Skip to content
Snippets Groups Projects
lam-aff-ld.py 9.29 KiB
Newer Older
"""
Effect of lambda: LD
Dataset-2
"""
import numpy as np
import pandas as pd
import utils
import sbm_core
import math
from itertools import combinations
import itertools
from sklearn.metrics.cluster import adjusted_rand_score
#  Initilaize
np.random.seed(34573251)
results = np.zeros((20,3) , dtype=float)
num_roles=2
num_vertices=20
num_segments = 4
num_levels = 2

NO_SAMPLES= 1850
nodes = np.arange(num_vertices)
lamda_arr_act = np.zeros((num_roles, num_roles,num_levels) , dtype=float)

H =num_levels

# h-level lambda estimates
lambda_estimates_h = np.random.rand(num_roles, num_roles, H)

# set value for each delta ( 0.01 - 1)
yu = 8*.1
lambda_estimates_h[0,0,:] = [yu, 0.01]
lambda_estimates_h[0,1,:] = [0.01, yu]
lambda_estimates_h[1,0,:] = lambda_estimates_h[0,1,:]
lambda_estimates_h[1,1,:] = [yu, yu]

l1 =list(range(0, H))
l2 = []
if num_segments > num_levels:
    l2 = [np.random.randint(0,H) for i in range(num_segments-H)]

# Mapping from segment to a level
g_mapping= np.array(l1 + l2)
# print('g mapping {}'.format(g_mapping))

# initilaize group assignment randomly
group_assignment_arr= np.random.randint(num_roles, size=(num_levels,num_vertices))
    # node-group dictionary
group_dic = {}

for i in range(0,num_levels ):
    level = i
    group_dic_level = {}
    keys = nodes
    values = list(group_assignment_arr[level])
    group_dic_level = dict(zip(keys,values))
    group_dic[i] = group_dic_level

for e_h in range(0,num_segments):
    g_a = group_dic[g_mapping[e_h]]
    list_of_groups=  [[] for _ in range(num_roles)]
    for idx, val in g_a.items():
        list_of_groups[val].append(idx)
    # print('group assignments {}: {}'.format(e_h,list_of_groups))

#Initialize  lamda
lamda_arr = np.zeros((num_roles, num_roles,num_segments) , dtype=float)
for d in range(0, num_segments):
    for k in range(0, num_roles):
        for g in range(k, num_roles):
            lamda_arr[k,g, d]= lambda_estimates_h[k,g,g_mapping[d]]
            lamda_arr[g,k, d]= lamda_arr[k,g, d]
change_points_arr = np.zeros((num_roles, num_roles, num_segments+1) , dtype=int)
df_all= None

points= list(range(0, (num_segments+1)*NO_SAMPLES, NO_SAMPLES))
list1 = []

level_seg_mapping  = {}
for d in range(num_segments):
    level = g_mapping[d]
    if level in level_seg_mapping:
        level_seg_mapping[level].append(d)
    else:
        level_seg_mapping[level] = []
        level_seg_mapping[level].append(d)    

 # %% 20 iteartions

for itr_no in range(0,20):
    #  Generate piecewise non-homogeneous poisson process
    tot_count = np.zeros((num_levels) , dtype=float)
    com_len = np.zeros((num_levels) , dtype=float)
    # for pair in comb:
    for i in range(0,num_levels):
        # i = g_mapping[d]
        group_assignment =  group_assignment_arr[i]
        list_of_groups=  [[] for _ in range(num_roles)]
        for idx, val in enumerate(group_assignment):
            list_of_groups[val].append(nodes[idx])
        size_all_pairs = {}
        for kk in range(0, num_roles):
            for gg in range(kk, num_roles):
                U=list_of_groups[kk]
                W=list_of_groups[gg]
                if kk == gg:
                    size_all_pairs[kk,gg] = math.comb(len(U), 2)
                if kk != gg:
                    size_all_pairs[kk,gg] = len(U)*len(W)
        for k in range(0, num_roles):
            for g in range(k, num_roles):
                change_points_arr[k,g,:] = points
                lamda_arr[k,g,:] = lamda_arr[g,k,:]
                comb = []
                if k == g:
                    comb = list(combinations(list_of_groups[k], 2))
                    # print(type(comb))
                else:
                    # comb = []
                    key_data = [list_of_groups[k],list_of_groups[g],]
                    comb = list(itertools.product(*key_data))
                    # print(comb)
                if len(comb) != size_all_pairs[k,g]:
                    print('not equal..')

                com_len[i]   = len(comb)
                tot_count[i] = 0
                for pair in comb:
                    s = np.random.poisson(lamda_arr[k,g,d], NO_SAMPLES)
                    # print(np.count_nonzero(s))
                    tot_count[i] += np.count_nonzero(s)
                    list_org=[i for i, e in enumerate(s) if e != 0]
                    if len(list_org) == 0:
                        print('zero')
                    for d in level_seg_mapping[i]:
                        list1 = [x+points[d] for x in list_org]
                        df= None
                        df = pd.DataFrame(data=list1)
                        df.columns =['timestamp']

                        N= df.size

                        list_start_stations =[pair[0]] * N
                        list_end_stations =[pair[1]] * N

                        df['source'] = list_start_stations
                        df['target'] = list_end_stations
                        df_all=pd.concat([df_all, df], ignore_index=True)

