Skip to content
Snippets Groups Projects
isostasy.f90 10.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
    subroutine isostasy (params,weightel,ov,surface,mat)
    
    ! first go at imposing isostasy
    ! this routine assumes that the original surface are flat
    ! it takes the zref height of each surface and the density of the corresponding material
    !   to compute the reference isostatic column
    ! note also that this will not work when the courant condition is used
    
    use definitions
    
    implicit none
    
    type(parameters) params
    type(octreev) ov
    double precision weightel(ov%nleaves)
    type(sheet) surface(params%ns)
    type(material) mat(0:params%nmat)
    
    double precision xc,yc,zc,eps
    integer i,j,ii,jj,kk,ie,dlev,is,iproc,nproc,ierr,ic
    double precision x0,y0,z0,dxyz,dd
    integer leaf,level,loc
    double precision x0b,y0b,z0b,dxyzb
    integer leafb,levelb,locb
    double precision,dimension(:),allocatable::diso
    double precision weightref,disoel,w
    integer,dimension(:),allocatable::np
    character shift*72
    double precision,dimension(:,:),allocatable::weight,flex,work
    double precision pi,hx,dh,pihx,xk,fi,fj,tij,d
    integer nflex
    integer im,jm,ip,jp,nb
    
    integer iunit
    
    INCLUDE 'mpif.h'
    
    call mpi_comm_size (mpi_comm_world,nproc,ierr)
    call mpi_comm_rank (mpi_comm_world,iproc,ierr)
    
    eps=1.d-8
    shift=' '
    nb=2**params%levelmax_oct
    
    allocate (weight(nb,nb))
    
    ! first calculates the weight of each column, based on the weight of each elements
    ! this is performed on a 2**levelmax X 2**levelmax grid at the base of the model
    ! the result is stored in weight(i,j)
    
    dd=1.d0/2.d0**(params%levelmax_oct+1)
    weight=0.d0
    
      do ie=1,ov%nleaves
      xc=0.d0;yc=0.d0;zc=0.d0
        do i=1,8
        xc=xc+ov%x(ov%icon(i,ie))
        yc=yc+ov%y(ov%icon(i,ie))
        zc=zc+ov%z(ov%icon(i,ie))
        enddo
      xc=xc/8.d0
      yc=yc/8.d0
      zc=zc/8.d0
      call octree_find_leaf (ov%octree,ov%noctree,xc,yc,zc,leaf,level,loc,x0,y0,z0,dxyz)
      dlev=params%levelmax_oct-level
      call find_integer_coordinates (x0+dd,y0+dd,z0+dd,ii,jj,kk,params%levelmax_oct)
      ii=min(ii,nb-2**dlev)
      jj=min(jj,nb-2**dlev)
        do i=1,2**dlev
          do j=1,2**dlev
          weight(ii+i,jj+j)=weight(ii+i,jj+j)+weightel(leaf)/(4.d0**dlev)*(4.d0**params%levelmax_oct)
          enddo
        enddo
    !  call octree_find_leaf (ov%octree,ov%noctree,xc,yc,eps,leafb,levelb,locb,x0b,y0b,z0b,dxyzb)
    !  dlev=max(0,levelb-level)
    !  w(leafb)=w(leafb)+weightel(leaf)/(4.d0**dlev)*(4.d0**levelb)
      enddo
    
    ! calculates the reference weight from the initial surface geometry and the density of the material
    ! near the base
    
    weightref=0.d0
      do is=1,params%ns-1
      weightref=weightref+mat(surface(is)%material)%density*(surface(is)%sp01-surface(is+1)%sp01)
      enddo
    weightref=weightref+mat(surface(params%ns)%material)%density*surface(params%ns)%sp01
    
    if (.not.params%flexure) then
    
    ! apply local isostasy
    ! the deflection is stored in array weight
    
      do j=1,nb
        do i=1,nb
        weight(i,j)=(weight(i,j)-weightref)/mat(surface(params%ns)%material)%density
        enddo
      enddo
    
    else
    
    ! flexural isostasy
    
    nflex=8*nb
    allocate(work(nflex,nflex),flex(nflex,nflex))
    hx=params%length_scale*8.d3
    xk=-mat(surface(params%ns)%material)%density*params%density_difference*9.81d0
    d=1.d11/12.d0/(1.d0-0.25d0**2)*params%elastic_plate_thickness**3
    dh=hx/(nflex-1)
    
