Newer
Older
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! ||===\\ |
! || \\ |
! || || //==\\ || || //==|| ||/==\\ |
! || || || || || || || || || || |
! || // || || || || || || || |
! ||===// \\==// \\==\\ \\==\\ || |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
! |
! MAKE_CUT Nov. 2006 |
! |
!------------------------------------------------------------------------------|
!------------------------------------------------------------------------------|
recursive subroutine make_cut (level,levelmax,ndof,ael,bel,icon,x,y,z,kfix,mat,&
u,v,w,temp,pressure,strain,is_plastic,nnode,f, &
lsf,nlsf,r0,s0,t0,rst,icut,ileaves,eviscosity, &
vbounded,params,threadinfo,weightel,matnum)
!------------------------------------------------------------------------------|
!(((((((((((((((( Purpose of the routine ))))))))))))))))))))))))))))))))))))))
!------------------------------------------------------------------------------|
! this subroutine is a intermediary routine between build_system and make_matrix
! to take into account the complex geometry of cut cells
Dave Whipp
committed
! if we are in a non cut cell, make-matrix is called
! if we are in a cut cell but at a level that it smaller than levelmax, the
! cell is further cut and make_cut is recursively called
! if we are in a cut cell and level is equal to levelmax, we call make_matrix
! with material properties that have been interpolated from the
Dave Whipp
committed
! various material properties contribnuting to the cut cell
! level : current level in cut cell algorithm. It varies between 0 and levelmax.
! levelapprox : used to improve the postitive volutme calculation by further division
! mpe : number of nodes per element (8)
! ndof : number of degrees of freedom per node (3)
! ael : computed finite element matrix
! bel : computed rhs vector
! icon : connectivity array for the current element
! xg,yg,zg : global coordinate arrays of length nnode
! penalty : penalty factor used to impose the boundary conditions
! tempscale : temperature scaling parameter
! kfix : bc array of length ndof*nnode (kfix=1 means the dof is fixed to the value stored in velo)
! mat : material matrix for the nmat materials
! materialn : contains the material number associated to each lsf
! dt : time step length (only needed for the temperature calculations)
! u,v,w : velocity array (obtained from previous time step or at least containing the proper velocity at the fixed dofs)
! nnode : number of nodes
! f : global rhs vector
! lsf : global array of level set functions defining the surfaces
! nlsf : number of lsfs
! r0,s0,t0 : bottom left back corner of the part of the element. (we are now integrating in local r,s,t coordinates)
! rst : size of the part of the element we are integrating
! icut : returned, 0 if homogeneous element - 1 if cut element
! ileaves : current leaf number (useless except for debugging)
! matnum : material number, stored for output
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine arguments ))))))))))))))))))))
!------------------------------------------------------------------------------|
use threads
use definitions
implicit none
Dave Whipp
committed
