Skip to content
Snippets Groups Projects
lam-aff-fixed.py 7.47 KiB
Newer Older
Affect of Lambda: Fixed
import numpy as np
import pandas as pd
import utils
import sbm_core
import math
from itertools import combinations
import itertools 
from sklearn.metrics.cluster import adjusted_rand_score

#  Initilaize
np.random.seed(107)
results = np.zeros((20,3) , dtype=float)
num_roles=2
num_vertices=20
num_segments = 2
NO_SAMPLES= 1850
group_assignment= np.random.randint(num_roles, size=(num_vertices))
nodes = np.arange(num_vertices) 
list_of_groups=  [[] for _ in range(num_roles)]
   
for idx, val in enumerate(group_assignment):
    list_of_groups[val].append(nodes[idx])
    
size_all_pairs = {}
for k in range(0, num_roles):
    for g in range(k, num_roles):
        U=list_of_groups[k]
        W=list_of_groups[g]
        if k == g:
            size_all_pairs[k,g] = math.comb(len(U), 2)
        if k != g:
            size_all_pairs[k,g] = len(U)*len(W)
lamda_arr = np.ones((num_roles, num_roles,num_segments) , dtype=float)
#set value for each delta ( 0.01 - 1)
yu = 1
lamda_arr[0,0]=[yu, 0.01]
lamda_arr[0,1]= [0.01, yu]
lamda_arr[1,0]=lamda_arr[0,1]
lamda_arr[1,1]=[yu, yu]
lamda_arr_act = np.zeros((num_roles, num_roles,num_segments) , dtype=float)
change_points_arr = np.zeros((num_roles, num_roles, num_segments+1) , dtype=int)
df_all= None
points= list(range(0, (num_segments+1)*NO_SAMPLES, NO_SAMPLES))
list1 = []
# 20 iteartions
for itr_no in range(0,20):
    df_all= None

    #  Generate piecewise non-homogeneous poisson process
    for k in range(0, num_roles):
            for g in range(k, num_roles):
                comb = []
                if k == g:
                    comb = list(combinations(list_of_groups[k], 2)) 
                    # print(type(comb))
                else:
                    # comb = []
                    key_data = [list_of_groups[k],list_of_groups[g],]
                    comb = list(itertools.product(*key_data)) 
                    # print(comb)
                if len(comb) != size_all_pairs[k,g]:
                    print('not equal..')
                change_points_arr[k,g,:] = points
                lamda_arr[k,g,:] = lamda_arr[g,k,:]
                tot_count = np.zeros((num_segments) , dtype=float)
                for pair in comb:
                    for d in range(0,num_segments):
                        s = np.random.poisson(lamda_arr[k,g,d], NO_SAMPLES)
                        # print(np.count_nonzero(s))
                        tot_count[d] += np.count_nonzero(s)
                        list1=[i for i, e in enumerate(s) if e != 0]
                        if len(list1) == 0:
                            print('zero')
                        list1 = [x+points[d] for x in list1]
                        df = pd.DataFrame(data=list1)
                        df.columns =['timestamp']                    
                        
                                                         
                        list_start_stations =[pair[0]] * N                    
                        list_end_stations =[pair[1]] * N
                        
                        df['source'] = list_start_stations 
                        df['target'] = list_end_stations
                        df_all=pd.concat([df_all, df], ignore_index=True)
                for d in range(0,num_segments):
                    lamda_arr_act[k,g,d] = tot_count[d]/(NO_SAMPLES*len(comb))
                    # print(tot_count[d])
    ## Other preparations
    # Remove self loops
    df_all = df_all[((df_all['source'] ) != (df_all['target']))] 
    #sort
    df_all=df_all.sort_values('timestamp')
    df_all = df_all[['target', 'timestamp','source']]
    # Save as .csv file
    # df_all.to_csv('./Data/synthetic_ground_truth_g1.csv')
    df=df_all
    dest_folder='./Results/synthetic/3'
    t_df = df['timestamp']
    
