Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Hands-On Session: Multi-model Data query languages and processing paradigms in CIKM 2020\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Part 1: Multi-model queries in ArangoDB"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.1: ArangoDB Installation"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"To get started, please download and install the previous community builds (e.g., v3.4.0 https://download.arangodb.com/arangodb34/index.html) of ArangoDB \n",
"\n",
"Or you can install the lateset version by following the official instructions if your computer satisfies the requirement of v3.7.0:\n",
"\n",
"* https://www.arangodb.com/docs/stable/installation.html\n",
"\n",
"and started the arangodb daemon with the following command.\n",
"\n",
"> arangod\n",
"\n",
"We recommend to use the ArangoDB WebUI to perform the queries, the default url is *localhost:8529*, default username is root with the empty password."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Document store : collections and documents\n",
"\n",
"*Relational databases* contain *tables* of *records* (as *rows*).\n",
"\n",
"An **ArangoDB document database** contains **collections** that contain **documents**. The documents follow the JSON format, and are usually stored in a binary format."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"<img src = \"http://json.org/object.gif\">\n",
"<img src = \"http://json.org/array.gif\">\n",
"<img src = \"http://json.org/value.gif\">\n",
"\n",
"Below is an example of json document containing information of a student and corresponding scores.\n",
"\n",
"** Score Document**\n",
"```\n",
"{\"_id\":0,\"name\":\"aimee Zank\",\n",
" \"scores\":[{\"score\":1.463179736705023,\"type\":\"exam\"},\n",
" {\"score\":11.78273309957772,\"type\":\"quiz\"},\n",
" {\"score\":35.8740349954354,\"type\":\"homework\"}]\n",
"}\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"### 1.1 Loading the score documents"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true,
"slideshow": {
"slide_type": "slide"
}
},
"outputs": [],
"source": [
"# create a database in arangosh shell\n",
"arangosh> db._createDatabase(\"handson\");\n",
"arangosh> db._useDatabase(\"handson\");\n",
"\n",
"# import an example dataset in bash\n",
"arangoimp --file scores.json --collection scores --create-collection true --server.database handson"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.2 Arango Query Language (AQL) on documents\n",
"\n",
"Basically, AQL return the results by using the following operations:\n",
"\n",
" **FOR**: array iteration\n",
" \n",
" **RETURN**: results projection\n",
" \n",
" **FILTER**: results filtering\n",
" \n",
" **SORT**: result sorting\n",
" \n",
" **LIMIT**: result slicing\n",
" \n",
" **LET**: variable assignment\n",
" \n",
" **COLLECT**: result grouping\n",
" \n",
" **INSERT**: insertion of new documents\n",
" \n",
" **UPDATE**: (partial) update of existing documents\n",
" \n",
" **REPLACE**: replacement of existing documents\n",
" \n",
" **REMOVE**: removal of existing documents\n",
" \n",
" **UPSERT**: insertion or update of existing documents"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Create a document:\n",
"INSERT {\n",
" \"_key\":\"211\",\n",
" \"name\": \"Chao\",\n",
" \"surname\": \"Zhang\",\n",
" \"score\": [60,80,90]\n",
"} INTO scores\n",
"\n",
"# Retrieve a document:\n",
"Return document(\"scores\",\"211\")\n",
"\n",
"# Update a document:\n",
"UPDATE \"211\" WITH { score: [90,90,90] } IN scores\n",
"\n",
"# Delete a document:\n",
"REMOVE { _key: \"211\" } IN scores"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Query 1: return a score document in the collection. \n",
"\n",
"For doc in scores Filter doc.name ==\"Leonida Lafond\" return doc"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"# Query 2: (multiple conditions) return a score document in the collection. \n",
"For doc in scores Filter doc.name ==\"Leonida Lafond\" and doc._key=='266197464913' return doc"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Query 3: (array operator 1) find types of scores.\n",
"For doc in scores limit 1 return doc.scores[*].type"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Query 4: (array operator 2) find students whose exam scores are greater than 90.\n",
"For doc in scores limit 1 return doc.scores[* Filter CURRENT.score>90].score"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Query 5: (array operator 3) compute the average score.\n",
"For doc in scores limit 1 return AVERAGE(doc.scores[*].score)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Query 6: flatten\n",
"Return FLATTEN([ 1, 2, [ 3, 4 ], 5, [ 6, 7 ], [ 8, [ 9, 10 ] ] ])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Query 7: sorting \n",
"For doc in scores\n",
" Sort first(doc.scores[*].score) DESC\n",
" Return doc"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Query 8: grouping (with or without count)\n",
"For doc in scores\n",
" COLLECT name=doc.name into g\n",
" return {name,g}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Query 9: define a variable using Let\n",
"FOR doc in scores \n",
" LET average_score=AVERAGE(doc.scores[*].score)\n",
" SORT average_score DESC \n",
" RETURN { name:doc.name,average_score:average_score}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Query 10: Inner join between two collections\n",
" FOR doc1 in collection1\n",
" FOR doc2 in collection2\n",
" Filter doc1.id==doc2.id\n",
" return {doc1:doc1,doc2:doc2}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Graph store : nodes and edges\n",
"\n",
"An ArangoDB graph database contains a set of node collections and edge collections."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.1 Loading the example graphs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"arangosh> var examples = require(\"@arangodb/graph-examples/example-graph.js\");\n",
"arangosh> var g = examples.loadGraph(\"knows_graph\");"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.2 Traversing the graphs\n",
"\n",
"FOR vertex[, edge[, path]]\n",
" IN [min[..max]]\n",
" OUTBOUND|INBOUND|ANY startVertex\n",
" GRAPH graphName\n",
" [OPTIONS options]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Query 11: find the friends of a given person. \n",
"\n",
"// get a random person p\n",
"Let p= (For person in persons Sort rand() limit 1 return person)\n",
"\n",
"// find the friends of p\n",
"FOR v,e,path\n",
"IN 1..1 any p[0]._id\n",
"GRAPH \"knows_graph\"\n",
"RETURN {p,v,e}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Query 12: Filtering\n",
"# Filtering vertex \n",
"// get person bob\n",
"Let p= (For person in persons Filter person._key=='bob' return person)\n",
"\n",
"// find the friends of p\n",
"FOR v,e\n",
"IN 1..1 any p[0]._id\n",
"GRAPH \"knows_graph\"\n",
"Filter v._key=='alice'\n",
"RETURN {p,v,e}\n",
"\n",
"# Filtering path\n",
"// get person bob\n",
"Let p= (For person in persons Filter person._key=='bob' return person)\n",
"\n",
"// find the friends of p\n",
"FOR v,e,path\n",
"IN 1..2 any p[0]._id\n",
"GRAPH \"knows_graph\"\n",
"Filter length(path.edges)>1\n",
"RETURN {p,v,e,path}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Query 13: Graph functions -- Shortest Path\n",
"\n",
"// find the friends of p\n",
"FOR v,e\n",
"IN Any SHORTEST_PATH\n",
"'persons/charlie' to 'persons/alice'\n",
"GRAPH \"knows_graph\"\n",
"RETURN {v,e}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.3 Visualization "
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## 3. Your turn - exploring the movie datasets\n",
"\n",
"Download the IMDB dataset in the Dump and import them."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# import the IMDB dataset\n",
"arangorestore dump --server.database handson"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Questions\n",
"(1) How many unique types of vertices and unique labels of edges are there in two collections respectively? HINT: UNIQUE function\n",
"\n",
"(2) Some documents in collection imdb_vertices are associated with a \"releaseDate\" field. What is the newest movie in the collection? HINT: MAX function\n",
"\n",
"(3) Update a edge between \"imdb_vertices/crime\" and \"imdb_vertices/5541\" in collection imdb_edges with a label \"has_movie\", if the edge isn't exist, create one and insert it into the edge collection. HINT: keyword: UPSERT\n",
"\n",
"(4) For documents in collection imdb_vertices, find the ids that don't include any number, save them with a label into a new collection named \"genre\". (HINTs: use regex expression SUBSTRING(doc._id,14)=~ \"[a-zA-Z]\", create the genre collections beforehand)\n",
"\n",
"(5) Find actors whose name include \"David\", return documents that have the \"birthplace\" attribute. HINT: keyword like and HAS function\n",
"\n",
"(6) Find the actor who have acted in the most number of movies. HINT: keyword COLLECT\n",
"\n",
"(7) Regarding different movie genres, find the Top-5 genres with most number of movies in all time. HINT: keyword COLLECT\n",
"\n",
"(8) Return the number of persons who are both actor and director. HINT: SELF-JOIN ON imdb_edges\n",
"\n",
"(9) Given a movie \"Forrest Gump\", check its all associated actors. return their real names and role names. HINT: graph traversal\n",
"\n",
"(10) Given a actor \"Tom Hanks\", find the directors who have cooperated with him more than twice. HINT: graph traversal\n",
"HINT: graph traversal and COLLECT.\n",
"\n",
"(11) Think about a movie or actor you are interested in, visualize it in the ArangoDB and present some insights from the visulization."
]
}
],
"metadata": {
"anaconda-cloud": {},
"celltoolbar": "Slideshow",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.0"
}
},
"nbformat": 4,
"nbformat_minor": 1
}