type(parameters),intent(in) :: params
integer,intent(in) :: level
integer,intent(in) :: levelmax
integer,intent(in) :: ndof
double precision,intent(inout) :: ael(params%mpe*ndof,params%mpe*ndof)
double precision,intent(inout) :: bel(params%mpe*ndof)
integer,intent(in) :: icon(params%mpe)
double precision,intent(in) :: x(nnode),y(nnode),z(nnode)
integer,intent(in) :: kfix(nnode*ndof)
type(material),intent(in) :: mat(0:params%nmat)
double precision,intent(in) :: u(nnode),v(nnode),w(nnode)
double precision,intent(in) :: temp(nnode)
double precision,intent(in) :: pressure
double precision,intent(in) :: strain(nnode)
logical,intent(inout) :: is_plastic
integer,intent(in) :: nnode
double precision,intent(inout) :: f(nnode*ndof)
double precision,intent(in) :: lsf(params%mpe,nlsf)
integer,intent(in) :: nlsf
double precision,intent(in) :: r0,s0,t0,rst
integer,intent(out) :: icut
integer,intent(in) :: ileaves
double precision,intent(inout) :: eviscosity
logical,intent(inout) :: vbounded
type(thread),intent(inout) :: threadinfo
double precision,intent(inout) :: weightel
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine internal variables )))))))))))))
!------------------------------------------------------------------------------|
Dave Whipp
committed
integer :: matel,matrule,i,j,k,err
double precision,allocatable :: vol_lsf(:)
double precision :: aelp(params%mpe*ndof,params%mpe*ndof),belp(params%mpe*ndof)
double precision :: prod,vol_lsf0,eviscosityp,eps,weight
logical :: is_plastic_temp,vbounded_temp
Dave Whipp
committed
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------
Dave Whipp
committed
eps=1.d-10
Dave Whipp
committed
icut=0
Dave Whipp
committed
if (level.eq.0) then
ael=0.d0
bel=0.d0
eviscosity=0.d0
if (ndof.eq.3) weightel=0.d0
Dave Whipp
committed
matrule=params%matrule
if (.not.params%excl_vol) then
do i=1,nlsf
prod=lsf(1,i)
do k=2,params%mpe
Dave Whipp
committed
if (prod*lsf(k,i).le.0.d0 .and. icut.eq.0) then
icut=1
allocate (vol_lsf(nlsf),stat=err) ; if (err.ne.0) call stop_run ('Error alloc vol_lsf in make_cut$')
call get_mat_volume(params,nlsf,lsf,vol_lsf,vol_lsf0)
if (vol_lsf0.gt.eps .or. level.gt.0) matrule=0
if (matrule.eq.1 .or. matrule.eq.2) then ! Use majority or minority rule
call set_elem_props(params,mat,matrule,ndof,nlsf,nnode,icon,kfix, &
Dave Whipp
committed
ileaves,level,matnum,vol_lsf,vol_lsf0,x,y,z,u,v,&
w,temp,pressure,strain,r0,s0,t0,rst,f,ael,bel, &
eviscosity,weightel,is_plastic,vbounded, &
Dave Whipp
committed
else ! Use divFEM
if (level.eq.levelmax) then
Dave Whipp
committed
call set_elem_props(params,mat,matrule,ndof,nlsf,nnode,icon,kfix,&
ileaves,level,matnum,vol_lsf,vol_lsf0,x,y,z,u,&
v,w,temp,pressure,strain,r0,s0,t0,rst,f,ael, &
bel,eviscosity,weightel,is_plastic,vbounded, &
threadinfo)
Dave Whipp
committed
else
call divide_element(params,mat,level,levelmax,ndof,nlsf,nnode, &
Dave Whipp
committed
icon,kfix,ileaves,matnum,lsf,r0,s0,t0,rst,x,y,&
z,u,v,w,temp,pressure,strain,eviscosity, &
weightel,ael,bel,f,is_plastic,vbounded, &
threadinfo)
Dave Whipp
committed
endif
endif
deallocate (vol_lsf)
endif
Dave Whipp
committed
if (prod.lt.0.d0 .and. icut.eq.0) then
matel=params%materialn(i)
