Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Project Tasks"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the first few assignments, we have learned how to infer part based components (known as mutational signatures) generated by particular mutational processes using Non-negative Matrix Factorization (NMF). By doing this, we are trying to reconstruct the mutation catalog in a given sample with mutational signatures and their contributions.\n",
"\n",
"In this group project, you will use similar mutational profiles and signature activities to predict cancer types but with much larger sample size. \n",
"You should:\n",
"* Separate the data into training and test groups within each cancer type.\n",
"* Find out which features are informative for the prediction of the cancer type (label). You should combine the profiles and activities and use each data type independently.\n",
"* Implement different models for classification of the samples given the input data and evaluate the model performance using test data to avoid overfitting. Explain briefly how does each model that you have used work.\n",
"* Report model performance, using standard machine learning metrics such as confusion matrices etc. \n",
"* Compare model performance across methods and across cancer types, are some types easier top predict than others.\n",
"* Submit a single Jupyter notebook as the final report and present that during the last assignment session "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The data include both mutational catalogs from multiple cancers and the predicted activities in the paper [\"Alexandrov LB, et al. (2020) The repertoire of mutational signatures in human cancer\"](https://www.nature.com/articles/s41586-020-1943-3). The data either are generated from whole human genome (WGS) or only exomes regions (WES). Since the exome region only constitutes about 1% of human genome, the total mutation numbers in these samples are, of course, much smaller. So if you plan to use WGS together with WES data, remember to normalize the profile for each sample to sum up to 1.\n",
"\n",
"Note that, the data is generated from different platforms by different research groups, some of them (e.g. labeled with PCAWG, TCGA) are processed with the same bioinformatics pipeline. Thus, these samples will have less variability related to data processing pipelines."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cancer types might be labeled under the same tissue, e.g. 'Bone-Benign','Bone-Epith', which can also be combined together or take the one has more samples."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here is a link to background reading [\"Pan-Cancer Analysis of Whole Genomes\"](https://www.nature.com/collections/afdejfafdb). Have a look especially the paper [\"A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns\"](https://www.nature.com/articles/s41467-019-13825-8)."
