{ "cells": [ { "cell_type": "markdown", "metadata": { "toc": true }, "source": [ "<h1>Table of Contents<span class=\"tocSkip\"></span></h1>\n", "<div class=\"toc\"><ul class=\"toc-item\"><li><span><a href=\"#Causal-model\" data-toc-modified-id=\"Causal-model-1\"><span class=\"toc-item-num\">1 </span>Causal model</a></span><ul class=\"toc-item\"><li><span><a href=\"#Notes\" data-toc-modified-id=\"Notes-1.1\"><span class=\"toc-item-num\">1.1 </span>Notes</a></span></li></ul></li><li><span><a href=\"#Data-sets\" data-toc-modified-id=\"Data-sets-2\"><span class=\"toc-item-num\">2 </span>Data sets</a></span><ul class=\"toc-item\"><li><span><a href=\"#Synthetic-data-with-unobservables\" data-toc-modified-id=\"Synthetic-data-with-unobservables-2.1\"><span class=\"toc-item-num\">2.1 </span>Synthetic data with unobservables</a></span></li><li><span><a href=\"#Data-without-unobservables\" data-toc-modified-id=\"Data-without-unobservables-2.2\"><span class=\"toc-item-num\">2.2 </span>Data without unobservables</a></span></li></ul></li><li><span><a href=\"#Algorithms\" data-toc-modified-id=\"Algorithms-3\"><span class=\"toc-item-num\">3 </span>Algorithms</a></span><ul class=\"toc-item\"><li><span><a href=\"#Contraction-algorithm\" data-toc-modified-id=\"Contraction-algorithm-3.1\"><span class=\"toc-item-num\">3.1 </span>Contraction algorithm</a></span></li><li><span><a href=\"#Causal-approach---metrics\" data-toc-modified-id=\"Causal-approach---metrics-3.2\"><span class=\"toc-item-num\">3.2 </span>Causal approach - metrics</a></span></li></ul></li><li><span><a href=\"#Performance-comparison\" data-toc-modified-id=\"Performance-comparison-4\"><span class=\"toc-item-num\">4 </span>Performance comparison</a></span><ul class=\"toc-item\"><li><span><a href=\"#With-unobservables-in-the-data\" data-toc-modified-id=\"With-unobservables-in-the-data-4.1\"><span class=\"toc-item-num\">4.1 </span>With unobservables in the data</a></span><ul class=\"toc-item\"><li><span><a href=\"#Predictive-model\" data-toc-modified-id=\"Predictive-model-4.1.1\"><span class=\"toc-item-num\">4.1.1 </span>Predictive model</a></span></li><li><span><a href=\"#Visual-comparison\" data-toc-modified-id=\"Visual-comparison-4.1.2\"><span class=\"toc-item-num\">4.1.2 </span>Visual comparison</a></span></li></ul></li><li><span><a href=\"#Without-unobservables\" data-toc-modified-id=\"Without-unobservables-4.2\"><span class=\"toc-item-num\">4.2 </span>Without unobservables</a></span><ul class=\"toc-item\"><li><span><a href=\"#Predictive-model\" data-toc-modified-id=\"Predictive-model-4.2.1\"><span class=\"toc-item-num\">4.2.1 </span>Predictive model</a></span></li><li><span><a href=\"#Visual-comparison\" data-toc-modified-id=\"Visual-comparison-4.2.2\"><span class=\"toc-item-num\">4.2.2 </span>Visual comparison</a></span></li></ul></li></ul></li></ul></div>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Causal model\n", "\n", "Our model is defined by the probabilistic expression \n", "\n", "\\begin{equation} \\label{model_disc}\n", "P(Y=0 | \\text{do}(R=r)) = \\sum_x \\underbrace{P(Y=0|X=x, T=1)}_\\text{1} \n", "\\overbrace{P(T=1|R=r, X=x)}^\\text{2} \n", "\\underbrace{P(X=x)}_\\text{3}\n", "\\end{equation}\n", "\n", "which is equal to \n", "\n", "\\begin{equation}\\label{model_cont}\n", "P(Y=0 | \\text{do}(R=r)) = \\int_x P(Y=0|X=x, T=1)P(T=1|R=r, X=x)P(X=x)\n", "\\end{equation}\n", "\n", "for continuous $x$. In the model Z is a latent, unobserved variable, and can be excluded from the expression with do-calculus by showing that $X$ is admissible for adjustment. Model as a graph:\n", "\n", "\n", "\n", "For predicting the probability of negative outcome the following should hold because by Pearl $P(Y=0 | \\text{do}(R=r), X=x) = P(Y=0 | R=r, X=x)$ when $X$ is an admissible set:\n", "\n", "\\begin{equation} \\label{model_pred}\n", "P(Y=0 | \\text{do}(R=r), X=x) = P(Y=0|X=x, T=1)P(T=1|R=r, X=x).\n", "\\end{equation}\n", "\n", "Still it should be noted that this prediction takes into account the probability of the individual to be given a positive decision ($T=1$), see second term in \\ref{model_pred}.\n", "\n", "----\n", "\n", "### Notes\n", "\n", "* Equations \\ref{model_disc} and \\ref{model_cont} describe the whole causal effect in the population (the causal effect of changing $r$ over all strata $X$).\n", "* Prediction should be possible with \\ref{model_pred}. Both terms can be learned from the data. NB: the probability $P(Y=0 | \\text{do}(R=r), X=x)$ is lowest when the individual $x$ is the most dangerous or the least dangerous. How could we infer/predict the counterfactual \"what is the probability of $Y=0$ if we were to let this individual go?\" has yet to be calculated.\n", "* Is the effect of R learned/estimated correctly if it is just plugged in to a predictive model (e.g. logistic regression)? **NO**\n", "* $P(Y=0 | do(R=0)) = 0$ only in this application. <!-- My predictive models say that when $r=0$ the probability $P(Y=0) \\approx 0.027$ which would be a natural estimate in another application/scenario (e.g. in medicine the probability of an adverse event when a stronger medicine is distributed to everyone. Then the probability will be close to zero but not exactly zero.) -->" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "# Imports\n", "\n", "import numpy as np\n", "import pandas as pd\n", "from datetime import datetime\n", "import matplotlib.pyplot as plt\n", "import scipy.stats as scs\n", "import scipy.integrate as si\n", "import seaborn as sns\n", "import numpy.random as npr\n", "from sklearn.preprocessing import OneHotEncoder\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.ensemble import RandomForestClassifier\n", "\n", "# Settings\n", "\n", "%matplotlib inline\n", "\n", "plt.rcParams.update({'font.size': 16})\n", "plt.rcParams.update({'figure.figsize': (14, 7)})\n", "\n", "# Suppress deprecation warnings.\n", "\n", "import warnings\n", "\n", "\n", "def fxn():\n", " warnings.warn(\"deprecated\", DeprecationWarning)\n", "\n", "\n", "with warnings.catch_warnings():\n", " warnings.simplefilter(\"ignore\")\n", " fxn()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data sets\n", "\n", "### Synthetic data with unobservables\n", "\n", "In the chunk below, we generate the synthetic data as described by Lakkaraju et al. The default values and definitions of $Y$ and $T$ values follow their description.