endif
enddo
else
!check whether this is a cut cell
do i=1,nlsf
prod=lsf(1,i)
do k=2,params%mpe
Dave Whipp
committed
if (prod*lsf(k,i).le.0.d0 .and. icut.eq.0) then
icut=1
allocate (vol_lsf(nlsf),stat=err) ; if (err.ne.0) call stop_run ('Error alloc vol_lsf in make_cut$')
call get_mat_volume(params,nlsf,lsf,vol_lsf,vol_lsf0)
if (vol_lsf0.gt.eps .or. level.gt.0) matrule=0
if (matrule.eq.1 .or. matrule.eq.2) then ! Use majority or minority rule
call set_elem_props(params,mat,matrule,ndof,nlsf,nnode,icon,kfix, &
Dave Whipp
committed
ileaves,level,matnum,vol_lsf,vol_lsf0,x,y,z,u,v,&
w,temp,pressure,strain,r0,s0,t0,rst,f,ael,bel, &
eviscosity,weightel,is_plastic,vbounded, &
Dave Whipp
committed
else ! Use divFEM
if (level.eq.levelmax) then
Dave Whipp
committed
call set_elem_props(params,mat,matrule,ndof,nlsf,nnode,icon,kfix,&
ileaves,level,matnum,vol_lsf,vol_lsf0,x,y,z,u,&
v,w,temp,pressure,strain,r0,s0,t0,rst,f,ael, &
bel,eviscosity,weightel,is_plastic,vbounded, &
threadinfo)
Dave Whipp
committed
else
call divide_element(params,mat,level,levelmax,ndof,nlsf,nnode, &
Dave Whipp
committed
icon,kfix,ileaves,matnum,lsf,r0,s0,t0,rst,x,y,&
z,u,v,w,temp,pressure,strain,eviscosity, &
weightel,ael,bel,f,is_plastic,vbounded, &
threadinfo)
Dave Whipp
committed
endif
endif
deallocate (vol_lsf)
endif
Dave Whipp
committed
enddo
if (icut.eq.0) then
!assign material to plain cell, since at that point we know that this is a plain cell
do i=1,nlsf
if (lsf(1,i).lt.0.d0) matel=params%materialn(i)
enddo
endif
endif
Dave Whipp
committed
if (icut.eq.0) then
call make_matrix (params,ndof,aelp,belp,icon,x,y,z,kfix,mat(matel)%viscosity,&
mat(matel)%density,mat(matel)%penalty,mat(matel)%expon, &
mat(matel)%activationenergy,mat(matel)%expansion, &
mat(matel)%diffusivity,mat(matel)%heat, &
mat(matel)%plasticity_type,mat(matel)%plasticity_parameters,&
u,v,w,temp,pressure,strain,is_plastic_temp,nnode,f,r0,s0,t0,&
rst,ileaves,eviscosityp,vbounded_temp,threadinfo,weight)
Dave Whipp
committed
ael=ael+aelp/(8.d0**level)
bel=bel+belp/(8.d0**level)
eviscosity=eviscosity+eviscosityp/(8.d0**level)
is_plastic=(is_plastic.or.is_plastic_temp)
vbounded=(vbounded.or.vbounded_temp)
if (ndof.eq.3) weightel=weightel+weight/(8.d0**level)
endif
Dave Whipp
committed
end subroutine make_cut
Dave Whipp
committed
!-------------------------------------------------------------------------------
Dave Whipp
committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
subroutine get_mat_volume (params,nlsf,lsf,vol_lsf,vol_lsf0)
use definitions
implicit none
type(parameters),intent(in) :: params
integer,intent(in) :: nlsf
double precision,intent(in) :: lsf(params%mpe,nlsf)
double precision,intent(out) :: vol_lsf(nlsf)
double precision,intent(out) :: vol_lsf0
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine internal variables )))))))))))))
!------------------------------------------------------------------------------|
integer :: i
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------
do i=1,nlsf
call compute_positive_volume (lsf(1,i),vol_lsf(i),params%levelapprox)
enddo
vol_lsf=1.d0-vol_lsf
if (.not.params%excl_vol) then
do i=1,nlsf-1
vol_lsf(i)=vol_lsf(i)-vol_lsf(i+1)