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import re"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mutational catalogs and activities - WGS data"
]
},
{
"cell_type": "code",
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Mutation type</th>\n",
" <th>Trinucleotide</th>\n",
" <th>Biliary-AdenoCA::SP117655</th>\n",
" <th>Biliary-AdenoCA::SP117556</th>\n",
" <th>Biliary-AdenoCA::SP117627</th>\n",
" <th>Biliary-AdenoCA::SP117775</th>\n",
" <th>Biliary-AdenoCA::SP117332</th>\n",
" <th>Biliary-AdenoCA::SP117712</th>\n",
" <th>Biliary-AdenoCA::SP117017</th>\n",
" <th>Biliary-AdenoCA::SP117031</th>\n",
" <th>...</th>\n",
" <th>Uterus-AdenoCA::SP94540</th>\n",
" <th>Uterus-AdenoCA::SP95222</th>\n",
" <th>Uterus-AdenoCA::SP89389</th>\n",
" <th>Uterus-AdenoCA::SP90503</th>\n",
" <th>Uterus-AdenoCA::SP92460</th>\n",
" <th>Uterus-AdenoCA::SP92931</th>\n",
" <th>Uterus-AdenoCA::SP91265</th>\n",
" <th>Uterus-AdenoCA::SP89909</th>\n",
" <th>Uterus-AdenoCA::SP90629</th>\n",
" <th>Uterus-AdenoCA::SP95550</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>C>A</td>\n",
" <td>ACA</td>\n",
" <td>269</td>\n",
" <td>114</td>\n",
" <td>105</td>\n",
" <td>217</td>\n",
" <td>52</td>\n",
" <td>192</td>\n",
" <td>54</td>\n",
" <td>196</td>\n",
" <td>...</td>\n",
" <td>117</td>\n",
" <td>233</td>\n",
" <td>94</td>\n",
" <td>114</td>\n",
" <td>257</td>\n",
" <td>139</td>\n",
" <td>404</td>\n",
" <td>97</td>\n",
" <td>250</td>\n",
" <td>170</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>C>A</td>\n",
" <td>ACC</td>\n",
" <td>148</td>\n",
" <td>56</td>\n",
" <td>71</td>\n",
" <td>123</td>\n",
" <td>36</td>\n",
" <td>139</td>\n",
" <td>54</td>\n",
" <td>102</td>\n",
" <td>...</td>\n",
" <td>90</td>\n",
" <td>167</td>\n",
" <td>59</td>\n",
" <td>64</td>\n",
" <td>268</td>\n",
" <td>75</td>\n",
" <td>255</td>\n",
" <td>78</td>\n",
" <td>188</td>\n",
" <td>137</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 2782 columns</p>\n",
"</div>"
],
"text/plain": [
" Mutation type Trinucleotide Biliary-AdenoCA::SP117655 \\\n",
"0 C>A ACA 269 \n",
"1 C>A ACC 148 \n",
"\n",
" Biliary-AdenoCA::SP117556 Biliary-AdenoCA::SP117627 \\\n",
"0 114 105 \n",
"1 56 71 \n",
"\n",
" Biliary-AdenoCA::SP117775 Biliary-AdenoCA::SP117332 \\\n",
"0 217 52 \n",
"1 123 36 \n",
"\n",
" Biliary-AdenoCA::SP117712 Biliary-AdenoCA::SP117017 \\\n",
"0 192 54 \n",
"1 139 54 \n",
"\n",
" Biliary-AdenoCA::SP117031 ... Uterus-AdenoCA::SP94540 \\\n",
"0 196 ... 117 \n",
"1 102 ... 90 \n",
"\n",
" Uterus-AdenoCA::SP95222 Uterus-AdenoCA::SP89389 Uterus-AdenoCA::SP90503 \\\n",
"0 233 94 114 \n",
"1 167 59 64 \n",
"\n",
" Uterus-AdenoCA::SP92460 Uterus-AdenoCA::SP92931 Uterus-AdenoCA::SP91265 \\\n",
"0 257 139 404 \n",
"1 268 75 255 \n",
"\n",
" Uterus-AdenoCA::SP89909 Uterus-AdenoCA::SP90629 Uterus-AdenoCA::SP95550 \n",
"0 97 250 170 \n",
"1 78 188 137 \n",
"\n",
"[2 rows x 2782 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## PCAWG data is performed by the same pipeline\n",
"PCAWG_wgs_mut = pd.read_csv (\"./project_data/catalogs/WGS/WGS_PCAWG.96.csv\")\n",
"PCAWG_wgs_mut.head(2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Accuracy is the cosine similarity of reconstruct catalog to the observed catalog "
]
},
{
"cell_type": "code",
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Cancer Types</th>\n",
" <th>Sample Names</th>\n",
" <th>Accuracy</th>\n",
" <th>SBS1</th>\n",
" <th>SBS2</th>\n",
" <th>SBS3</th>\n",
" <th>SBS4</th>\n",
" <th>SBS5</th>\n",
" <th>SBS6</th>\n",
" <th>SBS7a</th>\n",
" <th>...</th>\n",
" <th>SBS51</th>\n",
" <th>SBS52</th>\n",
" <th>SBS53</th>\n",
" <th>SBS54</th>\n",
" <th>SBS55</th>\n",
" <th>SBS56</th>\n",
" <th>SBS57</th>\n",
" <th>SBS58</th>\n",
" <th>SBS59</th>\n",
" <th>SBS60</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Biliary-AdenoCA</td>\n",
" <td>SP117655</td>\n",
" <td>0.968</td>\n",
" <td>1496</td>\n",
" <td>1296</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1825</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Biliary-AdenoCA</td>\n",
" <td>SP117556</td>\n",
" <td>0.963</td>\n",
" <td>985</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>922</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 68 columns</p>\n",
"</div>"
],
"text/plain": [
" Cancer Types Sample Names Accuracy SBS1 SBS2 SBS3 SBS4 SBS5 SBS6 \\\n",
"0 Biliary-AdenoCA SP117655 0.968 1496 1296 0 0 1825 0 \n",
"1 Biliary-AdenoCA SP117556 0.963 985 0 0 0 922 0 \n",
"\n",
" SBS7a ... SBS51 SBS52 SBS53 SBS54 SBS55 SBS56 SBS57 SBS58 SBS59 \\\n",
"0 0 ... 0 0 0 0 0 0 0 0 0 \n",
"1 0 ... 0 0 0 0 0 0 0 0 0 \n",
"\n",
" SBS60 \n",
"0 0 \n",
"1 0 \n",
"\n",
"[2 rows x 68 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## Activities:\n",
"PCAWG_wgs_act = pd.read_csv (\"./project_data/activities/WGS/WGS_PCAWG.activities.csv\")\n",
"PCAWG_wgs_act.head(2)"
]
},
{
"cell_type": "code",
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Mutation type</th>\n",
" <th>Trinucleotide</th>\n",
" <th>ALL::PD4020a</th>\n",
" <th>ALL::SJBALL011_D</th>\n",
" <th>ALL::SJBALL012_D</th>\n",
" <th>ALL::SJBALL020013_D1</th>\n",
" <th>ALL::SJBALL020422_D1</th>\n",
" <th>ALL::SJBALL020579_D1</th>\n",
" <th>ALL::SJBALL020589_D1</th>\n",
" <th>ALL::SJBALL020625_D1</th>\n",
" <th>...</th>\n",
" <th>Stomach-AdenoCa::pfg316T</th>\n",
" <th>Stomach-AdenoCa::pfg317T</th>\n",
" <th>Stomach-AdenoCa::pfg344T</th>\n",
" <th>Stomach-AdenoCa::pfg373T</th>\n",
" <th>Stomach-AdenoCa::pfg375T</th>\n",
" <th>Stomach-AdenoCa::pfg378T</th>\n",
" <th>Stomach-AdenoCa::pfg398T</th>\n",
" <th>Stomach-AdenoCa::pfg413T</th>\n",
" <th>Stomach-AdenoCa::pfg416T</th>\n",
" <th>Stomach-AdenoCa::pfg424T</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>C>A</td>\n",
" <td>ACA</td>\n",
" <td>35</td>\n",
" <td>9</td>\n",
" <td>2</td>\n",
" <td>7</td>\n",