                        lamda_arr_act[k,g,i] = round(((tot_count[i])/(NO_SAMPLES*com_len[i])),3)
                        lamda_arr_act[g,k,i] = lamda_arr_act[k,g,i]

                # print(' {} {} {} {} : k g d :lamb'.format(k,g,i,lamda_arr_act[g,k,i]))

    # Remove self loops
    df_all = df_all[((df_all['source'] ) != (df_all['target']))]
    #sort
    df_all=df_all.sort_values('timestamp')
    df_all = df_all[['target', 'timestamp','source']]
    # Save as .csv file
    # df_all.to_csv('./Data/synthetic_ground_truth_g1.csv')
    df= None
    df=df_all
    dest_folder='./Results/synthetic/3'
    t_df = df['timestamp']

    nodes_arr = np.union1d(df['target'],df['source']).astype(int)
    # list of nodes
    nodes = nodes_arr.tolist()
    num_vertices = len(nodes)
    # create a new dictionary - key: node-pair , value:  list of timestamps
    dic=df.groupby(['source','target'])['timestamp'].apply(list).to_dict()
    # print('{} {} {} '.format(group_dic, lamda_arr_act,change_points_arr))

    def _swap (row):
        if row['source'] > row['target']:
            row['source'] , row['target'] =row['target'] , row['source']
        return row
    # Undirected graph
    df=df.apply(lambda row: _swap(row), axis=1)
    #scale timestamps for zeroth reference point
    refValue = df['timestamp'].min()
    df['timestamp'] -= refValue
    chg_points =  change_points_arr[0,0,:]
    ranges_arr = [ [chg_points[s]+1,chg_points[s+1]] for s in range(0,len(chg_points)-1)]
    ranges_arr[0][0] = 0
    list_time_stamps  = list(t_df)

    # iterate over timestamps list
    gt_arr = list()
    for item in list_time_stamps:
        # find the segment which the timestamp belongs
        # (is dependent on which groups the two nodes belong)
        d =  sbm_core._findSegment(ranges_arr, len(ranges_arr) , int(item))
        gt_arr.append(d)

    # Experiment
    import experiment
    # User parameters
    algo_ver=4
    dest_folder='./Results/synthetic/'
    # tuning parameters
    theta = 1e-7
    eta = 1
    tuning_params= {'theta':theta,'eta':eta}

    exp_obj = experiment.Experiment(df,num_roles,num_segments,algo_ver,dest_folder,tuning_params,num_levels,refValue)
    # [likelihood_f,group_dic_f] = exp_obj.execute()
    [it,ll1,group_dic_d,lambda_estimates,change_points_arr_d]= exp_obj.execute()

    # SEGMENTATION ACCURACY
    t_df = sorted(t_df)

    chg_points =  change_points_arr_d[0,0,:]
    ranges_arr = [ [chg_points[s]+1,chg_points[s+1]] for s in range(0,len(chg_points)-1)]
    ranges_arr[0][0] = 0
    list_time_stamps  = list(t_df)

    # iterate over timestamps list
    dis_arr = list()
    for item in list_time_stamps:
        # find the segment which the timestamp belongs
        # (is dependent on which groups the two nodes belong)
        d =  sbm_core._findSegment(ranges_arr, len(ranges_arr) , int(item))
        dis_arr.append(d)

    gt_arr= np.array(gt_arr, dtype=np.float64)
    dis_arr= np.array(dis_arr, dtype=np.float64)
    ind_seg = adjusted_rand_score(gt_arr,dis_arr)
    # print('ind {} : {}'.format(_itr, ind_seg))
    # print('g mapping {}'.format(g_mapping))

    for e_h in range(0,num_segments):
        g_a = group_dic[g_mapping[e_h]]
        list_of_groups=  [[] for _ in range(num_roles)]
        for idx, val in g_a.items():
            list_of_groups[val].append(idx)
        # print('group assignments {}: {}'.format(e_h,list_of_groups))
    g1= group_dic_d[0]
    g2= group_dic_d[1]

    # print('rand index: group {} : {}'.format(_itr, ind_grp))
    found_cont = 0
    for i_h in range(0,num_levels):
        # i_h level
        grp = group_dic_d[i_h]

        list_of_groups_d=  [[] for _ in range(num_roles)]

        for idx, val in grp.items():
            list_of_groups_d[val].append(idx)

        ds= list(group_dic_d[i_h].values() )
        gt1 = list(g1.values())
        gt2 =  list(g2.values())
        ind1=adjusted_rand_score(ds,gt1)
        ind2=adjusted_rand_score(ds,gt2)

        d_in = max(ind1,ind2)
        found_cont += d_in
    ind = found_cont/2
    results[itr_no][0] = ind_seg
    results[itr_no][1] = it
    results[itr_no][2] = ind
    
    # print(ind_seg)
    # print(lamda_arr)
    # print(lamda_arr_act)
print('end')

import pickle
# pickle.dump(results, open('max-small-file-{}.pickle'.format(_itr), 'wb'))
arr = results
ll_avg_val =    (sum(arr)/len(arr))
print(ll_avg_val)
print(max(arr[:,0]))
print(min(arr[:,0]))
print(max(arr[:,1]))
print(min(arr[:,1]))
print(yu)