\n", "\n", "**Parameters**\n", "\n", "* M = `nJudges_M`, number of judges\n", "* N = `nSubjects_N`, number of subjects assigned to each judge\n", "* betas $\\beta_i$ = `beta_i`, where $i \\in \\{X, Z, W\\}$ are coefficients for the respected variables\n", "\n", "**Columns of the data:**\n", "\n", "* `judgeID_J` = judge IDs as running numbering from 0 to `nJudges_M - 1`\n", "* R = `acceptanceRate_R`, acceptance rates\n", "* X = `X`, invidual's features observable to all (models and judges)\n", "* Z = `Z`, information observable for judges only\n", "* W = `W`, unobservable / inaccessible information\n", "* T = `decision_T`, bail-or-jail decisions where $T=0$ represents jail decision and $T=1$ bail decision.\n", "* Y = `result_Y`, result variable, if $Y=0$ person will or would recidivate and if $Y=1$ person will or would not commit a crime.\n", "\n", "The generated data will have M\\*N rows." ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>result_Y</th>\n", " <th>0.0</th>\n", " <th>1.0</th>\n", " <th>All</th>\n", " </tr>\n", " <tr>\n", " <th>decision_T</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>17446</td>\n", " <td>7773</td>\n", " <td>25219</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>7434</td>\n", " <td>17347</td>\n", " <td>24781</td>\n", " </tr>\n", " <tr>\n", " <th>All</th>\n", " <td>24880</td>\n", " <td>25120</td>\n", " <td>50000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ "result_Y 0.0 1.0 All\n", "decision_T \n", "0 17446 7773 25219\n", "1 7434 17347 24781\n", "All 24880 25120 50000" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Set seed for reproducibility\n", "#npr.seed(0)\n", "\n", "\n", "def sigmoid(x):\n", " return 1 / (1 + np.exp(-x))\n", "\n", "\n", "def generateData(nJudges_M=100,\n", " nSubjects_N=500,\n", " beta_X=1.0,\n", " beta_Z=1.0,\n", " beta_W=0.2):\n", "\n", " # Assign judge IDs as running numbering from 0 to nJudges_M - 1\n", " judgeID_J = np.repeat(np.arange(0, nJudges_M, dtype=np.int32), nSubjects_N)\n", "\n", " # Sample acceptance rates uniformly from a closed interval\n", " # from 0.1 to 0.9 and round to tenth decimal place.\n", " acceptance_rates = np.round(npr.uniform(.1, .9, nJudges_M), 10)\n", "\n", " # Replicate the rates so they can be attached to the corresponding judge ID.\n", " acceptanceRate_R = np.repeat(acceptance_rates, nSubjects_N)\n", "\n", " # Sample the variables from standard Gaussian distributions.\n", " X = npr.normal(size=nJudges_M * nSubjects_N)\n", " Z = npr.normal(size=nJudges_M * nSubjects_N)\n", " W = npr.normal(size=nJudges_M * nSubjects_N)\n", "\n", " probabilities_Y = sigmoid(beta_X * X + beta_Z * Z + beta_W * W)\n", "\n", " # 0 if P(Y = 0| X = x; Z = z; W = w) >= 0.5 , 1 otherwise\n", " result_Y = 1 - probabilities_Y.round()\n", "\n", " # For the conditional probabilities of T we add noise ~ N(0, 0.1)\n", " probabilities_T = sigmoid(beta_X * X + beta_Z * Z)\n", " probabilities_T += npr.normal(0, np.sqrt(0.1), nJudges_M * nSubjects_N)\n", "\n", " # Initialize decision values as 1\n", " decision_T = np.ones(nJudges_M * nSubjects_N)\n", "\n", " # Initialize the dataframe\n", " df_init = pd.DataFrame(np.column_stack(\n", " (judgeID_J, acceptanceRate_R, X, Z, W, result_Y, probabilities_T,\n", " decision_T)),\n", " columns=[\n", " \"judgeID_J\", \"acceptanceRate_R\", \"X\", \"Z\", \"W\",\n", " \"result_Y\", \"probabilities_T\", \"decision_T\"\n", " ])\n", "\n", " # Sort by judges then probabilities in decreasing order\n", " data = df_init.sort_values(by=[\"judgeID_J\", \"probabilities_T\"],\n", " ascending=False)\n", "\n", " # Iterate over the data. Subject is in the top (1-r)*100% if\n", " # his within-judge-index is over acceptance threshold times\n", " # the number of subjects assigned to each judge. If subject\n", " # is over the limit they are assigned a zero, else one.\n", " data.reset_index(drop=True, inplace=True)\n", "\n", " data['decision_T'] = np.where(\n", " (data.index.values % nSubjects_N) <\n", " ((1 - data['acceptanceRate_R']) * nSubjects_N), 0, 1)\n", "\n", " return data\n", "\n", "\n", "df = generateData()\n", "\n", "pd.crosstab(df.decision_T, df.result_Y, margins=True)" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(25000, 8)\n", "(25000, 8)\n", "(25000, 8)\n", "(25000, 8)\n" ] }, { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>decision_T</th>\n", " <th>1</th>\n", " </tr>\n", " <tr>\n", " <th>result_Y</th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0.0</th>\n", " <td>3654</td>\n", " </tr>\n", " <tr>\n", " <th>1.0</th>\n", " <td>8613</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ "decision_T 1\n", "result_Y \n", "0.0 3654\n", "1.0 8613" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Split the data set to test and train\n", "from sklearn.model_selection import train_test_split\n", "train, test = train_test_split(df, test_size=0.5, random_state=0)\n", "\n", "print(train.shape)\n", "print(test.shape)\n", "\n", "train_labeled = train.copy()\n", "test_labeled = test.copy()\n", "\n", "# Set results as NA if decision is negative.\n", "train_labeled.result_Y = np.where(train.decision_T == 0, np.nan,\n", " train.result_Y)\n", "test_labeled.result_Y = np.where(test.decision_T == 0, np.nan, test.result_Y)\n", "\n", "print(train_labeled.shape)\n", "print(test_labeled.shape)\n", "\n", "tab = train_labeled.groupby(['result_Y', 'decision_T']).size()\n", "tab.unstack()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Data without unobservables\n", "\n", "In the chunk below, we generate a simplified data. The default values and definitions of $Y$ and $T$ values follow the previous description.\n", "\n", "**Parameters**\n", "\n", "* M = `nJudges_M`, number of judges\n", "* N = `nSubjects_N`, number of subjects assigned to each judge\n", "* betas $\\beta_i$ = `beta_i`, where $i \\in \\{X, Z, W\\}$ are coefficients for the respected variables\n", "\n", "**Columns of the data:**\n", "\n", "* `judgeID_J` = judge IDs as running numbering from 0 to `nJudges_M - 1`\n", "* R = `acceptanceRate_R`, acceptance rates\n", "* X = `X`, invidual's features observable to all (models and judges), now $X \\sim \\mathcal{N}(0, 1)$\n", "* T = `decision_T`, bail-or-jail decisions where $T=0$ represents jail decision and $T=1$ bail decision.