Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Parse the RTCM3 Logs\n",
"import seaborn as sns\n",
"import pandas\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Read the files and pre process them for plotting. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Read the file\n",
"timestamps = pandas.read_csv(\"./timestamps.csv\")\n",
"\n",
"# Compute the latency in ms \n",
"timestamps[\"Latency\"] = (timestamps[\"ts_client\"]-timestamps[\"ts_relay\"])*1000\n",
"\n",
"# Inter-arrival time between messages. The diff is in microsec\n",
"timestamps['relay_iat'] = timestamps['ts_relay'].diff()\n",
"timestamps['client_iat'] = timestamps['ts_client'].diff()\n",
"timestamps['iat_diff'] = (timestamps['relay_iat']-timestamps['client_iat'])*1000\n",
"print(timestamps)\n",
"\n",
"\n",
"ping = pandas.read_csv(\"./ping.csv\")\n",
"print(ping)\n",
"ping['Latency'] = ping['rtt']/2.0\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig, ax = plt.subplots(figsize=(10,5))\n",
"sns.set_context(\"poster\"),\n",
"sns.set_style(\"white\")\n",
"\n",
"sns.boxplot(data=timestamps, x=\"Location\", y=\"Latency\",hue=\"Technology\", whis=[5,95], showfliers=False)\n",
" \n",
"#handles, labels = ax.get_legend_handles_labels() \n",
"#ax.set_xticklabels(labels=['Ethernet', 'Wi-Fi', '5G'])\n",
"ax.set_ylim(0,50)\n",
"ax.set_xlabel(\"Location\")\n",
"ax.set_ylabel(\"Latency (ms)\")\n",
"ax.grid(True, which='major', axis='y')\n",
"plt.savefig(\"timestamps.pdf\", dpi=1200, bbox_inches='tight')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Plot the one way latency between the client and the relay"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig, ax = plt.subplots(figsize=(10,5))\n",
"sns.set_context(\"poster\"),\n",
"sns.set_style(\"white\")\n",
"sns.boxplot(data=ping, x=\"Location\", y=\"Latency\",hue=\"Technology\", whis=[5,95], showfliers=False)\n",
"ax.set_xlabel(\"Location\")\n",
"ax.set_ylabel(\"Latency (ms)\")\n",
"ax.set_ylim(0,50)\n",
"ax.grid(True, which='major', axis='y')\n",
"plt.savefig(\"ping.pdf\", dpi=1200, bbox_inches='tight')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Plot the difference in the inter-arrival time of the messages. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig, ax = plt.subplots(figsize=(10,5))\n",
"sns.set_context(\"poster\"),\n",
"sns.set_style(\"white\")\n",
"\n",
"sns.boxplot(data=timestamps, x=\"Location\", y=\"iat_diff\",hue=\"Technology\", whis=[5,95], showfliers=False)\n",
"ax.set_xlabel(\"Location\")\n",
"ax.set_ylabel(\"Inter-arrival Time \\n Difference (μs)\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "5Give-venv",
"language": "python",
"name": "5give-venv"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}