Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
A
arc-shear-strength
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
HUGG
arc-shear-strength
Commits
0d952a64
Commit
0d952a64
authored
9 years ago
by
Miro Pütz
Browse files
Options
Downloads
Patches
Plain Diff
Replace strength_envelope.py
parent
012fe9bf
Branches
master
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
strength_envelope.py
+81
-107
81 additions, 107 deletions
strength_envelope.py
with
81 additions
and
107 deletions
strength_envelope.py
+
81
−
107
View file @
0d952a64
...
...
@@ -3,102 +3,72 @@
# strength_envelope.py - A Python script for plotting strength envelopes in the
# continental lithosphere
#
# dwhipp 10.15
# dwhipp 10.15
# modified by mpuetz
#--- Import libraries ---
import
numpy
as
np
import
matplotlib.pyplot
as
plt
temp_array
=
np
.
load
(
'
temp_array.npy
'
)
#load the calculated temp_array
#--- User-defined variables ---------------------------------------------------#
# Thermal model - 1D conduction with heat production (flux basal BC)
qmax
=
40.
# Basal heat flow [mW m-2]
S
=
0.15
# Heat production [microW m-3]
k
=
2.75
# Thermal conductivity [W m-1 K-1]
#--- plastic deformation - Byerlee's law ---
rhoc
=
2750.
# Crust density [kg m-3]
rhom
=
3300.
# Mantle density [kg m-3]
mu1
=
0.85
# Friction coefficient below 500 MPa
mu2
=
0.6
# Friction coefficient above 500 MPa
coh1
=
0.
# Cohesion below 500 MPa
coh2
=
50.
# Cohesion above 500 MPa
lam
=
0.4
# Pore fluid to lithostatic stress ratio
zc
=
35.
# Crustal thickness [km]
zl
=
125.
# Lithospheric thickness [km]
#--- Ductile deformation - Dorn's law ---
edot
=
1.e-14
# Wet quartzite
Aq
=
5.e-6
# Power law constant [MPa-n s-1]
Qq
=
1.9e5
# Activation energy [J mol-1]
nq
=
3.
# Power law exponent
# Olivine
Ao
=
7.e4
# Power law constant [Pa-n s-1]
Qo
=
5.2e5
# Activation energy [J mol-1]
no
=
3.
# Power law exponent
# Dorn's law
QD
=
5.454e5
# Activation energy for olivine creep [J mol-1]
edotD
=
5.7e11
# Strain rate [s-1]
sigmaD
=
8500.
# Critical stress [MPa]
# Temperature
#Ts=0 # Surface temperature [deg. C]
#Tl=1300 # Temperature of LAB [deg. C]
#--- End user-defined variables -----------------------------------------------#
# Constants
R
=
8.314
# Universal gas constant [J mol-1 K-1]
sigmaB
=
500.
# Pressure cutoff for Byerlee's law
# Conversions
zc
=
zc
*
1000.
# km -> m
zl
=
zl
*
1000.
# km -> m
coh1
=
coh1
*
1.e6
# MPa -> Pa
coh2
=
coh2
*
1.e6
# MPa -> Pa
Aq
=
(
Aq
/
1.e6
**
nq
)
# MPa-n s-1 -> Pa-n s-1
Ao
=
(
Ao
/
1.e6
**
no
)
# MPa-n s-1 -> Pa-n s-1
#print(Ao)
sigmaB
=
sigmaB
*
1.e6
# MPa -> Pa
sigmaD
=
sigmaD
*
1.e6
# MPa -> Pa
qmax
=
qmax
/
1000.
# mW m-2 -> W m-2
S
=
S
/
1.e6
# microW m-3 -> W m-3
# Ranges
z
=
np
.
linspace
(
0
,
150000
,
201
)
# the program needs that information right now
#z=np.linspace(0.,zl,1000)
#T=pylab.linspace(Ts,Tl,1000)
#strength(temperature, depth vector, depth of the crust)
def
strength
(
T
,
z
,
ZC
):
#--- plastic deformation - Byerlee's law ---
rhoc
=
2750.
# Crust density [kg m-3]
rhom
=
3300.
# Mantle density [kg m-3]
mu1
=
0.85
# Friction coefficient below 500 MPa
mu2
=
0.6
# Friction coefficient above 500 MPa
coh1
=
0.
# Cohesion below 500 MPa
coh2
=
50.