    nodes_arr = np.union1d(df['target'],df['source']).astype(int) 
    # list of nodes         
    nodes = nodes_arr.tolist()
    num_vertices = len(nodes)
    # node-group dictionary
    group_dic = {}
    keys = nodes
    values = list(group_assignment)
    group_dic = dict(zip(keys,values))
    # create a new dictionary - key: node-pair , value:  list of timestamps
    dic=df.groupby(['source','target'])['timestamp'].apply(list).to_dict()
    # print('{} {} {} '.format(group_dic, lamda_arr_act,change_points_arr))
    
    
    liklihood_sum = sbm_core.compute_cost(group_dic,lamda_arr_act,change_points_arr,num_roles,num_segments,dic)
    # print(' Initial Actual likelihood   .......%f'%liklihood_sum)
    
    def _swap (row):
        if row['source'] > row['target']:
            row['source'] , row['target'] =row['target'] , row['source']
        return row
    # Undirected graph
    df=df.apply(lambda row: _swap(row), axis=1)
    #scale timestamps for zeroth reference point
    refValue = df['timestamp'].min()
    df['timestamp'] -= refValue
    
    import experiment    
    
    # User parameters
    num_roles=2
    num_segments=2
    num_levels=2# Optional arg
    algo_ver=3
    dest_folder='./Results/synthetic/'
    # tuning parameters
    theta = 1e-5
    eta = 1
    tuning_params= {'theta':theta,'eta':eta}
        
    exp_obj = experiment.Experiment(df,num_roles,num_segments,algo_ver,dest_folder,tuning_params,num_levels,refValue)    
    [itr_d,likelihood_d,group_dic_d,lambda_estimates_d,change_points_arr_d] = exp_obj.execute()
                
    t_df = sorted(t_df)    
    
    chg_points =  change_points_arr_d[0,0,:]
    ranges_arr = [ [chg_points[s]+1,chg_points[s+1]] for s in range(0,len(chg_points)-1)]
    ranges_arr[0][0] = 0 
    list_time_stamps  = list(t_df)                  
                                                
    # iterate over timestamps list
    dis_arr = list()  
    gt_arr = list()       
                   
    for item in list_time_stamps:
        # find the segment which the timestamp belongs
        # (is dependent on which groups the two nodes belong)
        d =  sbm_core._findSegment(ranges_arr, len(ranges_arr) , int(item)) 
        dis_arr.append(d)                    
       
                    
    chg_points =  change_points_arr[0,0,:]
    ranges_arr = [ [chg_points[s]+1,chg_points[s+1]] for s in range(0,len(chg_points)-1)]
    ranges_arr[0][0] = 0 
    list_time_stamps  = list(t_df)                  
                        
                        
    # iterate over timestamps list                        
    for item in list_time_stamps:
        # find the segment which the timestamp belongs
        # (is dependent on which groups the two nodes belong)
        d =  sbm_core._findSegment(ranges_arr, len(ranges_arr) , int(item)) 
        gt_arr.append(d)    
        
       
    ind = adjusted_rand_score(gt_arr,dis_arr) 
    # print('rand index: seg {} : {}'.format(_itr, ind))
    g1= group_dic_d
    g2= group_dic_d[1]    
    
    ds= list(group_dic_d.values() )   
    gt1 = list(g1.values()) 
    
    ind_grp=adjusted_rand_score(ds,gt1)  
    # print('rand index: group {} : {}'.format(_itr, ind_grp))  
        
    results[itr_no][0] = ind
    results[itr_no][1] = itr_d
    results[itr_no][2] = ind_grp

arr = results
ll_avg_val =    (sum(arr)/len(arr))

print(ll_avg_val)
print(max(arr[:,0]))
print(min(arr[:,0]))

print(max(arr[:,1]))
print(min(arr[:,1]))