Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
J
Jaccard constrained densest subgraph
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
dacs
Jaccard constrained densest subgraph
Commits
0ba3d6ad
Commit
0ba3d6ad
authored
1 year ago
by
Chamalee Wickrama Arachch
Browse files
Options
Downloads
Patches
Plain Diff
Update real-facebook.py
parent
d6e5cb68
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
real-facebook.py
+39
-139
39 additions, 139 deletions
real-facebook.py
with
39 additions
and
139 deletions
real-facebook.py
+
39
−
139
View file @
0ba3d6ad
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 21 14:35:25 2022
@author: chamwick
"""
Facebook dataset
"""
import
networkx
as
nx
...
...
@@ -17,8 +14,6 @@ import os
import
copy
import
numpy
as
np
import
utils
#import charikar, greedy, dynprogr, plotting
import
copy
import
time
import
os
...
...
@@ -26,33 +21,6 @@ import pandas as pd
from
dsalgo
import
*
from
find_densest_distinct_sets
import
*
# read data
# filepath = os.path.join("Data","as.txt")
# header_list = ['source','target', 'timestamp']
# df = pd.read_table(filepath,sep='\t',names=header_list)
# # Remove self-loops
# df = df[((df['source'] ) != (df['target']))]
# keys = df.timestamp.unique()
# data_dic = {k: [] for k in keys}
# # data_dic = {k: [] for k in range(2006, 2016)}
# # data_dic = {k: [] for k in range(2006, 2010)}
# print(len(data_dic.keys()))
# for _row in df.values:
# # if _row[2] < 2016 and _row[2] > 2005:
# # if _row[2] < 2010 and _row[2] > 2005:
# data_dic[_row[2]].append((_row[0],_row[1]))
# snapshots = []
# sub = []
# deg = []
# nodes = set()
#filepath = os.path.join(".","..","DATA",sys.argv[1])
filepath
=
os
.
path
.
join
(
"
Data
"
,
"
facebook.txt
"
)
edgesTS
,
nodes
,
edges
=
utils
.
readFile
(
filepath
)
...
...
@@ -60,7 +28,6 @@ df = pd.DataFrame(edgesTS)
df
.
columns
=
[
'
source
'
,
'
target
'
,
'
timestamp
'
]
# header_list = ['source','target', 'timestamp']
# Remove null value
df
=
df
[
df
[
'
target
'
].
isnull
()
!=
True
]
df
=
df
[
df
[
'
source
'
].
isnull
()
!=
True
]
...
...
@@ -69,16 +36,13 @@ df = df[df['timestamp'].isnull() != True]
df
=
df
.
sort_values
(
'
timestamp
'
)
def
_swap
(
row
):
if
row
[
'
source
'
]
>
row
[
'
target
'
]:
row
[
'
source
'
]
,
row
[
'
target
'
]
=
row
[
'
target
'
]
,
row
[
'
source
'
]
return
row
# Undirected graph
#
df=df.apply(lambda row: _swap(row), axis=1)
df
=
df
.
apply
(
lambda
row
:
_swap
(
row
),
axis
=
1
)
#scale timestamps for zeroth reference point
refValue
=
df
[
'
timestamp
'
].
min
()
df
[
'
timestamp
'
]
-=
refValue
...
...
@@ -87,18 +51,11 @@ df['timestamp'] -= refValue
df
=
df
[((
df
[
'
source
'
]
)
!=
(
df
[
'
target
'
]))]
keys
=
df
.
timestamp
.
unique
()
data_dic
=
{
k
:
[]
for
k
in
keys
}
# data_dic = {k: [] for k in range(2006, 2016)}
# data_dic = {k: [] for k in range(2006, 2010)}
print
(
'
TAU
'
)
print
(
len
(
data_dic
.
keys
()))
for
_row
in
df
.
values
:
# if _row[2] < 2016 and _row[2] > 2005:
# if _row[2] < 2010 and _row[2] > 2005:
# print(_row)
# print(_row[0])
# print(_row[1])
# print(_row[2])
data_dic
[
_row
[
2
]].
append
((
_row
[
0
],
_row
[
1
]))
snapshots
=
[]
...
...
@@ -147,11 +104,28 @@ avg_edges /= numberOfGraphs
print
(
'
avg edges: %s
'
%
avg_edges
)
print
(
'
nodes: {}
'
.
format
(
len
(
nodes
)))
#%% algo
comb
=
snapshots
[
0
]
for
i
in
range
(
1
,
len
(
snapshots
)):
sub
=
[
]
deg
=
[]
H
=
snapshots
[
i
]
comb
=
nx
.
compose
(
comb
,
H
)
nodes
=
comb
.
nodes
()
[
obj1
,
subg1
]
=
ip_based_dcs_sum
(
0
,
snapshots
,
comb
)
densities
=
[]
for
i
in
range
(
len
(
snapshots
)):
G
=
snapshots
[
i
]
sub_g
=
G
.
subgraph
(
subg1
)
den
=
sub_g
.
number_of_edges
()
/
len
(
subg1
)
densities
.
append
(
den
)
# print(den, end=", ")
print
(
'
IP-based
'
)
print
(
sum
(
densities
))
dcs
=
set
(
subg1
)
dcs_den
=
sum
(
densities
)
#%%
class
GraphObj
:
...
...
@@ -172,14 +146,11 @@ class GraphObj:
def
get_wd
(
self
):
return
self
.
w_d
#%% create avg graph
g
=
GraphObj
()
for
x
,
y
in
edg_lst
:
g
.
