Newer
Older
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! ||===\\ |
! || \\ |
! || || //==\\ || || //==|| ||/==\\ |
! || || || || || || || || || || |
! || // || || || || || || || |
! ||===// \\==// \\==\\ \\==\\ || |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! CHECK_DELAUNAY Apr. 2008 |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
subroutine check_delaunay (params,surface,is,istep,string,ref_count)
Dave Whipp
committed
use constants
!use mpi
implicit none
include 'mpif.h'
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
!------------------------------------------------------------------------------|
!(((((((((((((((( Purpose of the routine ))))))))))))))))))))))))))))))))))))))
!------------------------------------------------------------------------------|
! This routine builds an edge array between a set of particles on a surface.
! It uses the delaunay triangulation and then steps through the triangles
! to build the edge information.
! ed is the computed edge array
! nedge is the number of edges
! nedgepernode,nodenodenumber and nodenodenumber contain the list of edges
! that start from each node; for a given node i
! their number is nedgepernode(i), the edge number in the list of edges is
! nodeedgenumber(j,i) and the node at the end of the edge is
! nodenodenumber(j,i) for j=1,nedgepernode(i)
! this subroutine then updates the Delaunay triangulation around a set of points
! located on a surface in three dimensional space. A non Euclidian metrics is
! used that takes into account the divergence of normals attached to the points
! such that folding over of the surface is impossible
! The Delaunay triangumation is UPDATED, not reconstructed at each time step.
! First the delaunay triangulation is checked along each edge between two
! adjacent triangles using a generalized in-circle test based on the calculation
! of distances only; the test is based on an angle.
! where the test is positive, edge flipping takes place and all the arrays are
! permutated (icon, edge, and subsidiary arrays )
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine arguments ))))))))))))))))))))
!------------------------------------------------------------------------------|
type (parameters) params
type (sheet) surface
integer is
integer istep
character*(*) string
integer ref_count
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine internal variables )))))))))))))
!------------------------------------------------------------------------------|
integer nsurfacen
integer ntriangle
integer nedge
integer iedge,jedge
integer nnmax,nflip,counter
integer ie,inode,kp,kpp
integer inodep,inodepp
integer iproc,nproc,ierr
integer i1,i2,j1,j2,k,k12,k21,n1,n2,t1,t2,nn,j,jj,err
integer,dimension(:) ,allocatable :: nedgepernode
integer,dimension(:,:),allocatable :: nodenodenumber,nodeedgenumber
logical,dimension(:) ,allocatable :: icheck,icheckp
type (edge), dimension(:), allocatable :: ed
double precision dn1n2,dn1m1,dn1m2,dn2m1,dn2m2,dist1,dist2
double precision, external :: dist
character*72 :: shift
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
call mpi_comm_size (mpi_comm_world,nproc,ierr)
call mpi_comm_rank (mpi_comm_world,iproc,ierr)
shift=' '
!------------------------
! build edge information
!------------------------
nsurfacen=surface%nsurface
ntriangle=surface%nt
nedge=nsurfacen+ntriangle-1
nnmax=12 ! nnmax is maximum number of neighbours in triangulation (should be around 6 on average)
allocate (ed(nedge),stat=err)
allocate (nedgepernode(nsurfacen),stat=err)
allocate (nodenodenumber(nnmax,nsurfacen),stat=err)
allocate (nodeedgenumber(nnmax,nsurfacen),stat=err)
ed%t1=0
ed%t2=0
nedgepernode=0
iedge=0
do ie=1,ntriangle
do k=1,3
inode=surface%icon(k,ie)
kp=mod(k,3)+1
kpp=mod(k+1,3)+1
inodep=surface%icon(kp,ie)
inodepp=surface%icon(kpp,ie)
do j=1,nedgepernode(inodep)
if (nodenodenumber(j,inodep).eq.inode) then
jedge=nodeedgenumber(j,inodep)
ed(jedge)%m2=inodepp
ed(jedge)%t2=ie
goto 111
enddo
iedge=iedge+1
if (iedge.gt.nedge) call stop_run ('too many edges in delaunay2$')
nedgepernode(inode)=nedgepernode(inode)+1
if (nedgepernode(inode).gt.nnmax) then
if (iproc.eq.0) write (8,*) 'node',inode,'has',nedgepernode(inode),'neighbours'
print *,'Node ',inode,' has ',nedgepernode(inode),'neighbors'
call stop_run ('too many neighbours$')
endif
nodenodenumber(nedgepernode(inode),inode)=inodep
nodeedgenumber(nedgepernode(inode),inode)=iedge
ed(iedge)%n1=inode
ed(iedge)%n2=inodep
ed(iedge)%m1=inodepp
ed(iedge)%t1=ie
111 continue
enddo
enddo
if (iedge/=nedge) then
if (iproc.eq.0) write (8,*) 'iedge=',iedge,'nedge=',nedge
call stop_run ('pb_b in check_delaunay$')
endif
!--------------------------------------------------
! check state of triangulation with in-circle test
!--------------------------------------------------
allocate (icheck(nedge),stat=err)
allocate (icheckp(nedge),stat=err)
nflip=1
counter=0
do while (nflip > 0)
counter=counter+1
icheck=.false.
