Newer
Older
subroutine isostasy (params,weightel,ov,surface,mat,iter,zi)
! first go at imposing isostasy
! this routine assumes that the original surface are flat
! it takes the zref height of each surface and the density of the corresponding material
! to compute the reference isostatic column
! note also that this will not work when the courant condition is used
use definitions
implicit none
type(parameters) params
type(octreev) ov
double precision weightel(ov%nleaves)
type(sheet) surface(params%ns)
type(material) mat(0:params%nmat)
integer iter
type(ziso) zi
!double precision zisodisp(2**params%levelmax_oct+1,2**params%levelmax_oct+1)
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
double precision xc,yc,zc,eps
integer i,j,ii,jj,kk,ie,dlev,is,iproc,nproc,ierr,ic
double precision x0,y0,z0,dxyz,dd
integer leaf,level,loc
double precision x0b,y0b,z0b,dxyzb
integer leafb,levelb,locb
double precision,dimension(:),allocatable::diso
double precision weightref,disoel,w
integer,dimension(:),allocatable::np
character shift*72
double precision,dimension(:,:),allocatable::weight,flex,work
double precision pi,hx,dh,pihx,xk,fi,fj,tij,d
integer nflex
integer im,jm,ip,jp,nb
integer iunit
INCLUDE 'mpif.h'
call mpi_comm_size (mpi_comm_world,nproc,ierr)
call mpi_comm_rank (mpi_comm_world,iproc,ierr)
eps=1.d-8
shift=' '
nb=2**params%levelmax_oct
allocate (weight(nb,nb))
! first calculates the weight of each column, based on the weight of each elements
! this is performed on a 2**levelmax X 2**levelmax grid at the base of the model
! the result is stored in weight(i,j)
dd=1.d0/2.d0**(params%levelmax_oct+1)
weight=0.d0
do ie=1,ov%nleaves
xc=0.d0;yc=0.d0;zc=0.d0
do i=1,8
xc=xc+ov%x(ov%icon(i,ie))
yc=yc+ov%y(ov%icon(i,ie))
zc=zc+ov%z(ov%icon(i,ie))
enddo
xc=xc/8.d0
yc=yc/8.d0
zc=zc/8.d0
call octree_find_leaf (ov%octree,ov%noctree,xc,yc,zc,leaf,level,loc,x0,y0,z0,dxyz)
dlev=params%levelmax_oct-level
call find_integer_coordinates (x0+dd,y0+dd,z0+dd,ii,jj,kk,params%levelmax_oct)
ii=min(ii,nb-2**dlev)
jj=min(jj,nb-2**dlev)
do i=1,2**dlev
do j=1,2**dlev
weight(ii+i,jj+j)=weight(ii+i,jj+j)+weightel(leaf)/(4.d0**dlev)*(4.d0**params%levelmax_oct)
enddo
enddo
! call octree_find_leaf (ov%octree,ov%noctree,xc,yc,eps,leafb,levelb,locb,x0b,y0b,z0b,dxyzb)
! dlev=max(0,levelb-level)
! w(leafb)=w(leafb)+weightel(leaf)/(4.d0**dlev)*(4.d0**levelb)
enddo
! calculates the reference weight from the initial surface geometry and the density of the material
! near the base
weightref=0.d0
do is=1,params%ns-1
weightref=weightref+mat(surface(is)%material)%density*(surface(is)%sp01-surface(is+1)%sp01)
enddo
weightref=weightref+mat(surface(params%ns)%material)%density*surface(params%ns)%sp01
if (.not.params%flexure) then
! apply local isostasy
! the deflection is stored in array weight
do j=1,nb
do i=1,nb
weight(i,j)=(weight(i,j)-weightref)/mat(surface(params%ns)%material)%density
enddo
enddo
else
! flexural isostasy
nflex=8*nb
allocate(work(nflex,nflex),flex(nflex,nflex))
hx=params%length_scale*8.d3