AddEdge
(
x
,
y
,
1
)
w_d
=
g
.
get_wd
()
G_avg
=
nx
.
Graph
()
...
...
@@ -187,7 +158,7 @@ G_avg=nx.Graph()
for
idx
,
val
in
w_d
.
items
():
G_avg
.
add_edge
(
idx
[
0
],
idx
[
1
],
weight
=
val
)
#%%
#%%
Other methods
print
(
'
dcs density LP
'
)
d
,
induced
,
dcs1
=
densest_subgraph_w
(
G_avg
)
print
(
len
(
dcs1
))
...
...
@@ -206,41 +177,6 @@ for key in range(0,numberOfGraphs):
den
+=
(
subgrpah_snap
.
number_of_edges
()
/
len
(
dcs2
)
)
print
(
den
)
exact_R
=
exact_densest
(
G_avg
)
# print('subgraph induced by', exact_R[0])
print
(
'
density =
'
,
exact_R
[
1
])
# dcs3 = set(exact_R[0])
# print('densest common: unweighted')
# print(len(dcs3))
# den = 0
# for key in range(0,numberOfGraphs):
# subgrpah_snap = snapshots[key].subgraph(dcs3)
# den+= (subgrpah_snap.number_of_edges()/ len(dcs3) )
# print(den)
#%% algo
comb
=
snapshots
[
0
]
for
i
in
range
(
1
,
len
(
snapshots
)):
H
=
snapshots
[
i
]
comb
=
nx
.
compose
(
comb
,
H
)
nodes
=
comb
.
nodes
()
[
obj1
,
subg1
]
=
ip_based_dcs_sum
(
0
,
snapshots
,
comb
)
densities
=
[]
for
i
in
range
(
len
(
snapshots
)):
G
=
snapshots
[
i
]
sub_g
=
G
.
subgraph
(
subg1
)
den
=
sub_g
.
number_of_edges
()
/
len
(
subg1
)
densities
.
append
(
den
)
# print(den, end=", ")
print
(
'
IP-based
'
)
print
(
sum
(
densities
))
dcs
=
set
(
subg1
)
dcs_den
=
sum
(
densities
)
#%%
ld
=
[]
...
...
@@ -250,18 +186,15 @@ for snap in snapshots:
local_sum_den
+=
d
ld
.
append
(
set
(
sol
))
print
(
'
local sum denisty
'
)
print
(
local_sum_den
)
print
(
local_sum_den
)
#%%
arr
=
[
0.3
,
0.5
,
0.7
]
algo_ver
=
0
# lam = item
algo_ver
=
0
k
=
len
(
snapshots
)
for
item
in
arr
:
print
(
'
----------------------
'
)
...
...
@@ -275,8 +208,7 @@ for item in arr:
print
(
item
)
lam
=
item
*
dcs_den
/
k
# lam = 2*lam*den/(k*(k-1))
lam
=
2
# lam = 2*lam*den/(k*(k-1))
print
(
lam
)
[
s1
,
set_dic1
]
=
soft_1_1
(
snapshots
,
ld
,
lam
)
...
...
@@ -292,13 +224,14 @@ for item in arr:
# lam = 5
print
(
item
)
lam
=
item
*
dcs_den
/
k
print
(
lam
)
print
(
'
lam :::
'
,
lam
)
set_dic
=
soft_2
(
snapshots
,
dcs
,
lam
,
nodes
)
else
:
print
(
'
no algo found
'
)
# Results
# Results
print
(
'
sets density
'
)
den
=
0
...
...
@@ -312,19 +245,17 @@ for item in arr:
# print(min(d_l))
print
(
den
)
# den= 0
# print('dcs density')
# d_l = []
# for key in range(0,numberOfGraphs):
# den+=comDensity(snapshots[key],dcs)
# d_l.append(comDensity(snapshots[key],dcs))
# # print(d_l)
# # print(min(d_l))
# print(den)
den
=
0
print
(
'
dcs density
'
)
d_l
=
[]
for
key
in
range
(
0
,
numberOfGraphs
):
den
+=
comDensity
(
snapshots
[
key
],
dcs
)
d_l
.
append
(
comDensity
(
snapshots
[
key
],
dcs
))
# print(d_l)
# print(min(d_l))
print
(
den
)
# Jaccard values
print
(
'
discovered min jac
'
)
s1
=
set
()
...
...
@@ -343,36 +274,5 @@ for item in arr:
val
=
jaccard_similarity
(
s1
,
s2
)
jac
.
append
(
val
)
print
(
min
(
jac
))
print
(
np
.
average
(
jac
))
#%% avg jaccard
# dcs density
# 8.382352941176471
# iteration no........... 1
# current val: 2.3000171130315734 - prev: 0
# iteration no........... 2
# current val: 2.672977022977023 - prev: 2.3000171130315734
# iteration no........... 3
# current val: 3.0289173789173787 - prev: 2.672977022977023
# iteration no........... 4
# current val: 3.058017908017908 - prev: 3.0289173789173787
# iteration no........... 5
# current val: 3.058017908017908 - prev: 3.058017908017908
# --- 27.18460488319397 seconds ---
# sets density
# size 36
# size 30
# size 33
# size 33
# [2.5, 2.933333333333333, 2.696969696969697, 2.484848484848485]
# 2.484848484848485
# 10.615151515151515
# dcs density
# [1.7058823529411764, 2.7058823529411766, 2.0588235294117645, 1.911764705882353]
# 1.7058823529411764
# 8.382352941176471
# discovered min jac
# 0.5
# # 0.29118329466357307
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment