells need sphere radius to calculate adjusted values for h, rx and ry
!do loop again with new values
!checking validity of input values
a1=sp04/tan(sp07*pi/180.d0)
if (sp05<=2.d0*a1) then
if (iproc.eq.0) then
write(*,*) 'WARNING: overconstrained surface values, ignoring set angle phi'
endif
sp07=-1.d0
endif
if (sp07>0.d0) then
!Radius of spere unscaled in z direction
b1=sp05*(sp05-a1)/sqrt(sp05*(sp05-2.d0*a1))
!scaling factor for z-direction
c1 = sp04/(b1-sqrt(b1**2-sp05**2))
else
!Radius of unscaled sphere cutting through (x0,z0+h) and (x0+xr,z0)
b1=(sp04**2+sp05**2)/(2.d0*sp04)
c1=1.d0
endif
!z-value of sphere center
zx=sp01+sp04-b1*c1;
!adjust radius for shell offset
b1 = b1 + sp08/c1
do i=1,ns
if (sp06>0.d0) then
!distance from center + squeezing in y-direction
dist=sqrt((x(i)-sp02)**2+((y(i)-sp03)*2.d0*sp05/sp06)**2)
z(i)=max(sp01,zx+c1*sqrt(b1**2-dist**2))
!distance from center in x-direction
dist=abs((x(i)-sp02))
if (dist>sp05 .or. abs(y(i)-sp03)>(-0.53d0*sp06)) then
!outside rotating cylinder
z(i)=sp01
elseif (abs(y(i)-sp03)<(-0.5d0*sp06)) then
!inside rotating cylinder
z(i)=zx+c1*sqrt(b1**2-dist**2)
else
!transition zone (3% of wy on both sides)
z(i)= sp01-(abs(y(i)-sp03)+0.53e0*sp06)/(-0.03e0*sp06)*(zx+c1*sqrt(b1**2-dist**2)-sp01)
endif
endif
enddo
case default
call stop_run ('surface type not defined$')
end select
return
end