    if (iproc.eq.0) print*,'hx,dh,xk,d',hx,dh,xk,d
    
    ii=nflex/2-nb/2-1
    jj=ii
    flex=0.d0
      do j=1,nb
        do i=1,nb
        flex(ii+i,jj+j)=(weight(i,j)-weightref)*dh*dh*params%density_difference*9.81d0*params%length_scale*1.d3
        enddo
      enddo
    
    if (iproc.eq.0) print*,'poids',minval(flex),maxval(flex)
    
      do j=1,nflex
      call dsinft (flex(1,j),nflex)
      enddo
    
      do j=1,nflex
        do i=1,nflex
        work(j,i)=flex(i,j)
        enddo
      enddo
    
      do i=1,nflex
      call dsinft (work(1,i),nflex)
      enddo
    
      do j=1,nflex
        do i=1,nflex
        work(j,i)=work(j,i)*4.d0/hx/hx
        enddo
      enddo
    
    pi=atan(1.d0)*4.d0
    pihx=pi/hx
      do j=1,nflex
      fj=(j*pihx)**2
        do i=1,nflex
        fi=(i*pihx)**2
        tij=d/xk*(fi**2+2.d0*fi*fj+fj**2)+1.d0
        work(j,i)=work(j,i)/xk/tij
        enddo
      enddo
    
      do i=1,nflex
      call dsinft (work(1,i),nflex)
      enddo
    
      do j=1,nflex
        do i=1,nflex
        flex(i,j)=work(j,i)
        enddo
      enddo
    
      do j=1,nflex
      call dsinft (flex(1,j),nflex)
      enddo
    
    if (iproc.eq.0) print*,'def in m',minval(flex),maxval(flex)
    
    ii=nflex/2-nb/2-1
    jj=ii
      do j=1,nb
        do i=1,nb
        weight(i,j)=-flex(ii+i,jj+j)/params%length_scale/1.d3
        enddo
      enddo
    
    deallocate (flex,work)
    
    if (iproc.eq.0) print*,'dimensionless def ',minval(weight),maxval(weight)
    
    endif
    
    ! redistributes the isostatic response onto the elements
    ! and distributes it onto the nodes into array diso(nnode)
    
    allocate (np(ov%nnode))
    allocate (diso(ov%nnode),work(nb+1,nb+1))
    
    do j=1,nb+1
    do i=1,nb+1
    im=max(i-1,1)
    jm=max(j-1,1)
    ip=min(i,nb)
    jp=min(j,nb)
    work(i,j)=(weight(ip,jp)+weight(im,jp)+weight(ip,jm)+weight(im,jm))/4.d0
    enddo
    enddo
    
    do i=1,ov%nnode
    call find_integer_coordinates(ov%x(i)+1.d-20,ov%y(i)+1.d-20,ov%z(i)+1.d-20,ii,jj,kk,params%levelmax_oct)
    ii=ii+1
    jj=jj+1
    kk=kk+1
    if ((ii-1)*(ii-nb-1).gt.0 .or. (jj-1)*(jj-nb-1).gt.0) stop 'error in isostasy'
    diso(i)=work(ii,jj)
    enddo
    
    goto 3333
    
    ! old version : to be neglected new is much faster
    
    diso=0.d0
    np=0
      do ie=1,ov%nleaves
      xc=0.d0;yc=0.d0;zc=0.d0
        do i=1,8
        xc=xc+ov%x(ov%icon(i,ie))
        yc=yc+ov%y(ov%icon(i,ie))
        zc=zc+ov%z(ov%icon(i,ie))
        enddo
      xc=xc/8.d0
      yc=yc/8.d0
      zc=zc/8.d0
      call octree_find_leaf (ov%octree,ov%noctree,xc,yc,zc,leaf,level,loc,x0,y0,z0,dxyz)
    !  call octree_find_leaf (ov%octree,ov%noctree,xc,yc,eps,leafb,levelb,locb,x0b,y0b,z0b,dxyzb)
    !  disoel=(w(leafb)-weightref)/(mat(surface(params%ns)%material)%density)
      w=0.d0
      dlev=params%levelmax_oct-level
      call find_integer_coordinates (x0+dd,y0+dd,z0+dd,ii,jj,kk,params%levelmax_oct)
      ii=min(ii,2**(params%levelmax_oct)-2**dlev)
      jj=min(jj,2**(params%levelmax_oct)-2**dlev)
        do i=1,2**dlev
          do j=1,2**dlev 
          w=w+weight(ii+i,jj+j)
          enddo
        enddo
      disoel=w/(2**dlev*2.d0**dlev)
    !  disoel=(w-weightref)/(mat(surface(params%ns)%material)%density)
        do i=1,8
        ic=ov%icon(i,ie)
        np(ic)=np(ic)+1
        diso(ic)=diso(ic)+disoel
        enddo
      enddo
    
