Newer
Older
"""
Effect of lambda: LD
Dataset-2
"""
import numpy as np
import pandas as pd
import utils
import sbm_core
import math
from itertools import combinations
import itertools
from sklearn.metrics.cluster import adjusted_rand_score
# Initilaize
results = np.zeros((50,3) , dtype=float)
num_roles=2
num_vertices=20
num_segments = 4
num_levels = 2
nodes = np.arange(num_vertices)
lamda_arr_act = np.zeros((num_roles, num_roles,num_levels) , dtype=float)
H =num_levels
print('k-h levels %d'%(num_levels))
# h-level lambda estimates
lambda_estimates_h = np.random.rand(num_roles, num_roles, H)
lambda_estimates_h[0,0,:] = [yu, 0.01]
lambda_estimates_h[0,1,:] = [0.01, yu]
lambda_estimates_h[1,0,:] = lambda_estimates_h[0,1,:]
lambda_estimates_h[1,1,:] = [yu, yu]
_itr = 4
yu = (9-_itr)*.01
lambda_estimates_h[0,0,:] = [yu, 0.01]
lambda_estimates_h[0,1,:] = [0.01, yu]
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
lambda_estimates_h[1,0,:] = lambda_estimates_h[0,1,:]
lambda_estimates_h[1,1,:] = [yu, yu]
l1 =list(range(0, H))
l2 = []
if num_segments > num_levels:
l2 = [np.random.randint(0,H) for i in range(num_segments-H)]
# Mapping from segment to a level
g_mapping= np.array(l1 + l2)
print('g mapping {}'.format(g_mapping))
# initilaize group assignment randomly
group_assignment_arr= np.random.randint(num_roles, size=(num_levels,num_vertices))
# node-group dictionary
group_dic = {}
for i in range(0,num_levels ):
level = i
group_dic_level = {}
keys = nodes
values = list(group_assignment_arr[level])
group_dic_level = dict(zip(keys,values))
group_dic[i] = group_dic_level
print('initial')
# print(group_dic)
for e_h in range(0,num_segments):
g_a = group_dic[g_mapping[e_h]]
list_of_groups= [[] for _ in range(num_roles)]
for idx, val in g_a.items():
list_of_groups[val].append(idx)
print('group assignments {}: {}'.format(e_h,list_of_groups))
# Plotting
#Initialize lamda
lamda_arr = np.zeros((num_roles, num_roles,num_segments) , dtype=float)
for d in range(0, num_segments):
for k in range(0, num_roles):
for g in range(k, num_roles):
lamda_arr[k,g, d]= lambda_estimates_h[k,g,g_mapping[d]]
lamda_arr[g,k, d]= lamda_arr[k,g, d]
change_points_arr = np.zeros((num_roles, num_roles, num_segments+1) , dtype=int)
df_all= None
points= list(range(0, (num_segments+1)*NO_SAMPLES, NO_SAMPLES))
list1 = []
level_seg_mapping = {}
for d in range(num_segments):
level = g_mapping[d]
if level in level_seg_mapping:
level_seg_mapping[level].append(d)
else:
level_seg_mapping[level] = []
level_seg_mapping[level].append(d)
# %%
# Generate piecewise non-homogeneous poisson process
tot_count = np.zeros((num_levels) , dtype=float)
com_len = np.zeros((num_levels) , dtype=float)
# for pair in comb:
for i in range(0,num_levels):
# i = g_mapping[d]
group_assignment = group_assignment_arr[i]
print(group_assignment)
list_of_groups= [[] for _ in range(num_roles)]
for idx, val in enumerate(group_assignment):
list_of_groups[val].append(nodes[idx])
# print(list_of_groups)
size_all_pairs = {}
for kk in range(0, num_roles):
for gg in range(kk, num_roles):
U=list_of_groups[kk]
W=list_of_groups[gg]
if kk == gg:
size_all_pairs[kk,gg] = math.comb(len(U), 2)
if kk != gg:
size_all_pairs[kk,gg] = len(U)*len(W)
for k in range(0, num_roles):
for g in range(k, num_roles):
change_points_arr[k,g,:] = points
lamda_arr[k,g,:] = lamda_arr[g,k,:]
comb = []
if k == g:
comb = list(combinations(list_of_groups[k], 2))
# print(type(comb))
else:
# comb = []
key_data = [list_of_groups[k],list_of_groups[g],]
comb = list(itertools.product(*key_data))
# print(comb)
if len(comb) != size_all_pairs[k,g]:
print('not equal..')