" <td>5</td>\n",
" <td>7</td>\n",
" <td>3</td>\n",
" <td>5</td>\n",
" <td>...</td>\n",
" <td>133</td>\n",
" <td>185</td>\n",
" <td>202</td>\n",
" <td>185</td>\n",
" <td>96</td>\n",
" <td>134</td>\n",
" <td>12</td>\n",
" <td>279</td>\n",
" <td>75</td>\n",
" <td>135</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>C>A</td>\n",
" <td>ACC</td>\n",
" <td>16</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>10</td>\n",
" <td>5</td>\n",
" <td>9</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>...</td>\n",
" <td>48</td>\n",
" <td>70</td>\n",
" <td>126</td>\n",
" <td>88</td>\n",
" <td>35</td>\n",
" <td>54</td>\n",
" <td>16</td>\n",
" <td>112</td>\n",
" <td>31</td>\n",
" <td>91</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 1867 columns</p>\n",
"</div>"
],
"text/plain": [
" Mutation type Trinucleotide ALL::PD4020a ALL::SJBALL011_D \\\n",
"0 C>A ACA 35 9 \n",
"1 C>A ACC 16 2 \n",
"\n",
" ALL::SJBALL012_D ALL::SJBALL020013_D1 ALL::SJBALL020422_D1 \\\n",
"0 2 7 5 \n",
"1 4 10 5 \n",
"\n",
" ALL::SJBALL020579_D1 ALL::SJBALL020589_D1 ALL::SJBALL020625_D1 ... \\\n",
"0 7 3 5 ... \n",
"1 9 1 2 ... \n",
"\n",
" Stomach-AdenoCa::pfg316T Stomach-AdenoCa::pfg317T \\\n",
"0 133 185 \n",
"1 48 70 \n",
"\n",
" Stomach-AdenoCa::pfg344T Stomach-AdenoCa::pfg373T \\\n",
"0 202 185 \n",
"1 126 88 \n",
"\n",
" Stomach-AdenoCa::pfg375T Stomach-AdenoCa::pfg378T \\\n",
"0 96 134 \n",
"1 35 54 \n",
"\n",
" Stomach-AdenoCa::pfg398T Stomach-AdenoCa::pfg413T \\\n",
"0 12 279 \n",
"1 16 112 \n",
"\n",
" Stomach-AdenoCa::pfg416T Stomach-AdenoCa::pfg424T \n",
"0 75 135 \n",
"1 31 91 \n",
"\n",
"[2 rows x 1867 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nonPCAWG_wgs_mut = pd.read_csv (\"./project_data/catalogs/WGS/WGS_Other.96.csv\")\n",
"nonPCAWG_wgs_mut.head(2)"
]
},
{
"cell_type": "code",
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Cancer Types</th>\n",
" <th>Sample Names</th>\n",
" <th>Accuracy</th>\n",
" <th>SBS1</th>\n",
" <th>SBS2</th>\n",
" <th>SBS3</th>\n",
" <th>SBS4</th>\n",
" <th>SBS5</th>\n",
" <th>SBS6</th>\n",
" <th>SBS7a</th>\n",
" <th>...</th>\n",
" <th>SBS51</th>\n",
" <th>SBS52</th>\n",
" <th>SBS53</th>\n",
" <th>SBS54</th>\n",
" <th>SBS55</th>\n",
" <th>SBS56</th>\n",
" <th>SBS57</th>\n",
" <th>SBS58</th>\n",
" <th>SBS59</th>\n",
" <th>SBS60</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>ALL</td>\n",
" <td>PD4020a</td>\n",
" <td>0.995</td>\n",
" <td>208</td>\n",
" <td>3006</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>365</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>ALL</td>\n",
" <td>SJBALL011_D</td>\n",
" <td>0.905</td>\n",
" <td>66</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>144</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 68 columns</p>\n",
"</div>"
],
"text/plain": [
" Cancer Types Sample Names Accuracy SBS1 SBS2 SBS3 SBS4 SBS5 SBS6 \\\n",
"0 ALL PD4020a 0.995 208 3006 0 0 365 0 \n",