xk=-mat(surface(params%ns)%material)%density*params%density_difference*9.81d0
d=1.d11/12.d0/(1.d0-0.25d0**2)*params%elastic_plate_thickness**3
dh=hx/(nflex-1)
!if (iproc.eq.0) print*,'hx,dh,xk,d',hx,dh,xk,d
ii=nflex/2-nb/2-1
jj=ii
flex=0.d0
do j=1,nb
do i=1,nb
flex(ii+i,jj+j)=(weight(i,j)-weightref)*dh*dh*params%density_difference*9.81d0*params%length_scale*1.d3
enddo
enddo
!if (iproc.eq.0) print*,'poids',minval(flex),maxval(flex)
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
do j=1,nflex
call dsinft (flex(1,j),nflex)
enddo
do j=1,nflex
do i=1,nflex
work(j,i)=flex(i,j)
enddo
enddo
do i=1,nflex
call dsinft (work(1,i),nflex)
enddo
do j=1,nflex
do i=1,nflex
work(j,i)=work(j,i)*4.d0/hx/hx
enddo
enddo
pi=atan(1.d0)*4.d0
pihx=pi/hx
do j=1,nflex
fj=(j*pihx)**2
do i=1,nflex
fi=(i*pihx)**2
tij=d/xk*(fi**2+2.d0*fi*fj+fj**2)+1.d0
work(j,i)=work(j,i)/xk/tij
enddo
enddo
do i=1,nflex
call dsinft (work(1,i),nflex)
enddo
do j=1,nflex
do i=1,nflex
flex(i,j)=work(j,i)
enddo
enddo
do j=1,nflex
call dsinft (flex(1,j),nflex)
enddo
!if (iproc.eq.0) print*,'def in m',minval(flex),maxval(flex)
ii=nflex/2-nb/2-1
jj=ii
do j=1,nb
do i=1,nb
weight(i,j)=-flex(ii+i,jj+j)/params%length_scale/1.d3
enddo
enddo
deallocate (flex,work)
!if (iproc.eq.0) print*,'dimensionless def ',minval(weight),maxval(weight)
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
endif
! redistributes the isostatic response onto the elements
! and distributes it onto the nodes into array diso(nnode)
allocate (np(ov%nnode))
allocate (diso(ov%nnode),work(nb+1,nb+1))
do j=1,nb+1
do i=1,nb+1
im=max(i-1,1)
jm=max(j-1,1)
ip=min(i,nb)
jp=min(j,nb)
work(i,j)=(weight(ip,jp)+weight(im,jp)+weight(ip,jm)+weight(im,jm))/4.d0
enddo
enddo
do i=1,ov%nnode
call find_integer_coordinates(ov%x(i)+1.d-20,ov%y(i)+1.d-20,ov%z(i)+1.d-20,ii,jj,kk,params%levelmax_oct)
ii=ii+1
jj=jj+1
kk=kk+1
if ((ii-1)*(ii-nb-1).gt.0 .or. (jj-1)*(jj-nb-1).gt.0) stop 'error in isostasy'
diso(i)=work(ii,jj)
enddo
! old version : to be neglected new is much faster
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
!diso=0.d0
!np=0
! do ie=1,ov%nleaves
! xc=0.d0;yc=0.d0;zc=0.d0
! do i=1,8
! xc=xc+ov%x(ov%icon(i,ie))
! yc=yc+ov%y(ov%icon(i,ie))
! zc=zc+ov%z(ov%icon(i,ie))
! enddo
! xc=xc/8.d0
! yc=yc/8.d0
! zc=zc/8.d0
! call octree_find_leaf (ov%octree,ov%noctree,xc,yc,zc,leaf,level,loc,x0,y0,z0,dxyz)
!! call octree_find_leaf (ov%octree,ov%noctree,xc,yc,eps,leafb,levelb,locb,x0b,y0b,z0b,dxyzb)
!! disoel=(w(leafb)-weightref)/(mat(surface(params%ns)%material)%density)
! w=0.d0
! dlev=params%levelmax_oct-level
! call find_integer_coordinates (x0+dd,y0+dd,z0+dd,ii,jj,kk,params%levelmax_oct)
! ii=min(ii,2**(params%levelmax_oct)-2**dlev)
! jj=min(jj,2**(params%levelmax_oct)-2**dlev)
! do i=1,2**dlev
! do j=1,2**dlev
! w=w+weight(ii+i,jj+j)
! enddo
! enddo
! disoel=w/(2**dlev*2.d0**dlev)
!! disoel=(w-weightref)/(mat(surface(params%ns)%material)%density)
! do i=1,8
! ic=ov%icon(i,ie)
! np(ic)=np(ic)+1
! diso(ic)=diso(ic)+disoel
! enddo
! enddo
!
