Newer
Older
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! ||===\\ |
! || \\ |
! || || //==\\ || || //==|| ||/==\\ |
! || || || || || || || || || || |
! || // || || || || || || || |
! ||===// \\==// \\==\\ \\==\\ || |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! MAKE_MATRIX Jun. 2007 |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
subroutine make_matrix (params,ndof,ael,bel,icon,xg,yg,zg,kfix,viscosity0, &
density,penalty,expon,activationenergy,expansion, &
diffusivity,heat,plasticity_type,plasticity_parameters,&
unode,vnode,wnode,temp,pressure,strain,is_plastic, &
nnode,ffff,r0,s0,t0,rst,ileaves,eviscosity,vbounded, &
yield_ratio,threadinfo,weight)
!------------------------------------------------------------------------------|
!(((((((((((((((( Purpose of the routine ))))))))))))))))))))))))))))))))))))))
!------------------------------------------------------------------------------|
! note that this routine is called to create the FE matrix and rhs vector
! for both the Stokes (ndof=3) and Energy equations (ndof=1)
! mpe : number of nodes per element (8)
! ndof : number of degrees of freedom per node (3 or 1)
! ael : computed finite element matrix
! bel : computed rhs vector
! icon : connectivity array for the current element
! xg,yg,zg : global coordinate arrays of length nnode
! kfix : bc array of length ndof*nnode
! (kfix=1 means the dof is fixed to the value stored in velo)
! viscosity : viscosity
! density : density at zero temperature (in C)
! penalty : incompressibility penalty factor
! penaltyg : penalty factor to impose bc
! expon : nonlinear viscosity exponent
! unode,vnode,wnode : velocity array (obtained from previous time step or at
! least containing the proper velocity at the fixed dofs)
! strain : total accumulated strain as interpolated from the 3D cloud
! nnode : number of nodes
! f : global rhs vector
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine arguments ))))))))))))))))))))
!------------------------------------------------------------------------------|
Dave Whipp
committed
use constants
!use mpi
Dave Whipp
committed
use threads
include 'mpif.h'
type(parameters) params
integer ndof
double precision ael(params%mpe*ndof,params%mpe*ndof)
double precision bel(params%mpe*ndof)
integer icon(params%mpe)
double precision xg(nnode),yg(nnode),zg(nnode)
integer kfix(nnode*ndof)
double precision viscosity0
double precision density
double precision penalty
double precision expon
double precision activationenergy
double precision expansion
double precision diffusivity
double precision heat
character (len=8) plasticity_type
double precision plasticity_parameters(9)
double precision unode(nnode),vnode(nnode),wnode(nnode)
double precision temp(nnode)
double precision pressure
double precision strain(nnode)
integer nnode
double precision ffff(nnode*ndof)
double precision r0,s0,t0,rst
integer ileaves
double precision eviscosity
logical vbounded
double precision :: yield_ratio
logical is_plastic
type (thread) threadinfo
double precision weight
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine internal variables )))))))))))))
!------------------------------------------------------------------------------|
logical is_plastic_temp,flag_vrm_pb
integer i,j,k,k1,k2,k3,ii,jj,ij,iint,nint,nb,err,ic
integer iproc,nproc,ierr,mpe