\n", "* $p_y$ = `probabilities_Y`, variable where $p_y = P(Y=1)$\n", "* Y = `result_Y`, result variable, if $Y=0$ person will or would recidivate and if $Y=1$ person will or would not commit a crime. Here $Y \\sim \\text{Bernoulli}(1/exp(\\beta_X \\cdot X))$" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Whole data:\n" ] }, { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>result_Y</th>\n", " <th>0</th>\n", " <th>1</th>\n", " <th>All</th>\n", " </tr>\n", " <tr>\n", " <th>decision_T</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>15510</td>\n", " <td>8542</td>\n", " <td>24052</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>9406</td>\n", " <td>16542</td>\n", " <td>25948</td>\n", " </tr>\n", " <tr>\n", " <th>All</th>\n", " <td>24916</td>\n", " <td>25084</td>\n", " <td>50000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ "result_Y 0 1 All\n", "decision_T \n", "0 15510 8542 24052\n", "1 9406 16542 25948\n", "All 24916 25084 50000" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Training data:\n" ] }, { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>result_Y</th>\n", " <th>0</th>\n", " <th>1</th>\n", " <th>All</th>\n", " </tr>\n", " <tr>\n", " <th>decision_T</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>7819</td>\n", " <td>4240</td>\n", " <td>12059</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>4709</td>\n", " <td>8232</td>\n", " <td>12941</td>\n", " </tr>\n", " <tr>\n", " <th>All</th>\n", " <td>12528</td>\n", " <td>12472</td>\n", " <td>25000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ "result_Y 0 1 All\n", "decision_T \n", "0 7819 4240 12059\n", "1 4709 8232 12941\n", "All 12528 12472 25000" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Test data:\n" ] }, { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>result_Y</th>\n", " <th>0</th>\n", " <th>1</th>\n", " <th>All</th>\n", " </tr>\n", " <tr>\n", " <th>decision_T</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>7691</td>\n", " <td>4302</td>\n", " <td>11993</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>4697</td>\n", " <td>8310</td>\n", " <td>13007</td>\n", " </tr>\n", " <tr>\n", " <th>All</th>\n", " <td>12388</td>\n", " <td>12612</td>\n", " <td>25000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ "result_Y 0 1 All\n", "decision_T \n", "0 7691 4302 11993\n", "1 4697 8310 13007\n", "All 12388 12612 25000" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Set seed for reproducibility\n", "#npr.seed(0)\n", "\n", "\n", "def generateDataNoUnobservables(nJudges_M=100, nSubjects_N=500, beta_X=1.0):\n", "\n", " df = pd.DataFrame()\n", "\n", " # Assign judge IDs as running numbering from 0 to nJudges_M - 1\n", " df = df.assign(judgeID_J=np.repeat(np.arange(0, nJudges_M, dtype=np.int32),\n", " nSubjects_N))\n", "\n", " # Sample acceptance rates uniformly from a closed interval\n", " # from 0.1 to 0.9 and round to tenth decimal place.\n", " acceptance_rates = np.round(npr.uniform(.1, .9, nJudges_M), 10)\n", "\n", " # Replicate the rates so they can be attached to the corresponding judge ID.\n", " df = df.assign(acceptanceRate_R=np.repeat(acceptance_rates, nSubjects_N))\n", "\n", " # Sample feature X from standard Gaussian distribution.\n", " df = df.assign(X=npr.normal(size=nJudges_M * nSubjects_N))\n", "\n", " # Calculate P(Y=0|X=x) = 1 / (1 + exp(-beta_X * x)) = sigmoid(beta_X * x))\n", " df = df.assign(probabilities_Y=sigmoid(beta_X * df.X))\n", "\n", " # Draw Y ~ Bernoulli(sigmoid(beta_X * x))\n", " df = df.assign(result_Y=npr.binomial(\n", " n=1, p=df.probabilities_Y, size=nJudges_M * nSubjects_N))\n", "\n", " # Invert the probabilities. ELABORATE COMMENT!\n", " df.probabilities_Y = 1 - df.probabilities_Y\n", "\n", " # Sort by judges then probabilities in increasing order.\n", " # I.e. the most dangerous for each judge are first.\n", " df = df.sort_values(by=[\"judgeID_J\", \"probabilities_Y\"], ascending=False)\n", "\n", " # Iterate over the data. Subject is in the top (1-r)*100% if\n", " # his within-judge-index is over acceptance threshold times\n", " # the number of subjects assigned to each judge. If subject\n", " # is over the limit they are assigned a zero, else one.\n", " df.reset_index(drop=True, inplace=True)\n", "\n", " df['decision_T'] = np.where((df.index.values % nSubjects_N) <\n", " ((1 - df['acceptanceRate_R']) * nSubjects_N),\n", " 0, 1)\n", "\n", " return df\n", "\n", "\n", "simple_data = generateDataNoUnobservables()\n", "\n", "# Split the data set to test and train\n", "s_train, s_test = train_test_split(simple_data, test_size=0.5, random_state=0)\n", "\n", "s_train_labeled = s_train.copy()\n", "s_test_labeled = s_test.copy()\n", "\n", "# Set results as NA if decision is negative.\n", "s_train_labeled.result_Y = np.where(s_train.decision_T == 0, np.nan,\n", " s_train.result_Y)\n", "s_test_labeled.result_Y = np.where(s_test.decision_T == 0, np.nan,\n", " s_test.result_Y)\n", "\n", "#display(simple_data.tail(20))\n", "\n", "print(\"Whole data:\")\n", "display(\n", " pd.crosstab(simple_data.decision_T, simple_data.result_Y, margins=True), )\n", "\n", "print(\"Training data:\")\n", "display(pd.crosstab(s_train.decision_T, s_train.result_Y, margins=True))\n", "\n", "print(\"Test data:\")\n", "display(pd.crosstab(s_test.decision_T, s_test.result_Y, margins=True))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Algorithms\n", "\n", "### Contraction algorithm\n", "\n", "Below is an implementation of Lakkaraju's team's algorithm presented in [their paper](https://helka.finna.fi/PrimoRecord/pci.acm3098066). Relevant parameters to be passed to the function are presented in the description." ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [], "source": [ "def contraction(df, judgeIDJ_col, decisionT_col, resultY_col, modelProbS_col,\n", " accRateR_col, r):\n", " '''\n", " This is an implementation of the algorithm presented by Lakkaraju\n", " et al. in their paper \"The Selective Labels Problem: Evaluating \n", " Algorithmic Predictions in the Presence of Unobservables\" (2017).\n", " \n", " Parameters:\n", " df = The (Pandas) data frame containing the data, judge decisions,\n", " judge IDs, results and probability scores.\n", " judgeIDJ_col = String, the name of the column containing the judges' IDs\n", " in df.\n", " decisionT_col = String, the name of the column containing the judges' decisions\n", " resultY_col = String, the name of the column containing the realization\n", " modelProbS_col = String, the name of the column containing the probability\n", " scores from the black-box model B.\n", " accRateR_col = String, the name of the column containing the judges' \n", " acceptance rates\n", " r = Float between 0 and 1, the given acceptance rate.\n", " \n", " Returns:\n", " u = The estimated failure rate at acceptance rate r.\n", " '''\n", " # Get ID of the most lenient judge.\n", " most_lenient_ID_q = df[judgeIDJ_col].loc[df[accRateR_col].idxmax()]\n", "\n", " # Subset. \"D_q is the set of all observations judged by q.\"\n", " D_q = df[df[judgeIDJ_col] == most_lenient_ID_q].copy()\n", "\n", " # All observations of R_q have observed outcome labels.\n", " # \"R_q is the set of observations in D_q with observed outcome labels.\"\n", " R_q = D_q[D_q[decisionT_col] == 1].copy()\n", "\n", " # Sort observations in R_q in descending order of confidence scores S and\n", " # assign to R_sort_q.\n", " # \"Observations deemed as high risk by B are at the top of this list\"\n", " R_sort_q = R_q.sort_values(by=modelProbS_col, ascending=False)\n", "\n", " number_to_remove = int(\n", " round((1.0 - r) * D_q.shape[0] - (D_q.shape[0] - R_q.shape[0])))\n", "\n", " # \"R_B is the list of observations assigned to t = 1 by B\"\n", " R_B = R_sort_q[number_to_remove:R_sort_q.shape[0]]\n", "\n", " return np.sum(R_B[resultY_col] == 0) / D_q.shape[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Causal approach - metrics\n", "\n", "Generalized performance:\n", "\n", "$$\n", "\\mathbf{gp} = \\sum_x f(x)\\delta(F(x) < r)P(X=x)\n", "$$\n", "\n", "and empirical performance:\n", "\n", "$$\n", "\\mathbf{ep} = \\dfrac{1}{n} \\sum_{(x, y) \\in \\mathcal{D}} \\delta(y=0) \\delta(F(x) < r)\n", "$$\n", "\n", "where\n", "\n", "$$\n", "f(x) = P(Y=0|T=1, X=x)\n", "$$\n", "\n", "and\n", "\n", "$$\n", "F(x_0) = \\int P(x)~\\delta(P(Y=0|T=1, X=x) > P(Y=0|T=1, X=x_0)) ~ dx = \\int P(x)~\\delta(f(x) > f(x_0)) ~ dx.\n", "$$\n" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [], "source": [ "def getProbabilityForClass(x, model, class_value):\n", " '''\n", " Function (wrapper) for obtaining the probability of a class given x and a \n", " predictive model.\n", " \n", " Parameters:\n", " x = individual features, an array, shape (observations, features)\n", " model = a trained sklearn model. Predicts probabilities for given x. Should\n", " accept input of size (observations, features)\n", " class_value = the resulting class to predict (usually 0 or 1).\n", " \n", " Returns:\n", " The probabilities of given class label for each x.\n", " '''\n", " if x.ndim == 1:\n", " # if x is vector, transform to column matrix.\n", " f_values = model.predict_proba(np.array(x).reshape(-1, 1))\n", " else:\n", " f_values = model.predict_proba(x)\n", "\n", " # Get correct column of predicted class, remove extra dimensions and return.\n", " return f_values[:, model.classes_ == class_value].flatten()\n", "\n", "\n", "def cdf(x_0, model, class_value):\n", " '''\n", " Cumulative distribution function as described above.\n", " \n", " '''\n", " prediction = lambda x: getProbabilityForClass(\n", " np.array([x]).reshape(-1, 1), model, class_value)\n", "\n", " prediction_x_0 = prediction(x_0)\n", "\n", " x_values = np.linspace(-10, 10, 40000)\n", "\n", " x_preds = prediction(x_values)\n", "\n", " y_values = scs.norm.pdf(x_values)\n", "\n", " results = np.zeros(x_0.shape[0])\n", "\n", " for i in range(x_0.shape[0]):\n", " \n", " y_copy = y_values.copy()\n", " \n", " #y_copy[prediction(x_values) < prediction_x_0[i]] = 0\n", " y_copy[prediction(x_values) > prediction_x_0[i]] = 0\n", " \n", " results[i] = si.simps(y_copy, x=x_values)\n", "\n", " return results\n", "\n", "\n", "#%timeit cdf(np.ones(1), logreg, 0)\n", "#%timeit cdf(np.ones(10), logreg, 0)\n", "#%timeit cdf(np.ones(100), logreg, 0)\n", "#%timeit cdf(np.ones(1000), logreg, 0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Performance comparison\n", "\n", "Below we try to replicate the results obtained by Lakkaraju and compare their model's performance to the one of ours.\n", "\n", "### With unobservables in the data\n", "\n", "#### Predictive model\n", "\n", "Lakkaraju says that they used logistic regression. We train the predictive models using only *observed observations*, i.e. observations for which labels are available. We then predict the probability of negative outcome for all observations in the test data and attach it to our data set." ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "# instantiate the model (using the default parameters)\n", "logreg = LogisticRegression(solver='lbfgs')\n", "\n", "# fit, reshape X to be of shape (n_samples, n_features)\n", "logreg = logreg.fit(\n", " train_labeled.dropna().X.values.reshape(-1, 1),\n", " train_labeled.result_Y.dropna())\n", "\n", "# predict probabilities and attach to data\n", "label_probs_logreg = logreg.predict_proba(test.X.values.reshape(-1, 1))\n", "\n", "test = test.assign(B_prob_0_logreg=label_probs_logreg[:, 0])\n", "test_labeled = test_labeled.assign(B_prob_0_logreg=label_probs_logreg[:, 0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Visual comparison\n", "\n", "Let's plot the failure rates against the acceptance rates using the difference. For the causal model we plot $P(Y=0|do(R=r))$ against r." ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1 2 3 4 5 6 7 8 " ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAAH/CAYAAABD8tytAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl4Tcf/wPH3JxGJxFoJsdROKIo2fO1CEbuqWmorRRVt0YWiJUFtXaj2hxZF7UVrLW2VWKNoq4utpdbWUkvFlpBkfn+cm9vk5kYSuYng83qe+8SdM2dmzpkbz/1k5syIMQallFJKKaWUUq7ndrcboJRSSimllFL3Kw24lFJKKaWUUiqdaMCllFJKKaWUUulEAy6llFJKKaWUSicacCmllFJKKaVUOtGASymllFJKKaXSiQZcSimVDBEZIyJGRGrHS2toS3vzbrZNKaWUUpmbBlxKqfuCiBSzBUBJvf692228XzzIwaaIfG279r13uy2u9CD3qSuIyDYRib7b7VBKZU5Z7nYDlFLKxQ4Bi52kR6ahzMnAfOB4GspQ9zgRKQw0BAxQSUSqGGN+usvNUkoplclpwKWUut8cNMaEuLJAY8x54Lwry1T3pO5YM0PeA14FngNeupsNUkoplfnplEKl1ANHRDxFZICIbBCRv0Tkpoj8LSLzRaSkk/yJnuFKotxStnwzU3pMRE6JyGERySsin4jIaRGJdXherLSIzI3X1pMi8pGI+KbwerPY6t4gIkVFZLGI/GNLK2zL01ZEPheRP0UkUkQuici3ItLA8V4A39rejo43ZTPaIV8BWxuPikiUiJwRkc9EpGgK2isictzWRo8k8hyxtTGr7X02EXlDRH4TkasicllEDorIpyJSICX3KQW6A5eA4cCfQCcR8bzNdTQUkbW264gUkWMiMk9Eyjvkyy0ib4vIfhG5ISIXReR7EXkliTLX2fJE2s4ZLCJZHPL1svVLFxHpKCJ7bWX/JSLviIh3vLzJ9qmIVBWRqbb6rojINRH5QURecNLG+J+3Arbfqwsicl1ENopI5STuVxkRmS0iJ2yfmdMisl5EmjvkcxORF0Rkl62vr4rIdhFpnVRfOKnL/jstIn1E5Bfb/ZxpO15YREaLyG4ROW9rzx8iMlFEsjteK1ALcJeE05jfdKizvYhstn02b4jIjyLSK6VtVkrdu3SESyn1IPLDGqXYDKwCIoCyQEegqYg8ZozJyOmDXkAY1h/BlgIewBUAsQKvrwBPYCVwDCgH9AMai0g1Y0xKn0/zA8KBU8A8IA9wy3ZsPHAV656cBQoATwLfishTxpiVtnwbgSJAV2ATsMWWHhtXiYgE2K4nH7AWWGY75xkgWESqG2OOJtVIY4wRkYXAG0BjWxl2IlIdKAHMMMbctCUvtLV3K/C1La0Y0Bb4BDid3M25HRGpB5QEPjbGRInIfGAE0Br43En+wcAE4DKwwlb/w1hTEr8H9tnyFbC1uaQt/UMgG1DRdv3vxytzoO39OVuZl4C6tnqqAu2cNP0Z4AmsabbrgWDgNaCyiAQbY2JJQZ8CfWznbgFWAzlt76eJSCljzGtO6n4I2G5r71ys/mgDbBSRssaYc/Gurb6tXC9gDXAA8AVqAD2wfQZExA3rfrcFfgPmYP3eNAdWiMhLxpiPnLQlKcOBmra61wF/29KDgAHAd7ZrMEB14HWgjojUMcZE2+5RKNZoZ2FgVLyy4+4jIjIJGAgcxeqLSKARMENEAowxr6eizUqpe40xRl/60pe+7vkX1pc5AxwEQpy8ysbL6wUUcFJGAyAGmO6QPsZWdu14aXHP8rwZL62ULW2mk7KdHsMKfgzWF+isDsc8gZPABSDA4dgztvMmp+DeZLHlNcBHgDjJU9xJWgGsL6AHHdITXbvD8V1YXyhrOaTXBqKBFSlocwVbHQudHPvQdqyu7X1e2/vPneTNBvi44PM1x1ZHLdv70rb365zkDcT6In4Y8Hc45gHki/d+la2c152UUzjevx+13bvtQM546QJMs5XxZLz0Xra0WIfPrRtWcGGAbqno06KAm5PP1be2dhV2SI/7vL0f//MGjHa8XlsfnQFuOn5mbMcLxft3f9v5H8RvD5Ad2GP73Pk7uwaHMuN+py8BZZwczwd4O0kPsZ3X0SF9GxCdRF3NbecsAzzjpWeN1xdV0voZ1Ze+9JV5XzqlUCl1vwkARjp5lY3LYIyJNMYkGvEwxmzEWnSjYcY0NYEh5r/Rmjitsf5qPtoYcyj+AWPMIuBnrFG5lLqB9YXaOB4wTkacbPdoBRAgtqmHyRGRalijLdONMdsdytuGNXrRIv60LGeMMb8BvwCtRMQnXvlZgA7ACayRIbC+sMZdn2M5N4wx11LS9qSISA7gaeBo3DUZY/7AGpFqLCKFHE7pgxUIvWGMOePQnlvGNrJju6ctgV+xRlwd234q3tsXAHegvzEmIl4eAwyzvXX2WfjKdt/j8sdijeoAdLnddTu05bjt3Php0cAMW7uCnJx2hcSftzm2n4Hx0p4C8gOfOH5mbPX8Fe9tf6znKV+L3x5jzFWsIMoTa6QzpaYbY353Uuc5Y8x1J/mn2n6m5v+I/liBbx9jTFS8Om4Cb9nedkhFeUqpe4xOKVRK3W9WGmOS/cIlIlWxpgfVwvprdvz/D5190UpPVx0DKpv/2X4+KiIhTo57AvlFJLdJ2bTCI0nls01tG4Y1TexhrFHA+ApgjcYlJ67NRZJoc36sL+ilgOSWVp8PTMT6Ar3AltYIa2rk+Lgv8saYiyKyAegm1jNiK7GCsZ+MMTEpaHNy2gM+tvbENw/rep8FxsZLr2r7+U0y5cYFHRscgxkn/oc1+tpGRJx9viOJ90eFeLY5JhhjfhGRCKBSMnXaiYgX1hS79kAZrBGl+Jw9J3fISdASFzzljpeWovslIjmxptMeBYaLiGOW/Lafzu5DUvbcpr4OwPNAZVt74/+ROjXPBf4Pa2rpS07aHPcMYGrarJS6x2jApZR64Niex4mbCvU11tSv61gjJc8BBTO4SeeSSH/I9rNHMuf7ACkJuJzWIyJ+wG6s696C9SzLZay/yjcA6vDfF8PkxLW5je2VFJ/bHIuzCOvZsk78F3B1tv10DH7aYD1T9Qz/Pff0j4i8D0xwNqqXCnH337HOJcAkrMU04gdcuYBr8UeikpDL9vPv2+ayPIQVqI64TR5n9/SfJPKewxo9TakVWMH4fqzn5f7B+v0pgfXsl7PPx2UnaXELcbjHS0vpfchj+1kca9Q6KSn5bMVJ6ndiKFafnsV6hvIUEIUVdL1Fyn8fwGq34Lo2K6XuMRpwKaUeRMOwnqWpbYzZFf+AiHR2fkqKxI1SuDs5lvM25yUVDMR9Ya9vjAm700aloJ5eQCFgsDHmnfgHbNPl6qSijrg29zDGzEl1C+MxxpwSkS1Y0/Z8sYLiJ4GfjTH7HPJeBQYDg22LdjwBvAyMA65hPfeVaiJSBmsUFOCQkxEKgNK2RRTipjj+CxQTkZzJBF1xQXJKAvwIrAVOfIwxt5LLHI9fEun5+K+vbktEamAFW2uA1vFH42y/L11T0R5nUnof4tq72RgTlMY64yT6nRBr5cthWM9PVjbGXIx3rBD/TQNMqSvAJWNMsTS0Uyl1D9NnuJRSD6KSwFknwVZBrMU37lTcF0fHZ3oAqtxBeXHtq35nzUmxuKXwV8dPFCu6qOEkf9w0PWeBpavbvADrj4PtsYItZ1P7EjDGHDLGTAWa2JJapaH+uNGtjcAsJ6/VDvnAGi0Ea4XF29mD9YX/Cdvqe7ezC+uPBI+nrNl2ibYyEJFHsf4A8HO85Nv1adznY62TqY+1HDPfgRTdL2PMJazR6IoSb1n7dJAPa8rkjvjBlk1S1xuDbUcDJ8d2YU2xzeiRc6VUJqEBl1LqQXQC8LONXgDW3lxYK/jd8ci/7cvZMaCexNtvSkTy89/CBqnxBdY0q2EiEuh4UES8ReR/iU9LtRO2n45fJl8DypNY3JdQZ4HlDuBHoJeINHM8KCIeksx+Zg6WYk3l6mx7xWJNNYxfZn4RcRaIxD3TcyNeXm8RKSsiDydXsYi4A92wpsE9Y4zp5fjCWor9EtAu3kIgH9vaOV5E/B3KzCIi+cC+GMRqrBUIne25Ff/+TrWVOdWxTFtefxFx9hxQM0m4p5sb8LbtbfzA9XZ96vTzISK1gJ5O8qfWl1hT954XkZqOBx0ClQ+xpld+JE72QBORCpLC/eluI27FxMdtz67Fb8fbSZxzEes7lbNnuz7EmlI4y/YcmmObS0gK9qdTSt27dEqhUupB9BFQHwgXkSVYX2QbYn1h+hV4JA1lT7a9dorIMqwlr1thLeJQIjUFGWNuiEg7rGdIvheRb7CeofHAeo6lHtYzVy3S0F6w9kh6HWtPpSewgry41Qa/AhwDp/1Yz750FpFIW/5YY8xEY4wRkY5Y+zmttU0J3It1j4tiTU88i7Xse7KMMZdFZC3WM1qxQJjDqnVgLfKxW0T22uo6jTU9rQ1WsDQlXt6aWM/vfUfyK80F28pZaeLtGeXQvigRWYS1L1o7YLYx5gcRGYb1/NlBEfkC60t8IVud47A+g2CtPlgBeEdE2mJ9TjyxAt2K2IJGY8xPIjIAazn030XkK6zg/iGsJerrYO3bddChieuw9lJbYmtDY6zR1g0kDLiS7FOsIPonoIst6PgBa9SrFday9k8lcx9vy/Y5fwZryuIWEVlja09erJHSP7BWiQTrvtXEGlFsICKbsD5PBbEC10pYn9vzaWhPtIh8DLwE/GS71w9hrSgZhrXgi6NNWCOwS0Xka6yAbYsxZocxZpWIvIP1O3bY9nt8CmskrRzWohrtgYzc+08plZHu1nr0+tKXvvTlyhf/7cOV7B5PtvzPYH05v471RfRTrC9AifbTIYX7cMU79irwJ9aXrt+xniWK27fJ2T5ch5Npa1GsEY4/sUZ7LmItmf4BEJiCa43bF2nDbfI8jhWE/Gt7rbOlJbp2W/7atnt1zXbc8Z75YW3IewBrhCnC9u+ZWM+kpaZvn+K/fZ16ODmeB2t/pK22vozCGpVZBlR1yBvXb0nei3h5l+Kwv1US+QJt+bY6pDfBWpTlEtYqgkeBz4ByDvkest2rP2xtvwDsBAY4qasWsJz/RmHOYG1m/SYJ98KK24erC9Zy8XttbfgbeBfne0wl2aeAv63tp7F+Z/bYynW2H12Sn7dkjpXDWvnxtO3a/sYK+Js65BOs58bCbJ/VSKxgZT3WkvyJrs1JXU4/1/GOe9o+U4dt5R/GWrAkm7P2Y+2pNQnr9zna8Z7Y8jTH+r06b7u+v2zX8AqQNzW/E/rSl77urZcYk5aFm5RSSimV2YhIL6w9sroaY277zJtSSqn0pc9wKaWUUkoppVQ60YBLKaWUUkoppdKJBlxKKaWUUkoplU70GS6llFJKKaWUSic6wqWUUkoppZRS6STD9+GybTY5CWiEtbTrBmCgMeZEMucVxdpLpTLW0s3XgN+ACcaYdQ55kxq2q2KM2ZtcG319fU2xYsWSy5Yhrl27ho+Pz91uhnKg/ZL5aJ9kTtovmY/2Seak/ZL5aJ9kTpmpX3744Yfzxhi/5PJlaMAlIt7ARqx9Rp7F2qdiDLBJRB41xly7zenZsfaueBNrn4ucQG/gKxFpa4z5wiH/HOBjh7TfU9LOYsWKsWfPnpRkTXdhYWEEBQXd7WYoB9ovmY/2Seak/ZL5aJ9kTtovmY/2SeaUmfpFRFK0YXlGj3D1BkoAAcaYwwAi8gvWZo99gPeTOtEYsw/oGT9NRNZibSTZA3AMuP4yxux0XdOVUkoppZRSKnUy+hmuVsDOuGALwBhzFNgOtE5tYcaYaOAycMtlLVRKKaWUUkopF8nogKs81nNXjvYBj6SkABFxE5EsIuIvIm8BZYD/c5K1r4hEich1EdkoInXuvNlKKaWUUkoplXoZHXA9BFxykn4RyJPCMiZijWidBgYDHY0x3znkmQ/0AxoCzwN5gY0iEnQHbVZKKaWUUkqpO5Kh+3CJyE3gPWPMUIf0t4EhxphknykTkcKAv+3VDWua4tPGmDW3OScH1sjaSWNM7STyPI8VnJE/f/7HFy9enLKLSmdXr14le/bsd7sZyoH2S+ajfZI5ab9kPtonmZP2S+ajfZI5ZaZ+qV+//g/GmMDk8mV0wHUWWGGM6eOQPhVol5JlFZ2UGQb4G2PKJpNvKtDTGOOZXJmBgYFGVylUt6P9kvlon2RO2i+Zj/ZJ5qT9kvlon2ROmalfRCRFAVdGr1K4D+s5LkePAPvvsMw9wMAU5BOsZehdIiIignPnznHrVvqu15ErVy4OHDiQrnWo1NN+SRkPDw/y5ctHzpw573ZTlFJKKaXuiowOuFYB74pICWPMnwAiUgyoBbyR2sJExA2oDRxJJl9OoDnwfWrrcCYiIoKzZ89SqFAhsmXLhoi4olinrly5Qo4cOdKtfHVntF+SZ4zhxo0b/PXXXwAadCmllFLqgZTRAdcM4EVgpYi8iTXiNBo4SbxNikWkKFYQNcoYM8qWFoK16MZ24AzWM1w9gWpAp3jnvgYEAJuAv4GiwGu2/J1dcRHnzp2jUKFCeHt7u6I4pe5LIoK3tzeFChXi77//1oBLKaWUUg+kDA24jDHXRKQBMAmYhzXN7ztgoDHmarysAriTcBXFH7GmDnYEcmEFXT8DdYwx2+PlOwS0sb1yARFYQVpPY8wuV1zHrVu3yJYtmyuKUuq+ly1btnSfequUUkoplVll9AgXxpgTQNtk8hzDCrrip63CmpKYXPmrgdVpaGKKpOc0QqXuJ/q7opRSSqkHWUbvw6WUUkoppZRSDwwNuJRSSimllFIqnWjA9YATkWRfxYoVu9vNBOCNN95Iso3Vq1dPlzoPHjyIiJCeG2EvW7aMKVOmJEpfv349IsLOnTvTrW6llFJKKZW+MvwZLpW5hIeHJ3jfpk0bKlWqREhIiD3N0zPZvaIzjLu7O9u2bUuUfi8v0b5s2TL27NnDyy+/nCC9Ro0ahIeHU6FChbvUMqWUUkoplVYacD3gHEeGPD098fX1TfGIUVRUVIYHZOk1mpXZ5MqV64G5VqWUUkqp+5VOKVQp1rFjR0qVKsWWLVuoXr062bJlY8SIEURGRiIijB8/PkH+pKbjbdiwgaCgILJnz0727Nlp3rw5Bw4ccEkbP/vsM0SE33//PdGx+vXrJwhgJk2aRPXq1cmTJw958uShVq1afPPNN8nWUb16ddq0aZMo3d/fnxdeeMH+/vTp0/Tu3ZvSpUvj7e1NkSJF6NatG2fOnLHn6dixI0uWLOHIkSP26ZFly5YFnE8pjI2NZeLEiZQuXZqsWbNSqFAhBgwYwLVr1+x54vpjzJgxvPfeexQtWpQcOXLwxBNPcOjQoWSvTymllFIqUzp8+G634I5owKVS5fz583Tt2pVu3bqxbt06nn766VSd/8UXXxAcHIyvry8LFy5k3rx5/PPPP9StW5fTp0+nqIzo6OhEr9jYWADatm2Lj48P8+fPT3DOyZMn2bJlC127drWnHT9+nD59+rB8+XIWLVpEhQoVaNKkCZs2bUrVNSXl/Pnz5MiRgwkTJrB+/XrGjx/Pr7/+St26de37Uo0ZM4aGDRtSuHBhwsPDCQ8PZ8mSJUmW+dprrzFkyBBatGjBmjVrGDRoEDNmzKBVq1YYYxLknTlzJhs3buSjjz5i5syZ/P7777Rp08Z+r5RSSiml7hkffQQBAeR1eBzmXqBTCl1k4PqB7D2z1+XlxsTE4O7unqK8lf0rM7nJZJe3Ib7Lly+zZMkSgoOD7WmRkZEpOjc2NpYBAwYQHBzMsmXL7On16tWjRIkSfPDBB4lGyRzFxMTg4eGRKP3VV1/l3XffxcfHhzZt2jB//nxCQ0Pte0AtWLAAd3d3OnToYD9n8uT/7lVsbCwNGzbkwIEDTJ8+nfr166fomm6nYsWKvP/++/b30dHRVK1alTJlyrBhwwaaNm1KqVKlyJs3L56enslOHzxz5gwffvghffr0YdKkSQA0btyY3Llz07t3b7799lsaN25sz+/j48OqVavsn59bt27RtWtX9u7dy2OPPZbm61NKKaWUSnexsTB0KEycCK1bc6lKlbvdolTTES6VKt7e3gmCrdTYt28fp06dokuXLglGp3LmzEnVqlXZsmVLsmW4u7uze/fuRK+BAwfa83Tt2pWjR4+yfft2e9r8+fNp1qwZvr6+9rTvv/+epk2bki9fPtzd3fHw8GDr1q0um3ZnjGHKlClUrFiR7Nmz4+HhQZkyZQDuqI4dO3YQHR1Nly5dEqR37twZEWHz5s0J0oODgxME6xUrVgTgxIkTqa5bKaWUUirDRUVB165WsNW3LyxfTqyX191uVarpCJeLpNfI0pUrVzLVCnz+/v53fO65c+cAK0Do3LlzouNxwUhyAgMDb3u8YcOGFCxYkHnz5lG7dm1+/PFH9u3bR2hoqD3Pn3/+ScOGDXnssceYOnUqhQsXJkuWLAwZMoS//vorFVeVtHfffZchQ4YwePBgnnjiCXLnzs2NGzeoV69eikcF47t48SIABQoUSJCeLVs2cubMaT8e56GHHkrwPm5xkzupWymllFIqQ12+DG3awKZNMG4cDBkCtplL9xoNuFSqiJMPuoeHB+7u7ty8eTNB+oULFxK8z5s3LwDvvfcedevWTVSOl4v+YuHm5kanTp2YNWsWU6ZMYf78+eTJk4cWLVrY86xdu5arV6+yfPnyBKNeV69eTbZ8Ly8v+zNYcWJjY/n3338TpC1evJhmzZolmCaZlsVB4gKoM2fOULJkSXv6jRs3iIiIsN9fpZRSSql72qlT0KwZHDgAn31mjXLdw3RKoUozd3d3ChUqxG+//ZYgfe3atQneV6xYkYIFC3LgwAECAwMTvVy531S3bt24dOkSK1euZNGiRbRv3z7B8vXXr18HIEuW//7m8Ntvv7Fnz55kyy5atCi///47MTEx9rQNGzYQFRWVIN/169cTPW82e/bsROV5enpy48aNZOutWbMmWbJkSbTq48KFCzHGUK9evWTLUEoppZTK1Pbtgxo14NgxWLfung+2QEe4lIt07NiR999/nwkTJhAYGMimTZtYunRpgjzu7u589NFHtGvXjuvXr9O2bVvy5s3LmTNn2L59O2XKlOHFF19Mtq74y6TH8fDw4PHHH7e/r1ixIpUqVeKVV17hzJkzCVYnBGuxiWHDhtGlSxcGDBjAqVOnGDlyJEWKFEnRtX722Wf06tWLzp07c/jwYaZMmYKPj0+CfE2aNOHDDz9k4sSJPPbYY3z99desWLEiUXmPPPIIn332GbNmzeLRRx/F29ub8uXLJ8rn7+/PSy+9xOTJk/Hy8qJx48b88ssvjBgxggYNGtCwYcNk266UUkoplWlt3gytW4O3N2zZApUrJzgcbxece4oGXMolRo4cyZUrV5g0aRLXr1+nZcuWzJkzh9q1ayfI16ZNGzZt2sTYsWPp2bMnN27coECBAtSoUSPRYhDOxMTEUKNGjUTpefPm5fz58wnSunbtymuvvUaJEiWoVatWgmNVqlRh7ty5jBo1ipYtW1K6dGkmTZrE0qVL2bv39qtNNm3alIkTJzJ9+nQWL15MYGAgixYtSrSYyOjRo7l69SrvvPMOUVFRNGjQgLVr1xIQEJAgX9++fdmzZw+vvvoqly9fJiAggIMHDzqt+91338Xf358ZM2bwwQcf4OvrS69evRg7dqzT6Z5KKaWUUveEJUugWzcoWdIa2SpaNMHhNWvguecgJCQnQUF3p4l3Shz37lEQGBhobje17MCBA5QrVy5D2pLZFs1QFu2X1MmI35mwsDCC7rX/gR8A2i+Zj/ZJ5qT9kvlon2Sg99+HV1+FOnVgxQqIt/CXMdYihUOHQpUqMGRIOO3bJ/7j+90gIj8YY26/mhv6DJdSSimllFLqboiNhUGDrGDr6afhm28SBFs3bliPcL3xBrRrB1u3Qr58UbcpMHPSgEsppZRSSimVsSIjoUMHmDwZBgywphTGW7H677+hXj1YsADGjIHFi61Hu+5F+gyXUkoppZRSKuNcvAhPPmkNWb33HrzySoLDu3ZZhyMi4MsvrX/fyzTgUkoppZRSSmWM48ehaVM4csQaturQIcHhBQugZ08oUADCw6FixbvUThfSKYVKKaWUUkqp9Ld3r7XH1t9/w9dfJwi2YmKsZ7W6dIH//c8a5bofgi3QgEsppZRSSimV3r79FurWBXd32L6d+Gu7R0RY0wYnTIA+faysfn53r6mupgGXUkoppZRSKv3MmwfNmkGxYrBzJ5Qvbz90+DBUr25tvfV//wfTp0PWrHevqelBAy6llFJKKaWU6xkD48ZZGxrXrWstklGokP3wd99BtWpw9qy1Iny/fnexrelIAy6llFJKKaWUa8XEQP/+MGwYdOpkDWHlygVYcdhHH0FwsLU4xq5d0KDBXW5vOtKASymllFJKKeU616/DU0/BtGkwZIg1pdA2T/DmTXjhBXjpJWuWYXg4lCx5l9ubzjTgUsyZMwcR4fDhw2kuKygoiNq1a7ugVZbu3btTrFgxl5UXEhKCiLisvNTUu3HjxgyvVymllFIqQ50/D088AatXW8NY48eDmxVy/PMPNGoEn3wCQ4dae2zlzHmX25sBNOBSKgOEhoZqwKWUUkqp+9uRI1CzprX8+/Ll1pRCm19+gapVremDCxbA2LHWgoUPAt34WCmllFJKKZU2u3dDixYQHW2thlGzpv3Ql19C167WI1xbtliB14NER7hUiuzevZunn36awoULky1bNgICAhg2bBg3btxwmn/lypVUqFABT09PypYty+eff54oz88//0yrVq3IkycP2bJlo1atWmzdujXZtly/fp0hQ4ZQvHhxsmbNSvHixXn77beJjY1NkO+nn36iTp06eHl5UahQIUaPHo0xJkXXe+vWLd58802KFStG1qxZKVasGG+++Sa3bt2y5wkLC0NECAsLS3Bu3BTNY8eOAdinML799tuICCJCSEiIPf/mzZtp1KgRuXLlwsfHh0qVKjFr1qxUteXYsWOICNOnT2fo0KH4+/uTI0cOunTpwvXr1zl8+DDBwcFkz56dUqVKMXct7jflAAAgAElEQVTu3ETXnJL+2L17N40aNSJv3rx4e3tTokQJ+t2vSwoppZRSKmW++sraV8vbG3bssAdbxsDo0dbjXOXLWzHZgxZsgY5wqRQ6ceIElStXpnv37uTIkYN9+/YxatQo/vzzTxYvXpwg7+HDh3n55ZcJCQkhX758TJs2jY4dO+Ln50f9+vUB+PHHH6lTpw5VqlRhxowZeHt7M336dBo2bMiOHTt4/PHHnbYjOjqa4OBg9u/fz1tvvUXFihXZuXMno0eP5uLFi7z33nsAnD9/ngYNGuDv78/cuXPx9PTknXfe4cSJEym63meffZbPP/+cYcOGUbt2bcLDwxkzZgx//vknCxcuTNW9Cw8Pp0aNGnTv3p0+ffoAULhwYcAKTNu2bUutWrX4+OOP8fX1Zd++fRw/fvyO2jJu3DiCgoKYO3cu+/fvZ/Dgwbi5ufHTTz/Ru3dvXnvtNaZNm0aPHj0IDAykvG0fjJT0x9WrVwkODqZatWrMmTOHHDlycOzYMXbs2JGq+6GUUkqp+8isWdZuxZUqwdq14O8PwLVr0KMHLF0KXbrAjBng5XXn1Zy5eoaX171Mp1ydXNTwjKMBl4sMHDiQvXv3urzcmJgY3FM4wbVy5cpMnjzZ5W0AaNu2rf3fxhhq1apFzpw56datG//3f/9H3rx57cfPnj1LeHg41atXB6BJkyaUL1+eESNG2EdMXn/9dYoUKcLGjRvJalu1Jjg4mAoVKjB69GhWrFjhtB2LFi1i27ZtbN68mbp16wLwxBNPANZzUkOGDCFfvnxMmjSJa9eu8fXXX1OkSBEAGjVqRNGiRZO91t9++41FixYxcuRI+0hU48aNcXd356233uKNN96gePHiKb53cfehUKFC9n/H3ccBAwZQuXJlNm3ahJvtgdKGDRumqi2PPvqoPX/JkiXto1fBwcFs3bqVefPmMW/ePLp06QJAYGAgq1atYtmyZfaAKyX9cfDgQS5dusTEiRMT1Nm9e/cU3wullFJK3SeMgdBQ6xUcbEVWOXIAcOIEPPmk9SjXxInw2muQljXL9p3bR/OFzfnn+j/UfKRm8idkMjqlUKVIREQEQ4YMoWTJknh6euLh4UHXrl0xxvDHH38kyPvwww8nCCzc3d1p164du3btIjY2lhs3brB582batWuHm5sb0dHRREdHY4yhYcOGbNmyJcl2rF+/nqJFi1KzZk37edHR0TRu3Jhbt26xc+dOAHvAFxdsAfj4+NCyZctkrzWu/rgAJU7c+82bNydbRkocOnSI48eP06tXL3uwlda2NG3aNMH7smXLAlbwFCdPnjzky5ePkydPAqS4P0qXLk3u3Lnp06cP8+fPt5+vlFJKqQfMrVvQq5cVbPXoYa1IaAu2duywpg0eOQJr1sDrr6ct2Pruz++o9WktomKi2NJ9C5VzV3bRRWQcHeFykfQaWbpy5Qo5bB/gu6lHjx5s2LCBUaNGUblyZXx8fNi1axf9+/cnMjIyQd78+fMnOj9//vzcvHmTf/75h+joaGJiYhg9ejSjR492Wl9sbKzTIOTcuXMcP34cDw8Pp+dduHABgNOnT1OhQgWn7UjOxYsXAShQoECCdH/bEHnc8bSKa2vc9EJXtCVPnjwJ3seNVjlLj+u3ixcvpqg/cuXKxaZNmxg9ejT9+vXjypUrlC9fntDQ0AQjoEoppZS6j129Cu3awfr1MGIEhITYI6rZs609th5+GMLCoFy5tFU1+6fZPL/meQLyBvBV568okqsIYb+HpfUKMpwGXCpZkZGRrFy5kpCQEAYMGGBP//XXX53mP3v2rNO0rFmz4ufnx40bN3Bzc6N///5069bNaRlJjfjkzZuX4sWLO12EA7Dv2VWgQIEk25Gchx56CIAzZ85QMt5OfGfOnLG3AcDLNhH55s2bCc6PC6SS4+vrC8Bff/2V5rakRe7cuVPcH5UrV2b58uVER0ezZ88exo0bR/v27fn555+dBrhKKaWUuo+cPQvNm1tzBT/5BHr3BqyFCQcPhkmTrC24Pv8cbF9h7ogxhhGbRjBm6xgalmjIsnbLyOWVy0UXkfE04FLJioqKIiYmJtGo0pw5c5zmP3nyJDt37rRPK4yJiWHp0qVUq1YNNzc3fHx8qFOnDj///DOPPfZYksGVM02aNGH58uVkz57dPl3OmRo1avDOO+9w8uRJHn74YQCuXbvG6tWrk62jXr16ACxevJjhw4fb0xcsWABgf3Ys7nmw3377jcaNG9vzffXVV4nKzJo1a6IVHcuUKUOxYsWYOXMmzz//vNMNmVPalrS4k/7IkiUL1atXZ/To0axatYoDBw5owKWUUkrdz37/HZo0sYKulSutwAu4dAk6doRvvoGXXoL334csaYgwoqKjeG7Vcyz8dSE9q/RkWvNpeLg7n9l0r9CAS9mtX7/ePlUtTq5cuWjUqBHVq1fnvffeo0CBAvj6+vLpp58mOTKTP39+OnToQGhoKH5+fkybNo3ff/+dadOm2fO8//771K1bl+DgYHr27EmBAgU4f/48P/74IzExMYwfP95p2Z07d2b27Nk88cQTvPrqq1SqVImbN29y5MgRVq1axYoVK/D29mbQoEFMnTqVxo0bExISYl+lMFu2bMneh/Lly/PMM88QEhJCdHQ0NWvWJDw8nNGjR/PMM8/w6KOPcuXKFQoUKEC9evUYN24cvr6+5MuXj/nz53PkyJFEZT7yyCOsXbuWJk2akCdPHgoWLEjBggWZPHkyTz31FA0aNOCFF17Az8+PAwcOcO7cOUJDQ1PUFldISX+sWbOGTz75hCeffJLixYtz7do1pkyZQo4cOahRo4ZL2qGUUkqpTCg8HFq2BDc32LQJqlUD4NAhaNUKjh5NMOB1xy5cv0CbJW3YemIrYxuM5Y3abzj9g/Q9xxijL4fX448/bm5n//79tz3uShEREelex+zZsw3g9FW+fHljjDFHjx41TZo0MdmzZzd+fn6mf//+Zs2aNQYwmzZtspdVr149U6tWLbNy5UpTvnx5kzVrVlOmTBmzePHiRPXu37/fdOjQwfj5+ZmsWbOaQoUKmZYtW5q1a9fa8zz77LOmaNGiCc67ceOGGTlypAkICDBZs2Y1efLkMYGBgWbkyJHm1q1b9nw//PCDqV27tvH09DQFCxY0o0aNMiNGjDDWx/72bt68aYYPH26KFClismTJYooUKWKGDx9ubt68aYz5r19OnjxpWrRoYXLlymXy589vhg4dambMmGEAc/ToUXt527ZtM4899pjx9PQ0gBk5cqT92HfffWeCgoKMj4+P8fHxMY8++qj59NNPU9yWuP4BzIwZMxJcx8iRIw2Q4L4YY0zRokVN586dU9UfBw8eNO3btzfFihUznp6extfX1zRt2tTs3Lkz2fuZEb8z8T+HKvPQfsl8tE8yJ+2XzEf7xGbFCmO8vIwpVcqYP/6wJ69fb0yuXMb4+RmzZUvaq/njwh+m9JTSJuvorGbRr4uSzJeZ+gXYY1IQW4hJ4UawD5LAwECzZ8+eJI8fOHCAcml9CjCFMsuiGSoh7ZfUyYjfmbCwMIKCgtK1DpV62i+Zj/ZJ5qT9kvlonwDTpsGLL0JgoLXkoJ8fxljPar3+OlSoAKtWQQp23bmtHSd30Hpxa4wxrOi4gtpFaieZNzP1i4j8YIwJTC6fLguvlFJKKaWU+o8xMHQo9OsHzZrBxo3g50dUFDz3HLz6qrXP1vbtaQ+2Pt/3OQ3mNiC3V27Ce4bfNti6V2nApZRSSimllLLcvAndusH48dCnD3z5Jfj4cOYM1K8Pc+bAyJHWPsfZs995NcYYJmybQIdlHQgsGEh4z3BK5y3tssvITHTRDKWUUkoppRREREDbtrBhA4wZA8OGgQg//gitW8PFi1ag9fTTaavmVswt+n/Vnxk/zqBjhY7Mbj0bryxerrmGTEgDLqWUUkoppR50f/8NTZvC/v3WMNazzwKwZAn06AG+vtYUwsqV01ZNRFQE7Ze25+sjXzOs9jBGNxiNm9zfk+404FJKKaWUUupBtn+/tcfWpUuwdi00bkxsrDV1cMwYqFkTvvgC8udPWzUnL5+k+cLm7P9nPzNbzqTnYz1d0/5MTgMupZRSSimlHlRbtljzBb28rH9XqcLVq9C1K6xYYS2SMXUqeHqmrZofT/9Ii4UtuHbrGus6r6NRyUauaf894P4ev1NKKaWUUko5t3QpNGoE/v7W5sZVqnD0qDWitWoVTJ4MM2emPdha+/ta6s6uSxa3LGzrse2BCrZAAy6llFJKKaUePJMnQ4cOULWq9XBWsWJs3my9PXkS1q2DAQNAJG3VTN09lVaLWxHgG8DOXjupmL+ia9p/D8nwgEtEHhaRZSJyWUQiROQLESmSgvOKishKETkuIjdE5LyIhIlIUyd5vUTkHRE5bcsbLiJ10+eKlFJKKaWUukfExsIrr8CgQdCmDXz7LTz0EB9/DA0bWotjfP89NG6ctmpiYmN49etX6f9Vf5qXbs7m7pspmKOga67hHpOhAZeIeAMbgbLAs0BXoDSwSUR8kjk9O3AeeBNoBvQErgJfichTDnlnAb2BEUAL4DTwtYikcV0VpZRSSiml7lGRkfDMMzBpErz8Mnz+ObeyZKN/f3jhBSvg+v57KFMmbdVcv3Wddkvb8f7O93mp2kt82eFLsmdNw6Zd97iMHuHqDZQAnjTGrDDGrARaAUWBPrc70RizzxjT0xgzzxizyXbuk8ApoEdcPhGpBHQCBhljZhhjvgPaAyeAUelyVfe4OXPmICIcPnw40bHo6GhEhJCQkIxv2H0sve9pWFgYISEhxMbGJkg/duwYIsKcOXPSrW6llFJKZUKXLkFwMHz+ObzzDkyezIV/3QkOthbFeO01WLMGcuVKWzVnr56l/tz6rDi4gsnBk5nSdArubu6uuYZ7VEYHXK2AncYY+zd7Y8xRYDvQOrWFGWOigcvALYc6bgFLHPItBoJFJI2P/SmV+YWFhREaGpoo4CpQoADh4eE0b978LrVMKaWUUhnuxAmoXdtaGGPhQnjtNfbtF6pVsx7fmjPHisHc0xgXHfjnANVnVefXs7/yZYcvGVB9gEuaf6/L6GXhywMrnaTvA9qlpAARccMKFH2xRszKAPF7szxw1Bhz3UkdWYFStn8r9cDx9PSkevXqd7sZSimllMooP/8MzZrBtWvw9ddQvz6rV0OnTpA9O2zeDK74arDp6Cae+vwpPN092dx9M1ULVU17ofeJjB7hegi45CT9IpAnhWVMxBrBOg0MBjrapg2mpI644yoNQkJCECdL1nTv3p1ixYrZ38dNX5s+fTpDhw7F39+fHDly0KVLF65fv87hw4cJDg4me/bslCpVirlz5yYo7/Dhw3Tt2pXixYuTLVs2SpQoQd++fbl06VKiegsXLsxPP/1EnTp18Pb2pnTp0kyfPj1F13P+/Hn69u1LoUKF8PT0pGzZsnzyySf247t27UJEWL16daJz+/bti5+fH7duWYOsixcvpkGDBvj5+ZE9e3aqVKmS6Lqccbx3cYKCgggKCrK/j4yMZNCgQVSoUIHs2bPj7+9Py5YtOXjwoD1PSEgIoaGhAHh4eCAi9v5Kakrh/PnzqVSpEl5eXvj6+tK1a1dOnz6dIE+xYsXo0qULixcvply5cvj4+BAYGMi2bduSvT6llFJK3QXffQd16lhLDW7digmqz/jx1rZbAQGwe7drgq25e+fSeH5jCuYoyM5eOzXYcnA3Nj42TtJSs+DkZKzpgf5AN2ChiDxtjFkTr6xU1yEizwPPA+TPn5+wsLAk8+bKlYsrV66kosl3LiYmJt3rioyMBCAiIiJRMBMTEwNAVFSUvR1RUVEAidp169YtjDH29KtXrwIwduxYateuzbRp0zh48CAjRowgJiaGX375hWeffZZ+/foxa9YsevToQbly5ShXrhxgBVz58uVj3Lhx5M6dm2PHjvHuu+/yww8/8N133yWoNyIigo4dO9KvXz9ee+015s+fT9++fXn44YepWzfpBSojIiIICgoiMjKSN954g6JFi/Ldd9/Rt29fLl++zAsvvEC5cuUoXbo0s2fPtgc/MTExXLhwgSVLltCuXTsiIyOJjIzkwIEDtGjRgpdffhk3Nze2b99Or169uHTpEj17JtxNPf49dbx3jvc/Lv3y5ctcvHiRV199FX9/fy5dusTMmTOpXr06e/bsIX/+/HTs2JGjR4/y2Wef8c033+Dm5mYvI65PIiMj7WXOnj2bAQMG8NRTT/HWW29x5swZQkNDCQ8PZ+vWrWTPbj3kaoxhy5Yt7N+/n2HDhuHp6cnbb79NixYt+PXXX8mdO3eS9zkyMvK2v1OucPXq1XSvQ6We9kvmo32SOWm/ZD73ep/k+/Zbyk6cyPWHH+bXCROI+PsSEweeZePG/DRocJbXXz/E4cOxOHmEP8WMMcw5PofPjn/GY7kfI7RMKMf2HuMYx1x2HY7uxX7J6IDrEs5HmPLgfFQqEWPMKayFMgDWiEgY8C4QF3BdBJwtM58n3nFn5X4CfAIQGBho4o8qODpw4AA5cuRImDhwIOzdm5JLSJXomBiypHRCbeXK1p4KqeTl5QXA448/nmQeT09P+zV72na/c7wHcaMpcelxX9RLlSrFwoUL7fl2797N4sWLmTdvHl26dAGgbt26+Pn5sW7dOqpVqwZAkyZNaNKkif286OhoKlSoQJ06dTh8+DBVqlSx13vlyhVWrlxJ/fr17edu2rSJlStX3vZ5pcmTJ3Py5El+/fVXSpcuDUCrVq24fv06EyZMYNCgQWTJkoVnn32WMWPGEBsbaw+4w8LC7IFU3DXHjSwBxMbG0qxZMy5evMjs2bMZOHBgkvfU8d7Fcbf1fVx6jhw5EoyYxcTE8OSTT5I/f35Wr17NoEGDKFu2LMWLFwegfv36ZMny3695XJ94eXmRI0cOYmJiePvttwkKCmL58uX2fJUrV6ZOnTosXbqUl19+GbAW+oiIiODnn38mTx7r16lEiRJUrVqVrVu30qlTpyTvs5eXl72/0ktYWBi3+71Vd4f2S+ajfZI5ab9kPvdsnxgDEybA2LEQFET2L7+kyLXcPPkk7NkDb78NQ4fmRyR/mqqJio6i1+pezD8+nx6VezC9xXSyumd10UUk7V7sl4yeUrgP6xkrR48A+++wzD1Yz2XFr6O4bQl6xzpuAmmI4+9vX375Jbt3707w2rlzZ5rLbdo04VZpZcuWBSA4ONielidPHvLly8fJkyftaTdv3mTs2LGULVuWbNmy4eHhQZ06dQA4dOhQgjK9vb3twRZYwUzp0qU5ceLEbdu2fv16/ve//1G8eHGio6Ptr+DgYC5cuMD+/dbHskuXLkRFRbF06VL7ufPmzSMgIMAeIAL88ccfPPPMMxQqVAgPDw88PDyYOXNmovamxeeff87//vc/cufOTZYsWfDx8eHq1at3VMehQ4c4d+4cnTt3TpBeu3ZtihYtyubNmxOk16hRwx5sAVSsaG1emNx9VkoppVQGiImBF1+EoUOhY0dYv57vD+WmalU4eBBWrIBhw9K+mfHFGxdpPL8x83+Zz5j6Y5jValaGBFv3qowe4VoFvCsiJYwxfwKISDGgFvBGaguzLaBRGzjiUEco1iIcc235sgAdgG+MMVFpaH/S7mBkKSVuXLmSeDQtnVSoUIFSpUolSIuOjk5zufG/oANkzZo1yfS46Y0AQ4cO5cMPP2TEiBHUrFmTHDlycOrUKZ566qkE+ZyVBVbQ5ZjP0blz5zh8+DAeHh5Oj1+4cAGAokWLUrduXebNm0evXr34999/Wbt2LW