      do i=1,ov%nnode
        if (np(i).ne.0) then
        diso(i)=diso(i)/np(i)
        else
        diso(i)=0
        print*,'error np',i,ov%x(i),ov%y(i),ov%z(i)
        endif
      enddo
    
    3333 continue
    
      if (params%debug>=1.and.iproc.eq.0) then
      write(*,'(a,f10.7,1x,f10.7)') shift//'Isostatic velocity range = ',minval(diso)/params%dt,maxval(diso)/params%dt
      endif
    
    ! transforms the displacements into velocities and add this contribution to the velocity
    ! solution of the Stokes equation before interpolation onto the surfaces and their advection
    
      do i=1,ov%nnode
      ov%wnode(i)=ov%wnode(i)-diso(i)/params%dt
      enddo
    
    goto 1111
    
    ! display results into a vtk file for debugging
    
    iunit=30
    open(unit=iunit,file='isostasy.vtk')
    write(iunit,'(a)')'# vtk DataFile Version 3.0'
    write(iunit,'(a)')'velocities'
    write(iunit,'(a)')'ASCII'
    write(iunit,'(a)')'DATASET UNSTRUCTURED_GRID'
    write(iunit,'(a7,i10,a6)')'POINTS ',ov%nnode,' float'
    
    do i=1,ov%nnode
    write(iunit,'(3f16.11)')ov%x(i),ov%y(i),ov%z(i)
    enddo
    
    write(iunit,'(A6, 2I10)') 'CELLS ',ov%nleaves,(1+8)*ov%nleaves
    do ie=1,ov%nleaves
    write(iunit,'(9I10)')8,ov%icon(1:8,ie)-1
    enddo
    
    write(iunit,'(A11, I10)') 'CELL_TYPES ',ov%nleaves
    do ie=1,ov%nleaves
       write(iunit,'(I2)')11 ! octree  (8 nodes)
    end do
    
    write(iunit,'(a11,i10)')'POINT_DATA ',ov%nnode
    
    write(iunit,'(a)')'VECTORS iso float'
    do i=1,ov%nnode
       write(iunit,'(3e11.4)')0.,0.,-diso(i)/params%dt
    enddo
    
    write(iunit,'(a)')'VECTORS velo float'
    do i=1,ov%nnode
       write(iunit,'(3e11.4)')0.,0.,ov%wnode(i)
    enddo
    
    close (iunit)
    
    1111 continue
    
    deallocate (np)
    deallocate (diso)
    deallocate (weight)
    deallocate (work)
    
    return
    end subroutine isostasy
    
    
    ! SINFT
    
    ! taken from numerical recipes (see book for further information)
    
    ! subroutines called:
    ! NONE
    
          SUBROUTINE DSINFT(Y,N)
          common /vocal/ ivocal
          REAL*8 WR,WI,WPR,WPI,WTEMP,THETA
          double precision Y(N)
          THETA=3.14159265358979D0/DBLE(N)
          WR=1.0D0
          WI=0.0D0
          WPR=-2.0D0*DSIN(0.5D0*THETA)**2
          WPI=DSIN(THETA)
          Y(1)=0.0
          M=N/2
          DO 11 J=1,M
            WTEMP=WR
            WR=WR*WPR-WI*WPI+WR
            WI=WI*WPR+WTEMP*WPI+WI
            Y1=WI*(Y(J+1)+Y(N-J+1))
            Y2=0.5*(Y(J+1)-Y(N-J+1))
            Y(J+1)=Y1+Y2
            Y(N-J+1)=Y1-Y2
    11    CONTINUE
          CALL DREALFT(Y,M,+1)
          SUM=0.0
          Y(1)=0.5*Y(1)
          Y(2)=0.0
          DO 12 J=1,N-1,2
            SUM=SUM+Y(J)
            Y(J)=Y(J+1)
            Y(J+1)=SUM
    12    CONTINUE
          RETURN
          END
    