# Cohesion above 500 MPa
lam
=
0.4
# Pore fluid to lithostatic stress ratio
#--- Ductile deformation - Dorn's law ---
edot
=
1.e-14
# Wet quartzite
Aq
=
5.e-6
# Power law constant [MPa-n s-1]
Qq
=
1.9e5
# Activation energy [J mol-1]
nq
=
3.
# Power law exponent
# Olivine
Ao
=
7.e4
# Power law constant [Pa-n s-1]
Qo
=
5.2e5
# Activation energy [J mol-1]
no
=
3.
# Power law exponent
# Dorn's law
QD
=
5.454e5
# Activation energy for olivine creep [J mol-1]
edotD
=
5.7e11
# Strain rate [s-1]
sigmaD
=
8500.
# Critical stress [MPa]
#--- End user-defined variables -----------------------------------------------#
# Constants
R
=
8.314
# Universal gas constant [J mol-1 K-1]
sigmaB
=
500.
# Pressure cutoff for Byerlee's law
# Conversions
coh1
=
coh1
*
1.e6
# MPa -> Pa
coh2
=
coh2
*
1.e6
# MPa -> Pa
Aq
=
(
Aq
/
1.e6
**
nq
)
# MPa-n s-1 -> Pa-n s-1
Ao
=
(
Ao
/
1.e6
**
no
)
# MPa-n s-1 -> Pa-n s-1
sigmaB
=
sigmaB
*
1.e6
# MPa -> Pa
sigmaD
=
sigmaD
*
1.e6
# MPa -> Pa
def
strength
(
T
,
z
):
plastic_c
=
np
.
zeros
(
np
.
size
(
z
))
plastic_t
=
np
.
zeros
(
np
.
size
(
z
))
visc
=
np
.
zeros
(
np
.
size
(
z
))
viscD
=
np
.
zeros
(
np
.
size
(
z
))
viscplot
=
np
.
zeros
(
np
.
size
(
z
))
strength_c
=
np
.
zeros
(
np
.
size
(
z
))
strength_t
=
np
.
zeros
(
np
.
size
(
z
))
pressure
=
np
.
zeros
(
np
.
size
(
z
))
# Calculate temperature NOT necessary anymore
#T = -(S * z**2.)/(2.*k) + (qmax + S * zl)/k * z
#print(-(S * zc**2.)/(2.*k) + (qmax + S * zl)/k * zc)
T
=
T
+
273.15
for
i
in
range
(
0
,
np
.
size
(
z
)):
if
z
[
i
]
<
zc
:
if
z
[
i
]
<
ZC
:
pressure
[
i
]
=
rhoc
*
9.81
*
z
[
i
]
plastic_c
[
i
]
=
(
2.
*
(
coh1
+
mu1
*
pressure
[
i
]
*
(
1.
-
lam
)))
/
(
np
.
sqrt
(
mu1
**
2.
+
1.
)
-
mu1
)
plastic_t
[
i
]
=
(
-
2.
*
(
coh1
-
mu1
*
pressure
[
i
]
*
(
1.
-
lam
)))
/
(
np
.
sqrt
(
mu1
**
2.
+
1.
)
+
mu1
)
if
pressure
[
i
]
>
2.e8
:
plastic_c
[
i
]
=
(
2.
*
(
coh2
+
mu2
*
pressure
[
i
]
*
(
1.
-
lam
)))
/
(
np
.
sqrt
(
mu2
**
2.
+
1.
)
-
mu2
)
#
plastic_t[i]=(-2.*(-coh2 - mu2*pressure[i]*(1.-lam)))/(np.sqrt(mu2**2. + 1.) + mu2)
plastic_t
[
i
]
=
(
-
2.
*
(
-
coh2
-
mu2
*
pressure
[
i
]
*
(
1.
-
lam
)))
/
(
np
.
sqrt
(
mu2
**
2.
+
1.
)
+
mu2
)
visc
[
i
]
=
(
edot
/
Aq
)
**
((
1.
/
nq
))
*
np
.
exp
(
Qq
/
(
nq
*
R
*
T
[
i
]))
else
:
pressure
[
i
]
=
(
rhoc
*
9.81
*
zc
)
+
(
rhom
*
9.81
*
(
z
[
i
]
-
zc
))
pressure
[
i
]
=
(
rhoc
*
9.81
*
ZC
)
+
(
rhom
*
9.81
*
(
z
[
i
]
-
ZC
))
plastic_c
[
i
]
=
(
2.
*
(
coh2
+
mu2
*
pressure
[
i
]
*
(
1.
-
lam
)))
/
(
np
.
sqrt
(
mu2
**
2.
+
1.