enddo
endif
! this is a little fix that is necessary due to the finite precision with which
! we compute the positive volumes and could lead to a contributing volume being
! either marginally negative or greater than 1
do i=1,nlsf
vol_lsf(i)=max(vol_lsf(i),0.d0)
vol_lsf(i)=min(vol_lsf(i),1.d0)
enddo
vol_lsf0=1.d0-sum(vol_lsf)
end subroutine get_mat_volume
!-------------------------------------------------------------------------------
subroutine set_elem_props (params,mat,matrule,ndof,nlsf,nnode,icon,kfix, &
Dave Whipp
committed
ileaves,level,matnum,vol_lsf,vol_lsf0,x,y,z,u,v,w, &
temp,pressure,strain,r0,s0,t0,rst,f,ael,bel, &
eviscosity,weightel,is_plastic,vbounded,threadinfo)
Dave Whipp
committed
use threads
use definitions
implicit none
type(parameters),intent(in) :: params
type(material),intent(in) :: mat(0:params%nmat)
integer,intent(in) :: matrule
integer,intent(in) :: ndof
integer,intent(in) :: nlsf
integer,intent(in) :: nnode
integer,intent(in) :: icon(params%mpe)
integer,intent(in) :: kfix(nnode*ndof)
integer,intent(in) :: ileaves
integer,intent(in) :: level
Dave Whipp
committed
integer,intent(out) :: matnum
Dave Whipp
committed
double precision,intent(in) :: vol_lsf(nlsf)
double precision,intent(in) :: vol_lsf0
double precision,intent(in) :: x(nnode),y(nnode),z(nnode)
double precision,intent(in) :: u(nnode),v(nnode),w(nnode)
double precision,intent(in) :: temp(nnode)
double precision,intent(in) :: pressure
double precision,intent(in) :: strain(nnode)
double precision,intent(in) :: r0,s0,t0,rst
double precision,intent(inout) :: f(nnode*ndof)
double precision,intent(out) :: ael(params%mpe*ndof,params%mpe*ndof)
double precision,intent(out) :: bel(params%mpe*ndof)
double precision,intent(out) :: eviscosity
double precision,intent(out) :: weightel
logical,intent(out) :: is_plastic
logical,intent(out) :: vbounded
type(thread),intent(inout) :: threadinfo
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine internal variables )))))))))))))
!------------------------------------------------------------------------------|
double precision :: eps,viscosity,density,penal,expon,activ,expan,diffusivity
Dave Whipp
committed
double precision :: heat,eviscosityp,weight,zmean
Dave Whipp
committed
double precision :: plasticity_parameters(9)
double precision :: aelp(params%mpe*ndof,params%mpe*ndof),belp(params%mpe*ndof)
integer :: matel,i
character(len=8) :: plasticity_type
logical :: is_plastic_temp,vbounded_temp
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------
Dave Whipp
committed
eps=1.d-10
Dave Whipp
committed
zmean=0.d0
do i=1,params%mpe
zmean=zmean+z(icon(i))*params%vex
enddo
Dave Whipp
committed
Dave Whipp
committed
select case (matrule)
case (1) ! Assign material properties of volumetric majority material
matel=params%materialn(sum(maxloc(vol_lsf)))
write(*,*) 'zmean: ',zmean
write(*,*) 'ztrans: ',ztrans
write(*,*) 'matel: ',matel
write(*,*) 'transnum: ',mat(matel)%transnum
Dave Whipp
committed
if (zmean.lt.mat(matel)%ztrans) matel=mat(matel)%transnum
Dave Whipp
committed
viscosity=mat(matel)%viscosity
density=mat(matel)%density
penal=mat(matel)%penalty
expon=mat(matel)%expon
activ=mat(matel)%activationenergy
expan=mat(matel)%expansion
diffusivity=mat(matel)%diffusivity
heat=mat(matel)%heat
plasticity_type=mat(matel)%plasticity_type
plasticity_parameters=mat(matel)%plasticity_parameters
case(2) ! Assign material properties of volumetric minority material
matel=params%materialn(sum(minloc(vol_lsf)))
Dave Whipp
committed
if (zmean.lt.mat(matel)%ztrans) matel=mat(matel)%transnum
Dave Whipp
committed
viscosity=mat(matel)%viscosity
density=mat(matel)%density
penal=mat(matel)%penalty
expon=mat(matel)%expon
activ=mat(matel)%activationenergy
expan=mat(matel)%expansion
diffusivity=mat(matel)%diffusivity
heat=mat(matel)%heat
plasticity_type=mat(matel)%plasticity_type
plasticity_parameters=mat(matel)%plasticity_parameters
case default
if (matrule.ne.0) write(*,*) 'Invalid matrule value, using divFEM'
viscosity=0.d0
density=0.d0
penal=0.d0
expon=0.d0
activ=0.d0
expan=0.d0
diffusivity=0.d0
heat=0.d0
do i=1,nlsf
matel=params%materialn(i)
Dave Whipp
committed
if (zmean.lt.mat(matel)%ztrans) matel=mat(matel)%transnum
if (vol_lsf(i).ge.0.015625-eps) matnum=matnum+matel
Dave Whipp
committed
viscosity=viscosity+vol_lsf(i)*mat(matel)%viscosity
density=density+vol_lsf(i)*mat(matel)%density
penal=penal+vol_lsf(i)*mat(matel)%penalty
expon=expon+vol_lsf(i)*mat(matel)%expon
activ=activ+vol_lsf(i)*mat(matel)%activationenergy
expan=expan+vol_lsf(i)*mat(matel)%expansion
diffusivity=diffusivity+vol_lsf(i)/mat(matel)%diffusivity
heat=heat+vol_lsf(i)*mat(matel)%heat
enddo
matel=params%materialn(0)
if (vol_lsf0.ge.0.015625-eps) matnum=matnum+100
Dave Whipp
committed
viscosity=viscosity+vol_lsf0*mat(matel)%viscosity
density=density+vol_lsf0*mat(matel)%density
penal=penal+vol_lsf0*mat(matel)%penalty
expon=expon+vol_lsf0*mat(matel)%expon
activ=activ+vol_lsf0*mat(matel)%activationenergy
expan=expan+vol_lsf0*mat(matel)%expansion
heat=heat+vol_lsf0*mat(matel)%heat
diffusivity=diffusivity+vol_lsf0/mat(matel)%diffusivity
diffusivity=1.d0/diffusivity ! Note that some properties add geometrically not algebraically
matel=params%materialn(sum(maxloc(vol_lsf)))
plasticity_type=mat(matel)%plasticity_type
plasticity_parameters=mat(matel)%plasticity_parameters
end select
if (maxval(vol_lsf).lt.eps) then
matel=params%materialn(0)
plasticity_type=mat(matel)%plasticity_type
plasticity_parameters=mat(matel)%plasticity_parameters
endif
call make_matrix (params,ndof,aelp,belp,icon,x,y,z,kfix,viscosity,density, &
penal,expon,activ,expan,diffusivity,heat,plasticity_type, &
plasticity_parameters,u,v,w,temp,pressure,strain, &
is_plastic_temp,nnode,f,r0,s0,t0,rst,ileaves,eviscosityp, &
vbounded_temp,threadinfo,weight)
is_plastic=(is_plastic.or.is_plastic_temp)
vbounded=(vbounded.or.vbounded_temp)
Dave Whipp
committed
ael=ael+aelp/(8.d0**level)
bel=bel+belp/(8.d0**level)
eviscosity=eviscosity+eviscosityp/(8.d0**level)
if (ndof.eq.3) weightel=weightel+weight/(8.d0**level)
Dave Whipp
committed
end subroutine set_elem_props
!-------------------------------------------------------------------------------
subroutine divide_element(params,mat,level,levelmax,ndof,nlsf,nnode,icon,kfix, &
Dave Whipp
committed
ileaves,matnum,lsf,r0,s0,t0,rst,x,y,z,u,v,w,temp, &
pressure,strain,eviscosity,weightel,ael,bel,f, &