double precision eps,yield,fail,fixt,yieldnow
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
double precision r,s,t,w,volume,vol
double precision tr,straintot
double precision xcond,xmass,aref
double precision exx,eyy,ezz,exy,eyz,ezx,e2d,e3d
double precision f1(3,3),defgrad(3,3)
double precision detf1,detf,e2dref,viscomean
double precision viscosity,compressibility,temperature
double precision velox,veloy,veloz,tau,uvwnorm,xmin,xmax,ymin,ymax
double precision zmin,zmax,dx,dy,dz,alpha,J2d,J3d
double precision jcb(3,3),jcbi(3,3),jcbp(3,3),jcbip(3,3),d(6,6),dl(6,6)
double precision,dimension(:),allocatable :: x,y,z,tnode,be
double precision,dimension(:),allocatable :: h,dhdr,dhds,dhdt,ht
double precision,dimension(:),allocatable :: dhdx,dhdy,dhdz
double precision,dimension(:),allocatable :: vel
double precision,dimension(:,:),allocatable :: b,bd,bl,aelp
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------
call mpi_comm_size (mpi_comm_world,nproc,ierr)
call mpi_comm_rank (mpi_comm_world,iproc,ierr)
compressibility=penalty
mpe=params%mpe
eps=tiny(eps)
nint=8
nb=6
if (ndof.eq.1) nb=3
allocate (x(mpe),stat=err) ; if (err.ne.0) call stop_run ('Error alloc x in make_matrix$')
allocate (y(mpe),stat=err) ; if (err.ne.0) call stop_run ('Error alloc y in make_matrix$')
allocate (z(mpe),stat=err) ; if (err.ne.0) call stop_run ('Error alloc z in make_matrix$')
allocate (tnode(mpe),stat=err) ; if (err.ne.0) call stop_run ('Error alloc tnode in make_matrix$')
allocate (be(mpe*ndof),stat=err) ; if (err.ne.0) call stop_run ('Error alloc be in make_matrix$')
allocate (h(mpe),stat=err) ; if (err.ne.0) call stop_run ('Error alloc h in make_matrix$')
allocate (dhdr(mpe),stat=err) ; if (err.ne.0) call stop_run ('Error alloc dhdr in make_matrix$')
allocate (dhds(mpe),stat=err) ; if (err.ne.0) call stop_run ('Error alloc dhds in make_matrix$')
allocate (dhdt(mpe),stat=err) ; if (err.ne.0) call stop_run ('Error alloc dhdt in make_matrix$')
allocate (ht(mpe),stat=err) ; if (err.ne.0) call stop_run ('Error alloc ht in make_matrix$')
allocate (dhdx(mpe),stat=err) ; if (err.ne.0) call stop_run ('Error alloc dhdx in make_matrix$')
allocate (dhdy(mpe),stat=err) ; if (err.ne.0) call stop_run ('Error alloc dhdy in make_matrix$')
allocate (dhdz(mpe),stat=err) ; if (err.ne.0) call stop_run ('Error alloc dhdz in make_matrix$')
allocate (b(ndof*mpe,nb),stat=err) ; if (err.ne.0) call stop_run ('Error alloc b in make_matrix$')
allocate (bd(ndof*mpe,nb),stat=err) ; if (err.ne.0) call stop_run ('Error alloc bd in make_matrix$')
allocate (bl(ndof*mpe,nb),stat=err) ; if (err.ne.0) call stop_run ('Error alloc bl in make_matrix$')
allocate (aelp(mpe*ndof,mpe*ndof),stat=err) ; if (err.ne.0) call stop_run ('Error alloc aelp in make_matrix$')
allocate (vel(mpe*ndof),stat=err) ; if (err.ne.0) call stop_run ('Error alloc vel in make_matrix$')
do k=1,mpe
x(k)=xg(icon(k))
y(k)=yg(icon(k))
Dave Whipp
committed
z(k)=zg(icon(k))*params%vex
tnode(k)=temp(icon(k))
enddo
ael=0.d0
aelp=0.d0
be=0.d0
bel=0.d0
bl=0.d0
vol=0.d0
!-------------------------------------------------------------------------------
! ndof=3
!-------------------------------------------------------------------------------
if (ndof.eq.1) goto 1111
! first add viscosity term (8 point integration)
is_plastic=.false.
is_plastic_temp=.false.