)
-
mu2
)
plastic_t
[
i
]
=
(
-
2.
*
(
coh2
-
mu2
*
pressure
[
i
]
*
(
1.
-
lam
)))
/
(
np
.
sqrt
(
mu2
**
2.
+
1.
)
+
mu2
)
visc
[
i
]
=
(
edot
/
Ao
)
**
((
1.
/
no
))
*
np
.
exp
(
Qo
/
(
no
*
R
*
T
[
i
]))
...
...
@@ -115,42 +85,46 @@ def strength(T, z):
else
:
strength_t
[
i
]
=
visc
[
i
]
print
((
edot
/
Aq
)
**
((
1.
/
nq
))
*
np
.
exp
(
Qq
/
(
nq
*
R
*
773.15
))
*
1.e-6
)
print
((
edot
/
Ao
)
**
((
1.
/
no
))
*
np
.
exp
(
Qo
/
(
no
*
R
*
773.15
))
*
1.e-6
)
print
(
sigmaD
*
(
1.
-
np
.
sqrt
((
R
*
(
773.15
)
/
QD
*
np
.
log
(
edotD
/
edot
))))
*
1.e-6
)
total_strength
=
np
.
sum
(
strength_t
)
return
total_strength
#print((edot/Aq)**((1./nq))*np.exp(Qq/(nq*R*773.15))*1.e-6)
#print((edot/Ao)**((1./no))*np.exp(Qo/(no*R*773.15))*1.e-6)
#print(sigmaD*(1.-np.sqrt((R*(773.15)/QD*np.log(edotD/edot))))*1.e-6)
# Scale for plotting
T
=
T
-
273.15
strength_c
=
strength_c
*
1.e-6
strength_t
=
strength_t
*
1.e-6
plastic_c
=
plastic_c
*
1.e-6
plastic_t
=
plastic_t
*
1.e-6
visc
=
visc
*
1.e-6
z
=
z
/
1000.
#T = T - 273.15
#strength_c = strength_c * 1.e-6
#strength_t = strength_t * 1.e-6
#plastic_c = plastic_c * 1.e-6
#plastic_t = plastic_t * 1.e-6
#visc = visc * 1.e-6
#z=z/1000.
# plt.figure()
# plt.subplot(121)
# plt.plot(T,z,'r')
# plt.xlabel('Temperature [${\circ}$C]')
# plt.ylabel('Depth [km]')
# plt.plot([min(T),max(T)],[zc/1000.,zc/1000.],'k--')
# plt.grid()
# plt.axis([0., 1.05*max(T), min(z), max(z)])
# plt.gca().invert_yaxis()
# plt.subplot(122)
# plt.plot(strength_c,z,'k',label='Compression')
# plt.plot(strength_t,z,'b',label='Tension')
# plt.gca().axes.yaxis.set_ticklabels([])
# plt.xlabel('Differential stress [MPa]')
# plt.grid()
# plt.legend(loc=4)
# plt.axis([0., 1.05*max(strength_c), min(z), max(z)])
plt
.
figure
()
plt
.
subplot
(
121
)
plt
.
plot
(
T
,
z
,
'
r
'
)
plt
.
xlabel
(
'
Temperature [${\circ}$C]
'
)
plt
.
ylabel
(
'
Depth [km]
'
)
plt
.
plot
([
min
(
T
),
max
(
T
)],[
zc
/
1000.
,
zc
/
1000.
],
'
k--
'
)
plt
.
grid
()
plt
.
axis
([
0.
,
1.05
*
max
(
T
),
min
(
z
),
max
(
z
)])
plt
.
gca
().
invert_yaxis
()
# plt.gca().invert_yaxis()
# plt.show()
plt
.
subplot
(
122
)
plt
.
plot
(
strength_c
,
z
,
'
k
'
,
label
=
'
Compression
'
)
plt
.
plot
(
strength_t
,
z
,
'
b
'
,
label
=
'
Tension
'
)
plt
.
gca
().
axes
.
yaxis
.
set_ticklabels
([])
plt
.
xlabel
(
'
Differential stress [MPa]
'
)
plt
.
grid
()
plt
.
legend
(
loc
=
4
)
plt
.
axis
([
0.
,
1.05
*
max
(
strength_c
),
min
(
z
),
max
(
z
)])
plt
.
gca
().
invert_yaxis
()
plt
.
show
()
# --------------------------- strength calculation ----------------------------#
strength
(
temp_array
[:,
0
],
z
)
strength
(
temp_array
[:,
100
],
z
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment