Newer
Older
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
"""
The desest subgraph algorithms for single graph and
The densest common subgraph for multiple graph snapshots.
"""
import networkx as nx
import copy
from datetime import datetime, timedelta
import time
from gurobipy import *
"""
Finds weighted densest subgraph : LP based algorithm
"""
def densest_subgraph_w(G): # assumes G is undirected
vertices = G.nodes()
und_edges = G.edges()
if not und_edges: return 0, []
model = Model()
# Suppress output
model.params.OutputFlag = 0
# Add variables
y = model.addVars(vertices, lb=0, ub=1, vtype=GRB.CONTINUOUS, name="y")
x = model.addVars(und_edges, lb=0, vtype=GRB.CONTINUOUS, name="x")
model.update()
# Size constraint
model.addConstr(quicksum(y[i] for i in vertices) == 1)
# Edge constraints
for v, w in und_edges:
model.addConstr(x[v, w] <= y[v])
model.addConstr(x[v, w] <= y[w])
# Set objective function (average degree)
# model.setObjective(quicksum(2 * x[v, w]* G.edges[v, w]['weight'] for (v, w) in und_edges))
model.setObjective(quicksum(x[v, w]* G.edges[v, w]['weight'] for (v, w) in und_edges))
model.modelSense = GRB.MAXIMIZE
model.update()
model.optimize()
assert model.status == GRB.status.OPTIMAL
sol = [ v for v in vertices if y[v].x > 0 ]
yis = [y[v].X for v in vertices if y[v].X > 0]
# print(yis)
induced = G.subgraph(sol)
d = induced.size(weight="weight") / induced.number_of_nodes()
# d = sum([induced[u][v]['weight'] for u,v in induced.edges()]) / induced.number_of_nodes()
# 2.0 * induced.number_of_edges()
# assert d >= 2.0 * len(und_edges) / len(vertices)
# print(sol)
obj = model.getObjective()
# print("Objective = ", obj.getValue())
return d, induced , sol
"""
IP based algo
"""
def ip_dcs_sum(alpha, snapshots, comb, eta, A, und_edges, vertices):
M = pow(10, 5)
# print("M value = ",M)
k = len(snapshots)
model = Model()
# Suppress output
model.params.OutputFlag = 0
# Add variables
y = model.addVars(vertices, vtype=GRB.BINARY, name="y")
x = model.addVars(und_edges, vtype=GRB.BINARY, name="x")
z = model.addVars(und_edges, vtype=GRB.BINARY, name="z")
model.update()
# Edge constraints
for v, w in und_edges:
# subgraph constraint
model.addConstr(x[v, w] <= y[v])
model.addConstr(x[v, w] <= y[w])
model.setObjective(quicksum(1*quicksum(x[v, w] for (v, w) in A[i])
for i in range(k)) - (eta*quicksum(y[ii] for ii in vertices)))
model.modelSense = GRB.MAXIMIZE
model.update()
model.optimize()
# assert model.status == GRB.OPTIMAL
# if GRB.OPTIMAL == 2:
# print("Model status = OPTIMAL")
if GRB.OPTIMAL != 2:
print("Model status = NOT OPTIMAL")
obj = model.getObjective()
# print("Objective = ", obj.getValue())
yis = [y[v].X for v in vertices if y[v].X > 0]
subg = [v for v in vertices if y[v].X > 0]
return [obj.getValue(), subg]
"""
Perform binary serach
"""
def ip_based_dcs_sum(alpha1, snapshots, comb):
eps = 0.01
# G = snapshots[0]
n = comb.number_of_nodes()
up = .5*(n - 1)*len(snapshots)
vertices = comb.nodes()
k = len(snapshots)
low = 0
# low = 14.0511474609375
subg = {}
val = 0
comb = comb.to_undirected()
und_edges = list(set([tuple(set(edge)) for edge in comb.edges()]))
obj_val = 0
# compute adjacencies
A = []
for i in range(k):
ed_ls = []
for (a, b) in snapshots[i].edges():
if (a, b) in und_edges:
ed_ls.append((a, b))
elif (b, a) in und_edges:
ed_ls.append((b, a))
else:
print('...')
A.append(ed_ls)
itr = 0
# binary search
while up - low > eps*low:
alpha = (up + low) / 2
# print('alpha {} , low {} , up {}'.format(alpha, low, up))
# obj, solution, s_e, w_e = ip(lam, G, alpha1, w_edges)
[obj, solution] = ip_dcs_sum(alpha1, snapshots, comb,
alpha, A, und_edges, vertices)
itr += 1
# print('obj {} sol {}'.format(obj, solution))
l = len(solution)
if l:
_val = (obj + alpha*l) / l
# print('alpha: {} obj: {} len: {}'.format(alpha,_val, l))
# else:
# print('alpha: {} {} len = 0'.format(alpha, obj))
if len(solution) == 0:
# if not obj:
up = alpha
else:
low = alpha
if _val > val:
subg = solution
val = _val
obj_val = obj
print('obj val: {} subgraph : {} : itr: {}, 0 {}'.format(val, len(subg), itr,obj_val))
return [val, subg]
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""
Goldberg's exact max flow algorithm.
Parameters
----------
G: undirected, graph (networkx).
Returns
-------
subg: list, subset of nodes corresponding to densest subgraph.
opt: float, density of subg induced subgraph.
"""
def exact_densest(G: nx.Graph):
m = G.number_of_edges()
n = G.number_of_nodes()
low = 0
up = (n - 1) / 2
opt = 0
subg = G.nodes()
if low == up:
return subg, up
# binary search
while up - low > 1 / (n *(n -1)):
guess = (up + low) / 2
H = create_flow_network(G, guess)
solution = nx.minimum_cut(H, 's', 't', capacity='capacity')
cut = solution[1][0]
if cut == {'s'}:
up = guess
else:
low = guess
subg = cut
opt = guess
subg = list(set(subg)&set(G.nodes()))
return subg, opt
def create_flow_network(G, guess):
m = G.number_of_edges()
G = nx.DiGraph(G)
H = G.copy()
H.add_node('s')
H.add_node('t')
for e in G.edges():
H.add_edge(e[0], e[1], capacity=G.edges[e[0], e[1]]['weight'])
for v in G.nodes():
H.add_edge('s', v, capacity=5*m)
H.add_edge(v, 't', capacity=5*m + 2 * guess - G.in_degree(v, 'weight'))
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
def exact_densest_weighted(G: nx.Graph,k):
m = G.number_of_edges()
n = G.number_of_nodes()
low = 0
up = k*(n - 1)
opt = 0
subg = G.nodes()
if low == up:
return subg, up
# binary search
while up - low > 1 / (n *(n -1)):
guess = (up + low) / 2
# print('alpha {}'.format(guess))
H = create_flow_network(G, guess)
solution = nx.minimum_cut(H, 's', 't', capacity='capacity')
cut = solution[1][0]
if cut == {'s'}:
up = guess
else:
low = guess
subg = cut
opt = guess
subg = list(set(subg)&set(G.nodes()))
return subg, opt