icheckp=.false.
do iedge=1+iproc,nedge,nproc
if ((ed(iedge)%t1.gt.0) .and. (ed(iedge)%t2.gt.0)) then
i1=ed(iedge)%n1
i2=ed(iedge)%n2
j1=ed(iedge)%m1
j2=ed(iedge)%m2
dn1n2=dist(surface%x(i1),surface%x(i2),surface%y(i1),surface%y(i2), &
surface%z(i1),surface%z(i2))
!dn1n2=dist(surface%x(i1),surface%x(i2),surface%y(i1),surface%y(i2), &
! surface%z(i1),surface%z(i2),params%distance_exponent)
dn1m1=dist(surface%x(i1),surface%x(j1),surface%y(i1),surface%y(j1), &
surface%z(i1),surface%z(j1))
!dn1m1=dist(surface%x(i1),surface%x(j1),surface%y(i1),surface%y(j1), &
! surface%z(i1),surface%z(j1),params%distance_exponent)
dn1m2=dist(surface%x(i1),surface%x(j2),surface%y(i1),surface%y(j2), &
surface%z(i1),surface%z(j2))
!dn1m2=dist(surface%x(i1),surface%x(j2),surface%y(i1),surface%y(j2), &
! surface%z(i1),surface%z(j2),params%distance_exponent)
dn2m1=dist(surface%x(i2),surface%x(j1),surface%y(i2),surface%y(j1), &
surface%z(i2),surface%z(j1))
!dn2m1=dist(surface%x(i2),surface%x(j1),surface%y(i2),surface%y(j1), &
! surface%z(i2),surface%z(j1),params%distance_exponent)
dn2m2=dist(surface%x(i2),surface%x(j2),surface%y(i2),surface%y(j2), &
surface%z(i2),surface%z(j2))
!dn2m2=dist(surface%x(i2),surface%x(j2),surface%y(i2),surface%y(j2), &
! surface%z(i2),surface%z(j2),params%distance_exponent)
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
dist1=(dn1m1**2+dn2m1**2-dn1n2**2)/(2.d0*dn1m1*dn2m1)
dist2=(dn1m2**2+dn2m2**2-dn1n2**2)/(2.d0*dn1m2*dn2m2)
dist1=acos(dist1)
dist2=acos(dist2)
icheckp(iedge) = (dist1+dist2.gt.pi) ! incircle test
endif
enddo
call mpi_allreduce (icheckp,icheck,nedge,mpi_logical,mpi_lor,mpi_comm_world,ierr)
nflip = count(icheck)
if (iproc.eq.0 .and. params%debug>=1) write(*,'(a,i2,a,i5,a)') shift//'S.',is,':', nflip,' flips in delaunay2'
do iedge=1,nedge
if (icheck(iedge)) then
!--------------------------------------------------------
! finds where n2 is in icon(:,t1) and n1 is in icon(:,t2)
!--------------------------------------------------------
do k=1,3
if (surface%icon(k,ed(iedge)%t1).eq.ed(iedge)%n2) k12=k
if (surface%icon(k,ed(iedge)%t2).eq.ed(iedge)%n1) k21=k
enddo
!--------------------------------------------------------
! permutates nodal info in edge
!--------------------------------------------------------
n1=ed(iedge)%n1
n2=ed(iedge)%n2
ed(iedge)%n1=ed(iedge)%m2
ed(iedge)%n2=ed(iedge)%m1
ed(iedge)%m1=n1
ed(iedge)%m2=n2
!--------------------------------------------------------
! permutates nodal info in icon
!--------------------------------------------------------
t1=ed(iedge)%t1
t2=ed(iedge)%t2
surface%icon(k12,t1)=ed(iedge)%n1
surface%icon(k21,t2)=ed(iedge)%n2
!--------------------------------------------------------
! updates info in nedgepernode, nodenodenumber and nodeedgenumber