"1 ALL SJBALL011_D 0.905 66 0 0 0 144 0 \n",
"\n",
" SBS7a ... SBS51 SBS52 SBS53 SBS54 SBS55 SBS56 SBS57 SBS58 SBS59 \\\n",
"0 0 ... 0 0 0 0 0 0 0 0 0 \n",
"1 0 ... 0 0 0 0 0 0 0 0 0 \n",
"\n",
" SBS60 \n",
"0 0 \n",
"1 0 \n",
"\n",
"[2 rows x 68 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nonPCAWG_wgs_act = pd.read_csv (\"./project_data/activities/WGS/WGS_Other.activities.csv\")\n",
"nonPCAWG_wgs_act.head(2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mutational catalogs - WES data"
]
},
{
"cell_type": "code",
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Mutation type</th>\n",
" <th>Trinucleotide</th>\n",
" <th>AML::TCGA-AB-2802-03B-01W-0728-08</th>\n",
" <th>AML::TCGA-AB-2803-03B-01W-0728-08</th>\n",
" <th>AML::TCGA-AB-2804-03B-01W-0728-08</th>\n",
" <th>AML::TCGA-AB-2805-03B-01W-0728-08</th>\n",
" <th>AML::TCGA-AB-2806-03B-01W-0728-08</th>\n",
" <th>AML::TCGA-AB-2807-03B-01W-0728-08</th>\n",
" <th>AML::TCGA-AB-2808-03B-01W-0728-08</th>\n",
" <th>AML::TCGA-AB-2809-03D-01W-0755-09</th>\n",
" <th>...</th>\n",
" <th>Eye-Melanoma::TCGA-WC-A885-01A-11D-A39W-08</th>\n",
" <th>Eye-Melanoma::TCGA-WC-A888-01A-11D-A39W-08</th>\n",
" <th>Eye-Melanoma::TCGA-WC-A88A-01A-11D-A39W-08</th>\n",
" <th>Eye-Melanoma::TCGA-WC-AA9A-01A-11D-A39W-08</th>\n",
" <th>Eye-Melanoma::TCGA-WC-AA9E-01A-11D-A39W-08</th>\n",
" <th>Eye-Melanoma::TCGA-YZ-A980-01A-11D-A39W-08</th>\n",
" <th>Eye-Melanoma::TCGA-YZ-A982-01A-11D-A39W-08</th>\n",
" <th>Eye-Melanoma::TCGA-YZ-A983-01A-11D-A39W-08</th>\n",
" <th>Eye-Melanoma::TCGA-YZ-A984-01A-11D-A39W-08</th>\n",
" <th>Eye-Melanoma::TCGA-YZ-A985-01A-11D-A39W-08</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>C>A</td>\n",
" <td>ACA</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>4</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>C>A</td>\n",
" <td>ACC</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 9495 columns</p>\n",
"</div>"
],
"text/plain": [
" Mutation type Trinucleotide AML::TCGA-AB-2802-03B-01W-0728-08 \\\n",
"0 C>A ACA 0 \n",
"1 C>A ACC 0 \n",
"\n",
" AML::TCGA-AB-2803-03B-01W-0728-08 AML::TCGA-AB-2804-03B-01W-0728-08 \\\n",
"0 0 0 \n",
"1 2 0 \n",
"\n",
" AML::TCGA-AB-2805-03B-01W-0728-08 AML::TCGA-AB-2806-03B-01W-0728-08 \\\n",
"0 0 4 \n",
"1 0 0 \n",
"\n",
" AML::TCGA-AB-2807-03B-01W-0728-08 AML::TCGA-AB-2808-03B-01W-0728-08 \\\n",
"0 0 2 \n",
"1 1 3 \n",
"\n",
" AML::TCGA-AB-2809-03D-01W-0755-09 ... \\\n",
"0 0 ... \n",
"1 0 ... \n",
"\n",
" Eye-Melanoma::TCGA-WC-A885-01A-11D-A39W-08 \\\n",
"0 1 \n",
"1 0 \n",
"\n",
" Eye-Melanoma::TCGA-WC-A888-01A-11D-A39W-08 \\\n",
"0 0 \n",
"1 0 \n",
"\n",
" Eye-Melanoma::TCGA-WC-A88A-01A-11D-A39W-08 \\\n",
"0 0 \n",
"1 0 \n",
"\n",
" Eye-Melanoma::TCGA-WC-AA9A-01A-11D-A39W-08 \\\n",
"0 0 \n",
"1 0 \n",
"\n",
" Eye-Melanoma::TCGA-WC-AA9E-01A-11D-A39W-08 \\\n",
"0 0 \n",
"1 0 \n",
"\n",
" Eye-Melanoma::TCGA-YZ-A980-01A-11D-A39W-08 \\\n",
"0 0 \n",