    ! REALFT
    
    ! taken from numerical recipes (see book for further information)
    
    ! subroutines called:
    ! NONE
    
          SUBROUTINE DREALFT(DATA,N,ISIGN)
          common /vocal/ ivocal
          REAL*8 WR,WI,WPR,WPI,WTEMP,THETA
          double precision DATA(*)
          THETA=6.28318530717959D0/2.0D0/DBLE(N)
          C1=0.5
          IF (ISIGN.EQ.1) THEN
            C2=-0.5
            CALL DFOUR1(DATA,N,+1)
          ELSE
            C2=0.5
            THETA=-THETA
          ENDIF
          WPR=-2.0D0*DSIN(0.5D0*THETA)**2
          WPI=DSIN(THETA)
          WR=1.0D0+WPR
          WI=WPI
          N2P3=2*N+3
          DO 11 I=2,N/2+1
            I1=2*I-1
            I2=I1+1
            I3=N2P3-I2
            I4=I3+1
            WRS=SNGL(WR)
            WIS=SNGL(WI)
            H1R=C1*(DATA(I1)+DATA(I3))
            H1I=C1*(DATA(I2)-DATA(I4))
            H2R=-C2*(DATA(I2)+DATA(I4))
            H2I=C2*(DATA(I1)-DATA(I3))
            DATA(I1)=H1R+WRS*H2R-WIS*H2I
            DATA(I2)=H1I+WRS*H2I+WIS*H2R
            DATA(I3)=H1R-WRS*H2R+WIS*H2I
            DATA(I4)=-H1I+WRS*H2I+WIS*H2R
            WTEMP=WR
            WR=WR*WPR-WI*WPI+WR
            WI=WI*WPR+WTEMP*WPI+WI
    11    CONTINUE
          IF (ISIGN.EQ.1) THEN
            H1R=DATA(1)
            DATA(1)=H1R+DATA(2)
            DATA(2)=H1R-DATA(2)
          ELSE
            H1R=DATA(1)
            DATA(1)=C1*(H1R+DATA(2))
            DATA(2)=C1*(H1R-DATA(2))
            CALL DFOUR1(DATA,N,-1)
          ENDIF
          RETURN
          END
    
    ! FOUR1
    
    ! this routine is taken directly out of numerical recipes
    ! see the book for further information
    
    ! subroutines called:
    ! NONE
    
          SUBROUTINE DFOUR1(DATA,NN,ISIGN)
          common /vocal/ ivocal
          REAL*8 WR,WI,WPR,WPI,WTEMP,THETA
          double precision DATA(*)
          N=2*NN
          J=1
          DO 11 I=1,N,2
            IF(J.GT.I)THEN
              TEMPR=DATA(J)
              TEMPI=DATA(J+1)
              DATA(J)=DATA(I)
              DATA(J+1)=DATA(I+1)
              DATA(I)=TEMPR
              DATA(I+1)=TEMPI
            ENDIF
            M=N/2
    1       IF ((M.GE.2).AND.(J.GT.M)) THEN
              J=J-M
              M=M/2
            GO TO 1
            ENDIF
            J=J+M
    11    CONTINUE
          MMAX=2
    2     IF (N.GT.MMAX) THEN
            ISTEP=2*MMAX
            THETA=6.28318530717959D0/(ISIGN*MMAX)
            WPR=-2.D0*DSIN(0.5D0*THETA)**2
            WPI=DSIN(THETA)
            WR=1.D0
            WI=0.D0
            DO 13 M=1,MMAX,2
              DO 12 I=M,N,ISTEP
                J=I+MMAX
                TEMPR=SNGL(WR)*DATA(J)-SNGL(WI)*DATA(J+1)
                TEMPI=SNGL(WR)*DATA(J+1)+SNGL(WI)*DATA(J)
                DATA(J)=DATA(I)-TEMPR
                DATA(J+1)=DATA(I+1)-TEMPI
                DATA(I)=DATA(I)+TEMPR
                DATA(I+1)=DATA(I+1)+TEMPI
    12        CONTINUE
              WTEMP=WR
              WR=WR*WPR-WI*WPI+WR
              WI=WI*WPR+WTEMP*WPI+WI
    13      CONTINUE
            MMAX=ISTEP
          GO TO 2
          ENDIF
          RETURN
          END