! do i=1,ov%nnode
! if (np(i).ne.0) then
! diso(i)=diso(i)/np(i)
! else
! diso(i)=0
! print*,'error np',i,ov%x(i),ov%y(i),ov%z(i)
! endif
! enddo
!
!3333 continue
if (params%debug>=1.and.iproc.eq.0) then
write(*,'(a,f10.7,1x,f10.7)') shift//'Isostatic velocity range = ',minval(diso)/params%dt,maxval(diso)/params%dt
endif
! Store the total displacement of the basal node plane
!if (params%isobc .and. iter.eq.1) zi%zisodisp=zi%zisodisp-work
if (params%isobc .and. iter.eq.1) zi%zisoinc=work
! transforms the displacements into velocities and add this contribution to the velocity
! solution of the Stokes equation before interpolation onto the surfaces and their advection
do i=1,ov%nnode
ov%wnodepreiso(i)=ov%wnode(i)
ov%wnode(i)=ov%wnode(i)-diso(i)/params%dt
enddo
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
!goto 1111
!
!! display results into a vtk file for debugging
!
!iunit=30
!open(unit=iunit,file='isostasy.vtk')
!write(iunit,'(a)')'# vtk DataFile Version 3.0'
!write(iunit,'(a)')'velocities'
!write(iunit,'(a)')'ASCII'
!write(iunit,'(a)')'DATASET UNSTRUCTURED_GRID'
!write(iunit,'(a7,i10,a6)')'POINTS ',ov%nnode,' float'
!
!do i=1,ov%nnode
!write(iunit,'(3f16.11)')ov%x(i),ov%y(i),ov%z(i)
!enddo
!
!write(iunit,'(A6, 2I10)') 'CELLS ',ov%nleaves,(1+8)*ov%nleaves
!do ie=1,ov%nleaves
!write(iunit,'(9I10)')8,ov%icon(1:8,ie)-1
!enddo
!
!write(iunit,'(A11, I10)') 'CELL_TYPES ',ov%nleaves
!do ie=1,ov%nleaves
! write(iunit,'(I2)')11 ! octree (8 nodes)
!end do
!
!write(iunit,'(a11,i10)')'POINT_DATA ',ov%nnode
!
!write(iunit,'(a)')'VECTORS iso float'
!do i=1,ov%nnode
! write(iunit,'(3e11.4)')0.,0.,-diso(i)/params%dt
!enddo
!
!write(iunit,'(a)')'VECTORS velo float'
!do i=1,ov%nnode
! write(iunit,'(3e11.4)')0.,0.,ov%wnode(i)
!enddo
!
!close (iunit)
!
