data { int<lower=1> D; // Dimensions int<lower=0> N_obs; // Number of "observed observations" (with T = 1) int<lower=0> N_cens; // Number of "censored observations" (with T = 0) int<lower=1> M; // Number of judges int<lower=1> K; // Number of groups real<lower=0> sigma_tau; int<lower=1, upper=M> jj_obs[N_obs]; // judge_ID int<lower=1, upper=M> jj_cens[N_cens]; // judge_ID int<lower=1, upper=K> kk_obs[N_obs]; // Grouping int<lower=1, upper=K> kk_cens[N_cens]; // Grouping int<lower=0, upper=1> dec_obs[N_obs]; // Positive decisions int<lower=0, upper=1> dec_cens[N_cens]; // Negative decisions row_vector[D] X_obs[N_obs]; // Private features of "observed observations" (with T = 1) row_vector[D] X_cens[N_cens]; // Private features of "censored observations" (with T = 1) int<lower=0, upper=1> y_obs[N_obs]; // Observed outcomes } parameters { vector[N_obs] Z_obs; vector[N_cens] Z_cens; real alpha_T[M]; // Judge-specific intercepts vector[D] beta_XT[K]; vector[D] beta_XY[K]; vector<lower=0>[K] beta_ZT_raw; // Coefficient for the latent variable. vector<lower=0>[K] beta_ZY_raw; // Coefficient for the latent variable. real<lower=0> tau_XT; real<lower=0> tau_XY; real<lower=0> tau_ZT; real<lower=0> tau_ZY; } transformed parameters{ vector<lower=0>[K] beta_ZT_cumulative; vector<lower=0>[K] beta_ZY_cumulative; vector<lower=0>[K] beta_ZT; vector<lower=0>[K] beta_ZY; beta_ZT[1] = beta_ZT_raw[1]; beta_ZY[1] = beta_ZY_raw[1]; if(K >= 2){ beta_ZT[2:] = tau_ZT * beta_ZT_raw[2:]; beta_ZY[2:] = tau_ZY * beta_ZY_raw[2:]; } beta_ZT_cumulative = cumulative_sum(beta_ZT); beta_ZY_cumulative = cumulative_sum(beta_ZY); } model { Z_obs ~ std_normal(); Z_cens ~ std_normal(); tau_XY ~ normal(0, sigma_tau); tau_XT ~ normal(0, sigma_tau); tau_ZY ~ normal(0, sigma_tau); tau_ZT ~ normal(0, sigma_tau); beta_XT[1] ~ std_normal(); // first group beta_XY[1] ~ std_normal(); beta_ZT_raw ~ std_normal(); beta_ZY_raw ~ std_normal(); if(K >= 2){ for(i in 2:K){ // random walk prior here beta_XT[i] ~ normal(beta_XT[i-1], tau_XT); // ith group beta_XY[i] ~ normal(beta_XY[i-1], tau_XY); } } for(i in 1:N_obs){ dec_obs[i] ~ bernoulli_logit(alpha_T[jj_obs[i]] + X_obs[i] * beta_XT[kk_obs[i]] + beta_ZT_cumulative[kk_obs[i]] * Z_obs[i]); y_obs[i] ~ bernoulli_logit(X_obs[i] * beta_XY[kk_obs[i]] + beta_ZY_cumulative[kk_obs[i]] * Z_obs[i]); } for(i in 1:N_cens) dec_cens[i] ~ bernoulli_logit(alpha_T[jj_cens[i]] + X_cens[i] * beta_XT[kk_cens[i]] + beta_ZT_cumulative[kk_cens[i]] * Z_cens[i]); } generated quantities { real<lower=0, upper=1> y_est[N_cens]; for(i in 1:N_cens){ y_est[i] = inv_logit(X_cens[i] * beta_XY[kk_cens[i]] + beta_ZY_cumulative[kk_cens[i]] * Z_cens[i]); } }