!--------------------------------------------------------
nn=ed(iedge)%m1
do j=1,nedgepernode(nn)
if (nodeedgenumber(j,nn).eq.iedge) then
do jj=j+1,nedgepernode(nn)
nodenodenumber(jj-1,nn)=nodenodenumber(jj,nn)
nodeedgenumber(jj-1,nn)=nodeedgenumber(jj,nn)
enddo
endif
enddo
nedgepernode(nn)=nedgepernode(nn)-1
nn=ed(iedge)%n1
nedgepernode(nn)=nedgepernode(nn)+1
nodenodenumber(nedgepernode(nn),nn)=ed(iedge)%n2
nodeedgenumber(nedgepernode(nn),nn)=iedge
!--------------------------------------------------------
! updates triangle info in adjacent edges
!--------------------------------------------------------
nn=ed(iedge)%n1
do j=1,nedgepernode(nn)
if (nodenodenumber(j,nn).eq.ed(iedge)%m1) then
ed(nodeedgenumber(j,nn))%t2=ed(iedge)%t1
ed(nodeedgenumber(j,nn))%m2=ed(iedge)%n2
endif
enddo
nn=ed(iedge)%m1
do j=1,nedgepernode(nn)
if (nodenodenumber(j,nn).eq.ed(iedge)%n1) then
ed(nodeedgenumber(j,nn))%t1=ed(iedge)%t1
ed(nodeedgenumber(j,nn))%m1=ed(iedge)%n2
endif
enddo
nn=ed(iedge)%n2
do j=1,nedgepernode(nn)
if (nodenodenumber(j,nn).eq.ed(iedge)%m2) then
ed(nodeedgenumber(j,nn))%t2=ed(iedge)%t2
ed(nodeedgenumber(j,nn))%m2=ed(iedge)%n1
endif
enddo
nn=ed(iedge)%m2
do j=1,nedgepernode(nn)
if (nodenodenumber(j,nn).eq.ed(iedge)%n2) then
ed(nodeedgenumber(j,nn))%t1=ed(iedge)%t2
ed(nodeedgenumber(j,nn))%m1=ed(iedge)%n1
endif
enddo
nn=ed(iedge)%n1
do j=1,nedgepernode(nn)
if (nodenodenumber(j,nn).eq.ed(iedge)%m2) then
ed(nodeedgenumber(j,nn))%m1=ed(iedge)%n2
endif
enddo
nn=ed(iedge)%m1
do j=1,nedgepernode(nn)
if (nodenodenumber(j,nn).eq.ed(iedge)%n2) then
ed(nodeedgenumber(j,nn))%m2=ed(iedge)%n1
endif
enddo
nn=ed(iedge)%n2
do j=1,nedgepernode(nn)
if (nodenodenumber(j,nn).eq.ed(iedge)%m1) then
ed(nodeedgenumber(j,nn))%m1=ed(iedge)%n1
endif
enddo
nn=ed(iedge)%m2
do j=1,nedgepernode(nn)
if (nodenodenumber(j,nn).eq.ed(iedge)%n1) then
ed(nodeedgenumber(j,nn))%m2=ed(iedge)%n2
endif
enddo
endif
enddo
if (params%debug .ge.2) call output_surf(surface,is,string,istep,ref_count)
end do
deallocate (icheck)
deallocate (icheckp)
deallocate (ed)
deallocate (nedgepernode)
deallocate (nodenodenumber)
deallocate (nodeedgenumber)
end subroutine
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
function dist (x1,x2,y1,y2,z1,z2)
!function dist (x1,x2,y1,y2,z1,z2,distance_exponent)
implicit none
double precision dist
double precision x1,y1,z1,x2,y2,z2
double precision xn1,yn1,zn1,xn2,yn2,zn2
!double precision distance_exponent
!prod=xxn(i1)*xxn(i2)+yyn(i1)*yyn(i2)+zzn(i1)*zzn(i2)
!dist=sqrt(x**2+y**2+z**2)/sqrt(prod)
!dist=sqrt(x**2+y**2+z**2)/prod
!dist=sqrt(x**2+y**2+z**2)/prod**distance_exponent
dist=sqrt((x2-x1)**2+(y2-y1)**2+(z2-z1)**2)
return
end
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|