is_plastic,vbounded,threadinfo)
Dave Whipp
committed
use threads
use definitions
implicit none
Dave Whipp
committed
type(parameters),intent(in) :: params
type(material),intent(in) :: mat(0:params%nmat)
integer,intent(in) :: level
integer,intent(in) :: levelmax
integer,intent(in) :: ndof
integer,intent(in) :: nlsf
integer,intent(in) :: nnode
integer,intent(in) :: icon(params%mpe)
integer,intent(in) :: kfix(nnode*ndof)
integer,intent(in) :: ileaves
Dave Whipp
committed
integer,intent(inout) :: matnum
Dave Whipp
committed
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
double precision,intent(in) :: lsf(params%mpe,nlsf)
double precision,intent(in) :: r0,s0,t0,rst
double precision,intent(in) :: x(nnode),y(nnode),z(nnode)
double precision,intent(in) :: u(nnode),v(nnode),w(nnode)
double precision,intent(in) :: temp(nnode)
double precision,intent(in) :: pressure
double precision,intent(in) :: strain(nnode)
double precision,intent(inout) :: eviscosity
double precision,intent(inout) :: weightel
double precision,intent(inout) :: ael(params%mpe*ndof,params%mpe*ndof)
double precision,intent(inout) :: bel(params%mpe*ndof)
double precision,intent(inout) :: f(nnode*ndof)
logical,intent(inout) :: is_plastic
logical,intent(inout) :: vbounded
type(thread),intent(inout) :: threadinfo
!------------------------------------------------------------------------------|
!(((((((((((((((( declaration of the subroutine internal variables )))))))))))))
!------------------------------------------------------------------------------|
integer :: err,i,j,k,ii,jj,kk,levelp,jcut
double precision,allocatable :: lsfp(:,:)
double precision :: r(params%mpe),s(params%mpe),t(params%mpe),h(params%mpe)
double precision :: r0p,s0p,t0p,rstp
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
allocate (lsfp(params%mpe,nlsf),stat=err) ; if (err.ne.0) call stop_run ('Error alloc lsfp in make_cut$')
do kk=1,2
t(1:4)=-1.d0+float(kk-1)
t(5:8)=float(kk-1)
do jj=1,2
s(1:2)=-1.d0+float(jj-1)
s(3:4)=float(jj-1)
s(5:6)=-1.d0+float(jj-1)
s(7:8)=float(jj-1)
do ii=1,2
r(1)=-1.d0+float(ii-1)
r(2)=float(ii-1)
r(3)=-1.d0+float(ii-1)
r(4)=float(ii-1)
r(5)=-1.d0+float(ii-1)
r(6)=float(ii-1)
r(7)=-1.d0+float(ii-1)
r(8)=float(ii-1)
do k=1,8
h(1)=(1.d0-r(k))*(1.d0-s(k))*(1.d0-t(k))/8.d0
h(2)=(1.d0+r(k))*(1.d0-s(k))*(1.d0-t(k))/8.d0
h(3)=(1.d0-r(k))*(1.d0+s(k))*(1.d0-t(k))/8.d0
h(4)=(1.d0+r(k))*(1.d0+s(k))*(1.d0-t(k))/8.d0
h(5)=(1.d0-r(k))*(1.d0-s(k))*(1.d0+t(k))/8.d0
h(6)=(1.d0+r(k))*(1.d0-s(k))*(1.d0+t(k))/8.d0
h(7)=(1.d0-r(k))*(1.d0+s(k))*(1.d0+t(k))/8.d0
h(8)=(1.d0+r(k))*(1.d0+s(k))*(1.d0+t(k))/8.d0
lsfp(k,:)=0.d0
do i=1,nlsf
do j=1,8
lsfp(k,i)=lsfp(k,i)+h(j)*lsf(j,i)
enddo
enddo
enddo
r0p=r0+rst*(r(1)+1.d0)/2.d0
s0p=s0+rst*(s(1)+1.d0)/2.d0
t0p=t0+rst*(t(1)+1.d0)/2.d0
rstp=rst/2.d0
levelp=level+1
Dave Whipp
committed
call make_cut (levelp,levelmax,ndof,ael,bel,icon,x,y,z,kfix,mat,u,v,w,&
temp,pressure,strain,is_plastic,nnode,f,lsfp,nlsf,r0p, &
s0p,t0p,rstp,jcut,ileaves,eviscosity,vbounded,params, &
Dave Whipp
committed
threadinfo,weightel,matnum)
Dave Whipp
committed
end subroutine divide_element
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------