viscomean=0.d0
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
do iint=1,nint
r=r0+rst*(rr(iint)+1.d0)/2.d0
s=s0+rst*(ss(iint)+1.d0)/2.d0
t=t0+rst*(tt(iint)+1.d0)/2.d0
w=ww(iint)
call compute_dhdx_dhdy_dhdz (mpe,r,s,t,x,y,z,dhdx,dhdy,dhdz,volume)
h(1)=(1.d0-r)*(1.d0-s)*(1.d0-t)/8.d0
h(2)=(1.d0+r)*(1.d0-s)*(1.d0-t)/8.d0
h(3)=(1.d0-r)*(1.d0+s)*(1.d0-t)/8.d0
h(4)=(1.d0+r)*(1.d0+s)*(1.d0-t)/8.d0
h(5)=(1.d0-r)*(1.d0-s)*(1.d0+t)/8.d0
h(6)=(1.d0+r)*(1.d0-s)*(1.d0+t)/8.d0
h(7)=(1.d0-r)*(1.d0+s)*(1.d0+t)/8.d0
h(8)=(1.d0+r)*(1.d0+s)*(1.d0+t)/8.d0
temperature=0.d0
do k=1,mpe
temperature=temperature+h(k)*tnode(k)
enddo
exx=0.d0
eyy=0.d0
ezz=0.d0
exy=0.d0
eyz=0.d0
ezx=0.d0
do k=1,mpe
ic=icon(k)
exx=exx+dhdx(k)*unode(ic)
eyy=eyy+dhdy(k)*vnode(ic)
ezz=ezz+dhdz(k)*wnode(ic)
exy=exy+(dhdx(k)*vnode(ic)+dhdy(k)*unode(ic))/2.d0
eyz=eyz+(dhdy(k)*wnode(ic)+dhdz(k)*vnode(ic))/2.d0
ezx=ezx+(dhdz(k)*unode(ic)+dhdx(k)*wnode(ic))/2.d0
enddo
Dave Whipp
committed
call deviatoric (params%invariants_2d,exx,eyy,ezz,exy,eyz,ezx)
J2d=second_invariant(exx,eyy,ezz,exy,eyz,ezx)
J3d=third_invariant (exx,eyy,ezz,exy,eyz,ezx)
e2d=0.d0
if (J2d.ne.0.d0) e2d=sqrt(J2d)
straintot=0.d0
do k=1,mpe
straintot=straintot+h(k)*strain(icon(k))
enddo
! if (straintot.gt.plasticity_parameters(3)) &
! write(*,'(4es15.6)') sum(x)/8.d0,sum(y)/8.d0,sum(z)/8.d0,straintot
e2dref=1.d0
viscosity=viscosity0
if (e2d.ne.0.d0 .and. expon.ne.1.d0) viscosity=viscosity*(e2d/e2dref)**(1.d0/expon-1.d0)
viscosity=viscosity*exp(activationenergy/(expon*Rgas*(temperature*params%tempscale+273.15d0)))
if (trim(plasticity_type)/='No') &
Dave Whipp
committed
call vrm (params,J2d,J3d,compressibility,viscosity,pressure, &
plasticity_parameters,plasticity_type,is_plastic_temp,flag_vrm_pb, &
is_plastic=is_plastic.or.is_plastic_temp
if (params%viscositymax.ge.0.d0) then
viscosity=min(params%viscositymax,viscosity)
end if
if (params%viscositymin.ge.0.d0) then
viscosity=max(params%viscositymin,viscosity)
end if
yieldnow=2.d0*viscosity*e2d
yield_ratio=yield_ratio+yieldnow/yield
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
viscomean=viscomean+viscosity
d=0.d0
d(1,1)=viscosity*2.d0
d(2,2)=viscosity*2.d0
d(3,3)=viscosity*2.d0
d(4,4)=viscosity
d(5,5)=viscosity
d(6,6)=viscosity
do k=1,mpe
k1=(k-1)*3+1
k2=(k-1)*3+2
k3=(k-1)*3+3
b(k1,1)=dhdx(k)
b(k2,1)=0.d0
b(k3,1)=0.d0
b(k1,2)=0.d0
b(k2,2)=dhdy(k)
b(k3,2)=0.d0
b(k1,3)=0.d0
b(k2,3)=0.d0