print('d val {}'.format( d))
com_len[i] = len(comb)
# print('comb len {}'.format( com_len[d]))
tot_count[i] = 0
for pair in comb:
s = np.random.poisson(lamda_arr[k,g,d], NO_SAMPLES)
# print(np.count_nonzero(s))
tot_count[i] += np.count_nonzero(s)
list_org=[i for i, e in enumerate(s) if e != 0]
if len(list_org) == 0:
print('zero')
for d in level_seg_mapping[i]:
list1 = [x+points[d] for x in list_org]
df= None
df = pd.DataFrame(data=list1)
df.columns =['timestamp']
N= df.size
list_start_stations =[pair[0]] * N
list_end_stations =[pair[1]] * N
df['source'] = list_start_stations
df['target'] = list_end_stations
df_all=pd.concat([df_all, df], ignore_index=True)
lamda_arr_act[k,g,i] = round(((tot_count[i])/(NO_SAMPLES*com_len[i])),1)
lamda_arr_act[g,k,i] = lamda_arr_act[k,g,i]
print(' {} {} {} {} : k g d :lamb'.format(k,g,i,lamda_arr_act[g,k,i]))
# Remove self loops
df_all = df_all[((df_all['source'] ) != (df_all['target']))]
#sort
df_all=df_all.sort_values('timestamp')
df_all = df_all[['target', 'timestamp','source']]
# Save as .csv file
# df_all.to_csv('./Data/synthetic_ground_truth_g1.csv')
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
df= None
df=df_all
dest_folder='./Results/synthetic/3'
t_df = df['timestamp']
nodes_arr = np.union1d(df['target'],df['source']).astype(int)
# list of nodes
nodes = nodes_arr.tolist()
num_vertices = len(nodes)
# create a new dictionary - key: node-pair , value: list of timestamps
dic=df.groupby(['source','target'])['timestamp'].apply(list).to_dict()
print('{} {} {} '.format(group_dic, lamda_arr_act,change_points_arr))
def _swap (row):
if row['source'] > row['target']:
row['source'] , row['target'] =row['target'] , row['source']
return row
# Undirected graph
df=df.apply(lambda row: _swap(row), axis=1)
#scale timestamps for zeroth reference point
refValue = df['timestamp'].min()
df['timestamp'] -= refValue
chg_points = change_points_arr[0,0,:]
ranges_arr = [ [chg_points[s]+1,chg_points[s+1]] for s in range(0,len(chg_points)-1)]
ranges_arr[0][0] = 0
list_time_stamps = list(t_df)
# iterate over timestamps list
gt_arr = list()
for item in list_time_stamps:
# find the segment which the timestamp belongs
# (is dependent on which groups the two nodes belong)
d = sbm_core._findSegment(ranges_arr, len(ranges_arr) , int(item))
gt_arr.append(d)
# Experiment
import experiment
# User parameters
algo_ver=4
dest_folder='./Results/synthetic/'
# tuning parameters
theta = 1e-7
eta = 1
tuning_params= {'theta':theta,'eta':eta}
exp_obj = experiment.Experiment(df,num_roles,num_segments,algo_ver,dest_folder,tuning_params,num_levels,refValue)
# [likelihood_f,group_dic_f] = exp_obj.execute()
[it,ll1,group_dic_d,lambda_estimates,change_points_arr_d]= exp_obj.execute()
# SEGMENTATION ACCURACY
t_df = sorted(t_df)
chg_points = change_points_arr_d[0,0,:]
ranges_arr = [ [chg_points[s]+1,chg_points[s+1]] for s in range(0,len(chg_points)-1)]
ranges_arr[0][0] = 0
list_time_stamps = list(t_df)
# iterate over timestamps list
dis_arr = list()
for item in list_time_stamps:
# find the segment which the timestamp belongs
# (is dependent on which groups the two nodes belong)
d = sbm_core._findSegment(ranges_arr, len(ranges_arr) , int(item))
dis_arr.append(d)
gt_arr= np.array(gt_arr, dtype=np.float64)
dis_arr= np.array(dis_arr, dtype=np.float64)
ind_seg = adjusted_rand_score(gt_arr,dis_arr)
print('ind {} : {}'.format(_itr, ind_seg))
print('g mapping {}'.format(g_mapping))
for e_h in range(0,num_segments):
g_a = group_dic[g_mapping[e_h]]
list_of_groups= [[] for _ in range(num_roles)]
for idx, val in g_a.items():
list_of_groups[val].append(idx)
print('group assignments {}: {}'.format(e_h,list_of_groups))
g1= group_dic_d[0]
g2= group_dic_d[1]
# print('rand index: group {} : {}'.format(_itr, ind_grp))
found_cont = 0
for i_h in range(0,num_levels):
# i_h level
grp = group_dic_d[i_h]
list_of_groups_d= [[] for _ in range(num_roles)]
for idx, val in grp.items():
list_of_groups_d[val].append(idx)
ds= list(group_dic_d[i_h].values() )
gt1 = list(g1.values())
gt2 = list(g2.values())
ind1=adjusted_rand_score(ds,gt1)
ind2=adjusted_rand_score(ds,gt2)
d_in = max(ind1,ind2)
found_cont += d_in
ind = found_cont/2
results[itr_no][0] = ind_seg
results[itr_no][1] = it
results[itr_no][2] = ind
print('end')
import pickle
# pickle.dump(results, open('max-small-file-{}.pickle'.format(_itr), 'wb'))
arr = results
ll_avg_val = (sum(arr)/len(arr))
print(ll_avg_val)
print(max(arr[:,0]))
print(min(arr[:,0]))
print(max(arr[:,1]))
print(min(arr[:,1]))