"1 0 \n",
"\n",
" Eye-Melanoma::TCGA-YZ-A982-01A-11D-A39W-08 \\\n",
"0 0 \n",
"1 0 \n",
"\n",
" Eye-Melanoma::TCGA-YZ-A983-01A-11D-A39W-08 \\\n",
"0 0 \n",
"1 1 \n",
"\n",
" Eye-Melanoma::TCGA-YZ-A984-01A-11D-A39W-08 \\\n",
"0 0 \n",
"1 0 \n",
"\n",
" Eye-Melanoma::TCGA-YZ-A985-01A-11D-A39W-08 \n",
"0 0 \n",
"1 0 \n",
"\n",
"[2 rows x 9495 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"## Performed by TCGA pipeline\n",
"TCGA_wes_mut = pd.read_csv (\"./project_data/catalogs/WES/WES_TCGA.96.csv\")\n",
"TCGA_wes_mut.head(2)"
]
},
{
"cell_type": "code",
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Cancer Types</th>\n",
" <th>Sample Names</th>\n",
" <th>Accuracy</th>\n",
" <th>SBS1</th>\n",
" <th>SBS2</th>\n",
" <th>SBS3</th>\n",
" <th>SBS4</th>\n",
" <th>SBS5</th>\n",
" <th>SBS6</th>\n",
" <th>SBS7a</th>\n",
" <th>...</th>\n",
" <th>SBS51</th>\n",
" <th>SBS52</th>\n",
" <th>SBS53</th>\n",
" <th>SBS54</th>\n",
" <th>SBS55</th>\n",
" <th>SBS56</th>\n",
" <th>SBS57</th>\n",
" <th>SBS58</th>\n",
" <th>SBS59</th>\n",
" <th>SBS60</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>AML</td>\n",
" <td>TCGA-AB-2802-03B-01W-0728-08</td>\n",
" <td>0.811</td>\n",
" <td>3</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>AML</td>\n",
" <td>TCGA-AB-2803-03B-01W-0728-08</td>\n",
" <td>0.608</td>\n",
" <td>4</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>7</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 68 columns</p>\n",
"</div>"
],
"text/plain": [
" Cancer Types Sample Names Accuracy SBS1 SBS2 SBS3 \\\n",
"0 AML TCGA-AB-2802-03B-01W-0728-08 0.811 3 0 0 \n",
"1 AML TCGA-AB-2803-03B-01W-0728-08 0.608 4 0 0 \n",
"\n",
" SBS4 SBS5 SBS6 SBS7a ... SBS51 SBS52 SBS53 SBS54 SBS55 SBS56 \\\n",
"0 0 0 0 0 ... 0 0 0 0 0 0 \n",
"1 0 7 0 0 ... 0 0 0 0 0 0 \n",
"\n",
" SBS57 SBS58 SBS59 SBS60 \n",
"0 0 0 0 0 \n",
"1 0 0 0 0 \n",
"\n",
"[2 rows x 68 columns]"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"##Activities\n",
"TCGA_wes_act = pd.read_csv(\"./project_data/activities/WES/WES_TCGA.activities.csv\")\n",
"TCGA_wes_act.head(2)"
]
},
{
"cell_type": "code",
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Mutation type</th>\n",
" <th>Trinucleotide</th>\n",
" <th>ALL::TARGET-10-PAIXPH-03A-01D</th>\n",
" <th>ALL::TARGET-10-PAKHZT-03A-01R</th>\n",
" <th>ALL::TARGET-10-PAKMVD-09A-01D</th>\n",
" <th>ALL::TARGET-10-PAKSWW-03A-01D</th>\n",
" <th>ALL::TARGET-10-PALETF-03A-01D</th>\n",
" <th>ALL::TARGET-10-PALLSD-09A-01D</th>\n",
" <th>ALL::TARGET-10-PAMDKS-03A-01D</th>\n",
" <th>ALL::TARGET-10-PAPJIB-04A-01D</th>\n",
" <th>...</th>\n",
" <th>Head-SCC::V-109</th>\n",
" <th>Head-SCC::V-112</th>\n",
" <th>Head-SCC::V-116</th>\n",
" <th>Head-SCC::V-119</th>\n",
" <th>Head-SCC::V-123</th>\n",
" <th>Head-SCC::V-124</th>\n",
" <th>Head-SCC::V-125</th>\n",
" <th>Head-SCC::V-14</th>\n",
" <th>Head-SCC::V-29</th>\n",
" <th>Head-SCC::V-98</th>\n",
" </tr>\n",