b(k3,3)=dhdz(k)
b(k1,4)=0.d0
b(k2,4)=dhdz(k)
b(k3,4)=dhdy(k)
b(k1,5)=dhdz(k)
b(k2,5)=0.d0
b(k3,5)=dhdx(k)
b(k1,6)=dhdy(k)
b(k2,6)=dhdx(k)
b(k3,6)=0.d0
enddo
do k=1,mpe
k1=(k-1)*3+1
k2=(k-1)*3+2
k3=(k-1)*3+3
bl(k1,1)=bl(k1,1)+dhdx(k)*volume*w
bl(k2,2)=bl(k2,2)+dhdy(k)*volume*w
bl(k3,3)=bl(k3,3)+dhdz(k)*volume*w
bl(k2,4)=bl(k2,4)+dhdz(k)*volume*w
bl(k3,4)=bl(k3,4)+dhdy(k)*volume*w
bl(k1,5)=bl(k1,5)+dhdz(k)*volume*w
bl(k3,5)=bl(k3,5)+dhdx(k)*volume*w
bl(k1,6)=bl(k1,6)+dhdy(k)*volume*w
bl(k2,6)=bl(k2,6)+dhdx(k)*volume*w
enddo
vol=vol+volume*w
weight=weight+volume*w*density
do j=1,mpe*ndof
do i=1,6
bd(j,i)=0.d0
do k=1,6
bd(j,i)=bd(j,i)+b(j,k)*d(k,i)
enddo
enddo
enddo
do j=1,mpe*ndof
do i=1,mpe*ndof
do k=1,6
ael(i,j)=ael(i,j)+b(i,k)*bd(j,k)*volume*w
enddo
enddo
enddo
do j=1,mpe
jj=(j-1)*ndof+ndof
!bel(jj)=bel(jj)+h(j)*volume*w*density*(1.d0-expansion*temperature*params%tempscale)
bel(jj)=bel(jj)+h(j)*volume*w*density
enddo
enddo
! second add compressibility term (1 point integration)
viscomean=viscomean/nint
yield_ratio=yield_ratio/nint
eviscosity=viscomean
!viscomean=1.d0
dl=0.d0
Dave Whipp
committed
if (params%bulkvisc) then
dl(1,1)=compressibility
dl(1,2)=compressibility
dl(1,3)=compressibility
dl(2,1)=compressibility
dl(2,2)=compressibility
dl(2,3)=compressibility
dl(3,1)=compressibility
dl(3,2)=compressibility
dl(3,3)=compressibility
else
dl(1,1)=compressibility*viscomean
dl(1,2)=compressibility*viscomean
dl(1,3)=compressibility*viscomean
dl(2,1)=compressibility*viscomean
dl(2,2)=compressibility*viscomean
dl(2,3)=compressibility*viscomean
dl(3,1)=compressibility*viscomean
dl(3,2)=compressibility*viscomean
dl(3,3)=compressibility*viscomean
endif
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
r=0.d0
s=0.d0
t=0.d0
w=8.d0
!added by Jean on 13/2/08
! r=r0+rst*(r+1.d0)/2.d0
! s=s0+rst*(s+1.d0)/2.d0
! t=t0+rst*(t+1.d0)/2.d0
! w=w
! up to here
! was wrong...
call compute_dhdx_dhdy_dhdz (mpe,r,s,t,x,y,z,dhdx,dhdy,dhdz,volume)
!----------effective viscosity--------------------------
!exx=0.d0
!eyy=0.d0
!ezz=0.d0
!exy=0.d0
!eyz=0.d0
!ezx=0.d0
!do k=1,mpe
! ic=icon(k)
! exx=exx+dhdx(k)*unode(ic)
! eyy=eyy+dhdy(k)*vnode(ic)
! ezz=ezz+dhdz(k)*wnode(ic)
! exy=exy+(dhdx(k)*vnode(ic)+dhdy(k)*unode(ic))/2.d0
! eyz=eyz+(dhdy(k)*wnode(ic)+dhdz(k)*vnode(ic))/2.d0
! ezx=ezx+(dhdz(k)*unode(ic)+dhdx(k)*wnode(ic))/2.d0
!enddo
!call deviatoric (exx,eyy,ezz,exy,eyz,ezx)
!
!J2d=second_invariant (exx,eyy,ezz,exy,eyz,ezx)
!J3d=third_invariant (exx,eyy,ezz,exy,eyz,ezx)
!
!e2d=0.d0
!if (J2d.ne.0.d0) e2d=sqrt(J2d)
!
!e2dref=1.d0
!eviscosity=viscosity0
!if (e2d.ne.0.d0 .and. expon.ne.1.d0) eviscosity=eviscosity*(e2d/e2dref)**(1.d0/expon-1.d0)
!viscosity=viscosity*exp(activationenergy/(expon*Rgas*(temperature*params%tempscale+273.15d0)))
!
!if (trim(plasticity_type)/='No') &
!call vrm(J2d,J3d,eviscosity,pressure,plasticity_parameters,plasticity_type,is_plastic_dummy,flag_vrm_pb)
!----------effective viscosity--------------------------
do k=1,mpe
k1=(k-1)*3+1
k2=(k-1)*3+2
k3=(k-1)*3+3
b(k1,1)=dhdx(k)
b(k2,1)=0.d0
b(k3,1)=0.d0
b(k1,2)=0.d0
b(k2,2)=dhdy(k)
b(k3,2)=0.d0
b(k1,3)=0.d0
b(k2,3)=0.d0
b(k3,3)=dhdz(k)
b(k1,4)=0.d0
b(k2,4)=dhdz(k)
b(k3,4)=dhdy(k)
b(k1,5)=dhdz(k)
b(k2,5)=0.d0
b(k3,5)=dhdx(k)
b(k1,6)=dhdy(k)
b(k2,6)=dhdx(k)
b(k3,6)=0.d0
enddo
do j=1,mpe*ndof
do i=1,6
bd(j,i)=0.d0
do k=1,6
bd(j,i)=bd(j,i)+b(j,k)*dl(k,i)
enddo
enddo
enddo
do j=1,mpe*ndof
do i=1,mpe*ndof
do k=1,6
ael(i,j)=ael(i,j)+bd(i,k)*b(j,k)*volume*w
enddo
enddo
enddo
!do i=1,mpe*ndof
! do j=1,mpe*ndof
! if (abs(ael(i,j)-ael(j,i))>eps) stop 'Ael po symmetric'
! end do
!end do
! third add fixed velocity boundary conditions
do ii=1,mpe
do k=1,ndof
ij=(icon(ii)-1)*ndof+k
if (kfix(ij).eq.1) then
if (k.eq.1) fixt=unode(icon(ii))
if (k.eq.2) fixt=vnode(icon(ii))
if (k.eq.3) fixt=wnode(icon(ii))
i=(ii-1)*ndof+k
aref=ael(i,i)
do j=1,mpe*ndof
bel(j)=bel(j)-ael(j,i)*fixt
ael(i,j)=0.d0
ael(j,i)=0.d0
enddo
ael(i,i)=aref
bel(i)=aref*fixt
! ael(i,i)=1.d0*penaltyg
! bel(i)=fixt*penaltyg
endif
enddo
enddo
goto 1112
1111 continue
!-------------------------------------------------------------------------------
! temperature calculations
!-------------------------------------------------------------------------------
alpha=1.d0
do iint=1,nint
r=r0+rst*(rr(iint)+1.d0)/2.d0
s=s0+rst*(ss(iint)+1.d0)/2.d0
t=t0+rst*(tt(iint)+1.d0)/2.d0
w=ww(iint)
h(1)=(1.d0-r)*(1.d0-s)*(1.d0-t)/8.d0
h(2)=(1.d0+r)*(1.d0-s)*(1.d0-t)/8.d0
h(3)=(1.d0-r)*(1.d0+s)*(1.d0-t)/8.d0
h(4)=(1.d0+r)*(1.d0+s)*(1.d0-t)/8.d0
h(5)=(1.d0-r)*(1.d0-s)*(1.d0+t)/8.d0
h(6)=(1.d0+r)*(1.d0-s)*(1.d0+t)/8.d0
h(7)=(1.d0-r)*(1.d0+s)*(1.d0+t)/8.d0
h(8)=(1.d0+r)*(1.d0+s)*(1.d0+t)/8.d0
velox=0.d0
veloy=0.d0
veloz=0.d0
do k=1,mpe
ic=icon(k)
velox=velox+h(k)*unode(ic)
veloy=veloy+h(k)*vnode(ic)
veloz=veloz+h(k)*wnode(ic)
enddo
dhdr(1)=-(1.d0-s)*(1.d0-t)/8.d0
dhdr(2)=(1.d0-s)*(1.d0-t)/8.d0
dhdr(3)=-(1.d0+s)*(1.d0-t)/8.d0
dhdr(4)=(1.d0+s)*(1.d0-t)/8.d0
dhdr(5)=-(1.d0-s)*(1.d0+t)/8.d0
dhdr(6)=(1.d0-s)*(1.d0+t)/8.d0
dhdr(7)=-(1.d0+s)*(1.d0+t)/8.d0
dhdr(8)=(1.d0+s)*(1.d0+t)/8.d0
dhds(1)=-(1.d0-r)*(1.d0-t)/8.d0
dhds(2)=-(1.d0+r)*(1.d0-t)/8.d0
dhds(3)=(1.d0-r)*(1.d0-t)/8.d0
dhds(4)=(1.d0+r)*(1.d0-t)/8.d0
dhds(5)=-(1.d0-r)*(1.d0+t)/8.d0
dhds(6)=-(1.d0+r)*(1.d0+t)/8.d0
dhds(7)=(1.d0-r)*(1.d0+t)/8.d0
dhds(8)=(1.d0+r)*(1.d0+t)/8.d0
dhdt(1)=-(1.d0-r)*(1.d0-s)/8.d0
dhdt(2)=-(1.d0+r)*(1.d0-s)/8.d0
dhdt(3)=-(1.d0-r)*(1.d0+s)/8.d0
dhdt(4)=-(1.d0+r)*(1.d0+s)/8.d0
dhdt(5)=(1.d0-r)*(1.d0-s)/8.d0
dhdt(6)=(1.d0+r)*(1.d0-s)/8.d0
dhdt(7)=(1.d0-r)*(1.d0+s)/8.d0
dhdt(8)=(1.d0+r)*(1.d0+s)/8.d0
jcb=0.
do k=1,mpe
jcb(1,1)=jcb(1,1)+dhdr(k)*x(k)
jcb(1,2)=jcb(1,2)+dhdr(k)*y(k)
jcb(1,3)=jcb(1,3)+dhdr(k)*z(k)
jcb(2,1)=jcb(2,1)+dhds(k)*x(k)
jcb(2,2)=jcb(2,2)+dhds(k)*y(k)
jcb(2,3)=jcb(2,3)+dhds(k)*z(k)
jcb(3,1)=jcb(3,1)+dhdt(k)*x(k)
jcb(3,2)=jcb(3,2)+dhdt(k)*y(k)
jcb(3,3)=jcb(3,3)+dhdt(k)*z(k)
enddo
volume=jcb(1,1)*jcb(2,2)*jcb(3,3) &
+jcb(1,2)*jcb(2,3)*jcb(3,1) &
+jcb(2,1)*jcb(3,2)*jcb(1,3) &
-jcb(1,3)*jcb(2,2)*jcb(3,1) &
-jcb(1,2)*jcb(2,1)*jcb(3,3) &
-jcb(2,3)*jcb(3,2)*jcb(1,1)
if (volume.le.eps) then
if (iproc.eq.0) call write_error_vtk (ileaves,volume,icon,x,y,z)
call stop_run('Element bow-tied or collapsed in make_matrix temperature$')
endif
jcbi(1,1)=(jcb(2,2)*jcb(3,3)-jcb(2,3)*jcb(3,2))/volume
jcbi(2,1)=(jcb(2,3)*jcb(3,1)-jcb(2,1)*jcb(3,3))/volume
jcbi(3,1)=(jcb(2,1)*jcb(3,2)-jcb(2,2)*jcb(3,1))/volume
jcbi(1,2)=(jcb(1,3)*jcb(3,2)-jcb(1,2)*jcb(3,3))/volume
jcbi(2,2)=(jcb(1,1)*jcb(3,3)-jcb(1,3)*jcb(3,1))/volume
jcbi(3,2)=(jcb(1,2)*jcb(3,1)-jcb(1,1)*jcb(3,2))/volume
jcbi(1,3)=(jcb(1,2)*jcb(2,3)-jcb(1,3)*jcb(2,2))/volume
jcbi(2,3)=(jcb(1,3)*jcb(2,1)-jcb(1,1)*jcb(2,3))/volume
jcbi(3,3)=(jcb(1,1)*jcb(2,2)-jcb(1,2)*jcb(2,1))/volume
do k=1,mpe
do i=1,3
b(k,i)=jcbi(i,1)*dhdr(k)+jcbi(i,2)*dhds(k)+jcbi(i,3)*dhdt(k)
enddo
enddo
vol=vol+volume*w
uvwnorm=velox**2+veloy**2+veloz**2
xmin=minval(x)
xmax=maxval(x)
dx=xmax-xmin
ymin=minval(y)
ymax=maxval(y)
dy=ymax-ymin
zmin=minval(z)
zmax=maxval(z)
dz=zmax-zmin
if (uvwnorm.lt.tiny(uvwnorm)) then
tau=0.d0
else
tau=(abs(velox)*dx+abs(veloy)*dy+abs(veloz)*dz)/sqrt(15.d0)/uvwnorm
endif
do k=1,mpe
ht(k)=h(k)+tau*(velox*b(k,1)+veloy*b(k,2)+veloz*b(k,3))
enddo
do j=1,mpe
bel(j)=bel(j)+h(j)*params%dt*heat*volume*w
do i=1,mpe
! xcond=diffusivity*(b(i,1)*b(j,1)+b(i,2)*b(j,2)+b(i,3)*b(j,3))*volume
xcond=diffusivity*(b(i,1)*b(j,1)+b(i,2)*b(j,2)+b(i,3)*b(j,3))*volume &
+ht(i)*(velox*b(j,1)+veloy*b(j,2)+veloz*b(j,3))*volume
xmass=h(i)*h(j)*volume
ael(i,j)=ael(i,j)+(xmass+params%dt*xcond*alpha)*w
aelp(i,j)=aelp(i,j)+(xmass-params%dt*xcond*(1.d0-alpha))*w
enddo
enddo
enddo
do i=1,mpe
do j=1,mpe
bel(i)=bel(i)+aelp(i,j)*temp(icon(j))
enddo
enddo
! third add fixed temperature boundary conditions
do i=1,mpe
ic=icon(i)
if (kfix(ic).eq.1) then
fixt=temp(ic)
do j=1,mpe
bel(j)=bel(j)-ael(j,i)*fixt
ael(i,j)=0.d0
ael(j,i)=0.d0
enddo
ael(i,i)=1.d0*vol
bel(i)=fixt*vol
endif
enddo
1112 continue
deallocate (x)
deallocate (y)
deallocate (z)
deallocate (be)
deallocate (tnode)
deallocate (h)
deallocate (dhdr)
deallocate (dhds)
deallocate (dhdt)
deallocate (ht)
deallocate (dhdx)
deallocate (dhdy)
deallocate (dhdz)
deallocate (b)
deallocate (bd)
deallocate (bl)
deallocate (aelp)
deallocate (vel)
return
end
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------