!1111 continue
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
deallocate (np)
deallocate (diso)
deallocate (weight)
deallocate (work)
return
end subroutine isostasy
! SINFT
! taken from numerical recipes (see book for further information)
! subroutines called:
! NONE
SUBROUTINE DSINFT(Y,N)
common /vocal/ ivocal
REAL*8 WR,WI,WPR,WPI,WTEMP,THETA
double precision Y(N)
THETA=3.14159265358979D0/DBLE(N)
WR=1.0D0
WI=0.0D0
WPR=-2.0D0*DSIN(0.5D0*THETA)**2
WPI=DSIN(THETA)
Y(1)=0.0
M=N/2
DO 11 J=1,M
WTEMP=WR
WR=WR*WPR-WI*WPI+WR
WI=WI*WPR+WTEMP*WPI+WI
Y1=WI*(Y(J+1)+Y(N-J+1))
Y2=0.5*(Y(J+1)-Y(N-J+1))
Y(J+1)=Y1+Y2
Y(N-J+1)=Y1-Y2
11 CONTINUE
CALL DREALFT(Y,M,+1)
SUM=0.0
Y(1)=0.5*Y(1)
Y(2)=0.0
DO 12 J=1,N-1,2
SUM=SUM+Y(J)
Y(J)=Y(J+1)
Y(J+1)=SUM
12 CONTINUE
RETURN
END
! REALFT
! taken from numerical recipes (see book for further information)
! subroutines called:
! NONE
SUBROUTINE DREALFT(DATA,N,ISIGN)
common /vocal/ ivocal
REAL*8 WR,WI,WPR,WPI,WTEMP,THETA
double precision DATA(*)
THETA=6.28318530717959D0/2.0D0/DBLE(N)
C1=0.5
IF (ISIGN.EQ.1) THEN
C2=-0.5
CALL DFOUR1(DATA,N,+1)
ELSE
C2=0.5
THETA=-THETA
ENDIF
WPR=-2.0D0*DSIN(0.5D0*THETA)**2
WPI=DSIN(THETA)
WR=1.0D0+WPR
WI=WPI
N2P3=2*N+3
DO 11 I=2,N/2+1
I1=2*I-1
I2=I1+1
I3=N2P3-I2
I4=I3+1
WRS=SNGL(WR)
WIS=SNGL(WI)
H1R=C1*(DATA(I1)+DATA(I3))
H1I=C1*(DATA(I2)-DATA(I4))
H2R=-C2*(DATA(I2)+DATA(I4))
H2I=C2*(DATA(I1)-DATA(I3))
DATA(I1)=H1R+WRS*H2R-WIS*H2I
DATA(I2)=H1I+WRS*H2I+WIS*H2R
DATA(I3)=H1R-WRS*H2R+WIS*H2I
DATA(I4)=-H1I+WRS*H2I+WIS*H2R
WTEMP=WR
WR=WR*WPR-WI*WPI+WR
WI=WI*WPR+WTEMP*WPI+WI
11 CONTINUE
IF (ISIGN.EQ.1) THEN
H1R=DATA(1)
DATA(1)=H1R+DATA(2)
DATA(2)=H1R-DATA(2)
ELSE
H1R=DATA(1)
DATA(1)=C1*(H1R+DATA(2))
DATA(2)=C1*(H1R-DATA(2))
CALL DFOUR1(DATA,N,-1)
ENDIF
RETURN
END
! FOUR1
! this routine is taken directly out of numerical recipes
! see the book for further information
! subroutines called:
! NONE
SUBROUTINE DFOUR1(DATA,NN,ISIGN)
common /vocal/ ivocal
REAL*8 WR,WI,WPR,WPI,WTEMP,THETA
double precision DATA(*)
N=2*NN
J=1
DO 11 I=1,N,2
IF(J.GT.I)THEN
TEMPR=DATA(J)
TEMPI=DATA(J+1)
DATA(J)=DATA(I)
DATA(J+1)=DATA(I+1)
DATA(I)=TEMPR
DATA(I+1)=TEMPI
ENDIF
M=N/2
1 IF ((M.GE.2).AND.(J.GT.M)) THEN
J=J-M
M=M/2
GO TO 1
ENDIF
J=J+M
11 CONTINUE
MMAX=2
2 IF (N.GT.MMAX) THEN
ISTEP=2*MMAX
THETA=6.28318530717959D0/(ISIGN*MMAX)
WPR=-2.D0*DSIN(0.5D0*THETA)**2
WPI=DSIN(THETA)
WR=1.D0
WI=0.D0
DO 13 M=1,MMAX,2
DO 12 I=M,N,ISTEP
J=I+MMAX
TEMPR=SNGL(WR)*DATA(J)-SNGL(WI)*DATA(J+1)
TEMPI=SNGL(WR)*DATA(J+1)+SNGL(WI)*DATA(J)
DATA(J)=DATA(I)-TEMPR
DATA(J+1)=DATA(I+1)-TEMPI
DATA(I)=DATA(I)+TEMPR
DATA(I+1)=DATA(I+1)+TEMPI
12 CONTINUE
WTEMP=WR
WR=WR*WPR-WI*WPI+WR
WI=WI*WPR+WTEMP*WPI+WI
13 CONTINUE
MMAX=ISTEP
GO TO 2
ENDIF
RETURN
END