+99ZY979WrV2nUqBHe3t6MHz+ekiVLkjVrVqZNm8ann35623ak1OrVq+nQoQPPPvssI0eOxNfXFzc3N5o1a5bstTpz8aI14FugQIFEx/z9/e3H4zz0UMIB6rjRzjupWymllFIudOOGtRLGihXw+uswfjzzF7rRqxcULGitl2H7O2ma/HnpT5otaMbRf4+y4KkFdKqY9AwXZcnogGsG8CKwUkTexHrWajRwEvg4LpOIFMUKokYZY0bZ0kKwpiNuB85gPcPVE6iGte8WAMaYvSKyBJgsIh7AUaAvUBxI+Gd8dUfipiDevHnTHjzBf8GJqyxevJhu3brx5ptv2tPinkFylbx585IvXz4++OADp8cDAgLs/+7atSu9e/fm+PHjrFy5kps3byYYGQoPD+f48eNs3bqV2rVr29NTErR6eXlx8+bNROkXLlwgb9689veLFy+mVKlSCRa9uHXrVqLAKKXiAqgzZ84kOnbmzBkCAwPvqFyllFJKZaALF6BlS9i5E6ZMIabfSwx9w1rqPSgIli4FX9+0V7Pz1E5aLWpFjInh267fUrdo0s/Jq/9k6JRCY8w1oAHwOzAPWIAVEDUwxsT/Ji2Au0P7fgQqAB8C32CtVhgJ1DHGLHaoqgcwGxgDrAUeBpoYY3509TU9iIoWLQrAb7/9Zk/7999/2bFjh0vruX79eqKRp9mzZ7u0jiZNmnDw4EGKFClCYGBgolf80cV27drh5eXFggULWLx4MXXr1k2wsuD169ZOBPHbfOnSJVaudLYTQkJFixbl7NmznD9/3p525MiRRNMEr1+/nuCZLLCmNsYtrhEnbuTpxo0bt603ICCA/Pnzs3hxwl+hHTt2cPz4cerVq5ds25VSSil1Fx09CjVrwo8/wtKlXO72Eq1aWcFW377wzTeuCbaW7V9G/bn1yemZk/Ce4RpspUKGr1JojDkBtE0mzzEcVhU0xqzCmi6YkjpuAK/YXsrFmjZtSq5cuejduzehoaFERUUxceJE+4IMrtKkSRPmzp1LxYoVKVWqFF988YXLg7pBgwaxZMkS6tSpw6BBgwgICODatWscPHiQrVu3JgiWcubMSatWrfi///s/Tp8+zYwZMxKUVbNmTXLmzEn//v0JDQ3l2rVrjBkzBl9fXy5fvnzbdrRr14633nqLzp0788orr3D+/HnGjRuHr8P/kE2aNGHFihUMGjSIFi1a8MMPPzBlypREKwQ+8sgjALz33ns0bdoUd3d3p6NV7u7ujBo1ij59+tClSxe6dOnCX3/9xfDhwyldujQ9evRI1f1USimlVAb64Qdo3hxu3oQNGzjsX5tWNeCPP2DqVCvgSitjDO/ueJfBGwZTo3ANVnZciZ+PX9oLfoBk9KIZ6j6QO3du1qxZg5ubG+3bt2fo0KG89NJLCRatcIUPP/yQVq1aMXz4cDp06MCVK1dYtGiRS+vIlSsXO3bsoFmzZkyYMIHg4GCee+65BCsexte1a1f+/vtvPD09efrppxMc8/Pz48svvyQmJoann36aoUOH0qtXL/tKjLdTqlQpli1bxl9//cWTTz7JxIkTef/99ylTpkyCfL1792b48OEsWbKEli1bsnbtWlavXk2uXLkS5GvRogX9+vVj6tSp1KhRg6pVk94P4/nnn2fevHn8+uuvtG7dmsGDB9OoUSM2b97s8iBaKaWUUi6yfj3UqwdeXrB9Oxsia1OtGpw9a41quSLYio6Npt/afgzeMJh2j7Tju27fabB1B8QYZ1tWPdgCAwPNnj17kjx+4MAB+15R6e1KBi6aoVJO+yV1MuJ35l5cJvZBoP2S+WifZE7aL5lPpu6T2bOhd2+oWBGz9is+XFaAV16BcuVg5UooUSLtVVyJukKHZR1Yd3gdQ2oNYewTY3GTuz9Wk5n6RUR+MMYk+8D73b9rSimllFJKqeQZA6NGwXPPQYMG3Px2M8+PLMCAAdbMwh07XBNsnYo4RZ3ZdfjmyDd80uITxjccnymCrXtVhj/DpZRSSimllEql6Gjo1w9mzIBu3Tg3diZt23iwbRsMH27FYW4uiIn2ntlL84XNuRJ1hbWd1hJcKjj5k9RtacCllFJKKaVUZnbtGnToAGvXwvDh/Pz0aFrVFM6dg0WLrD2OXWHdH+tov6w9ub1ys+25bTya/1HXFPyA04BLKaWUUkqpzOrcOWu+4I8/wvTpLPftQ7dakCcPbN0Krtoyc/qe6bz41Ys8mv9R1nRaQ8EcBV1TsNJnuJRSSimllMqU/vgDatSAffuI/WIFoWf68PTTULEi7N7tmmAr1sTy+jev03dtX5qUasKWHls02HIxHeFSSimllFIqs/n+e2jRAoBrX22m+/9VZdky6NYNPv7YWg0+rW7cukHXL7uy/MBy+gX244OmH5DFTcMDV9M7qpRSSimlVGayapX1YFbBgpyY9S2tBxbnl1/g3XfhlVdAJO1VnLt2jtaLW/P9qe95r/F7DKo+CHFFwSoRDbiUUkoppZTKLKZPh/794fHH2fbW1zzVLg9RUbBmDTRt6poqDp4/SLMFzThz9QzL2y+nTbk2rilYOaXPcCmllFJKKXW3GWOt7963LzRtyqzuW2nQNg+5csHOna4LtjYf20zNWTW5dusaYd3DNNjKABpwKaWUUkopdTfdvAndu8PYsUT37MPAEqvo1d+ToCDYtQvKlXNNNfN/mU+jeY3wz+7Pzp47qVaommsKVrelAZeyCw8Pp3379hQsWJCsWbOSN29eGjVqxNy5c4mJiUmXOsPCwggJCSE2NjZdyk/O5MmT+eKLLxKlh4SEZJp5zEFBQQQFBd3tZiillFIqPUREWItjfPYZl4ZOpNmJaXzwoRsDBsBXX1nLv6eVMYZRm0fR9cuu1C5Sm+3Pbad4nuJpL1iliAZcCrACj1q1anHx4kUmTJjAhg0b+PTTTylTpgx9+/ZlzZo16VJvWFgYoaGhmS7g6tWrF+Hh4XehRUoppZR6YPz9N9SrBxs3cvDt5VRb+jphYcLMmTB5MmRxwWoLN2Nu0mNlD0aGjaRbpW6s77KePNlcEMWpFNNFMxRbtmzhlVde4cUXX2TKlCkJjrVu3ZpXXnmFa9eu3aXW/efWrVtkyZIlQ0aeChcuTOHChdO9HqWUUko9oA4cgCZN4MIF1oV8T2yPJmcAACAASURBVMcJj+PpCRs3Qu3arqni0o1LtP28LZuObSI0KJS36r6VaWbwPEh0hEsxfvx4HnroISZOnOj0eMmSJXn00Uft73ft2kXDhg3Jnj07Pj4+PPHEE+zatSvBOd27d6dw4cL89NNP1KlTB29vb0qXLs306dPteUJCQggNDQXAw8MDEbH/J3Ds2DFEhKlTpzJ48GAKFiyIp6cn//77L//88w99+vShTJkyeHt78/DDD9OpUyf++uuvRG3/+eefadOmDXnz5iVbtmwEBAQwbtw4AIoVK8bx48dZsGCBve7u3bvb2+b4H1JERAQvvvgiBQsWxNfXl4CAACZNmoQxxp4nLCwMEWHVqlW8+OKL+Pr64ufnR5cuXfj3339T2iXJOnToEG3atCF37txky5aN6tWrs379+kT5Fi1aRNmyZfHy8qJixYqsWrVKpygqpZRSd9u2bVCrFiYyind7HaT5iMcpXhz27HFdsHX00lFqflqTbSe2Ma/NPEbUG6HB1l2iI1wPuJiYGMLCwnjyySfxSsEOer/88gv16tXjkUceYc6cOYgI48ePp169euzcuZNKlSrZ80ZERNCpUycGDhzIiBEjmD17Nn379iUgIID69evTq1cvTp06xaxZs9i2bRvu7u6J6nv77bepWrUqn3zyCTExMXh5eXHixAm8vLwYN24cfn5+/P33/7N339FRFe8fx983JITe+xcBEUV6b9KbQOhSBEOJUkUp0kQR6b2pVAWlN2lKCSAQIHQEpCiIKKEI0jsJbXd+f9yQH4EAG9gU4PM6Jydk7uzMXC7L2Scz88wpRo4cScmSJfnzzz/D7mPHjh2UK1eObNmyMXr0aDJmzMjhw4fZt28fAIsXL8bHx4d8+fLRp08fAFKnTh3hfTudTqpXr87u3bvp168fr732GuvWraNz586cO3eOQYMGhavfsWNHatSowezZszl06BDdu3cnTpw4TJs2zaXn8jinTp2iVKlSJE6cmLFjx5I0aVLGjRtH9erVWbZsGdVC0xitXr0aX19fatWqxciRIzl//jydOnXi5s2bvPHGG888DhEREXkKCxeCry83M71Bmzybmf51YurVg2nTIGFC93Sx4+QOas6pyR3HHVY3XU3ZLGXd07A8FQVcbtKpE+zZ4/52HY74RBCHRCh/fnu9b2ScP3+ekJAQMmfO7FL9fv364e3tzdq1a0mWLBkAlStXJkuWLPTt2zfcfqhr164xfvx4ypcvD0CZMmX45ZdfmDNnDuXLlw+3bK9YsWJ4RrBQOW3atCxevDjcb2SyZ8/O119/Hfazw+GgZMmSZMqUiRUrVlC3rp3etGvXrqRMmZJt27aRIEECACpUqBD2ugIFCuDt7U2qVKkoXrz4Y+/b39+fTZs2MWXKFPz8/Lh27Rp16tThxo0bjBw5ks6dO5MqVaqw+mXKlGHMmDEAvP322xw6dIjJkyeHBanPYtSoUVy6dImtW7eSLVs2AHx8fMiZMyc9e/YMC7h69+5Nzpw5w/395cmTh0KFCingEhERiQlffw2ffMJ/hWrwDgvZtsiLPn2gVy/wcNO6s8UHF+O7yJd0idLh7+fPm6nedE/D8tS0pFAiJTAwkBo1aoQFWwBJkiShVq1abNiwIVzdBAkShAVbAN7e3rz++uscP37c5f7q1KkTYYAyYcIE8uXLR6JEifD09CRTpkyAvdQOIDg4mM2bN+Pr6xsWbD2LwMBAPDw8aNy4cbjyJk2acPv27YcSbFSvXj3cz3ny5OHWrVucOXPGLWMpXrx4WLAFECdOHBo3bsyePXu4evUqDoeDnTt3Uq9evXB/fwULFuTVV5WVSEREJFo5ndC1K3TqxM6yXShy6mf2HfBiwQLo3ds9wZYxhlFbR1Hvx3rkS5ePbS23KdiKJTTD5SaRnVly1bVrISROnDhqGoewvU3Hjh1zqf7FixdJnz79Q+Xp0qXj0qVL4cqSR5DH1Nvbm5s3b7o8voj6GjNmDB06dKBz584MHz6c5MmT43Q6KV68eFjbly5dwul0ui3xxcWLF0mRIgXe3t7hytOlSxd2/X4pUqQI9/O910Xm3h83lgIFCjxUni5dOowxXLp0iZCQEO7cuUOaNGkeqpc2bdpnHoOIiIi46NYt+4ytuXOZ+/YPvB/oR5o0Flu2wH07MZ7JXeddOq7oyPid46mXox4z6s4gvld89zQuz0wB10vO09OTcuXKsXr1am7duvVQQPGgFClScPr06YfKT58+/VCQ4Q4RzW7NnTuXihUrMnLkyLCyoKCgcHWSJ0+Oh4dHhIk0nkaKFCm4ePEit2/fJm7cuGHl9/4uUqZM6ZZ+XB3Lo56BZVmkSJGCBAkS4OXlxdmzZx+qd+bMmbAZQREREYlCly9D3bo412+gV/ktDPqlBKVK2du4Ivid6FO5fvs6jRY0Yvnh5XR7qxtDKg3Bw9IitthET0Po0aMHFy5coFu3bhFeDwoKCks0UbZsWZYvX861a9fCrl+7do2lS5dStmzkN2TeC/BCQkJcfk1wcDBeXl7hyqZMmRLu5wQJElCqVClmzpz52La9vb1d6rts2bI4nU7mz58frnzWrFnEjRv3iXvA3OlegpKjR4+GlTkcDubNm0eBAgVInDgxceLEoXDhwixcuDBcFsVdu3Y9FJyKiIhIFDhxAkqX5tqmvdQteIxB60rQogWsXeu+YOvUtVOUmVKGFX+vYEL1CQyrPEzBViykJyKUKVOGUaNGMXbsWCpXrsysWbPYuHEjS5YsoWPHjuTOnTvsQ3qvXr0ICQmhYsWKLFy4kEWLFlGpUiWCg4P58ssvI913zpw5ARg5ciTbt29n586dT3xN1apVWbVqFYMGDWLNmjV8/vnnzJ0796F6I0aM4MKFC5QoUYIZM2awbt06vv/+e9q3bx+u/40bN7Js2TJ27twZLoi5X7Vq1ShVqhRt27blq6++IiAggE8++YTJkyfTpUuXcAkzXOXn5/dUCTQ++eQTkiVLRuXKlZk9ezbLli2jZs2a/PXXXwwcODCsXt++ffnjjz+oW7cu/v7+TJ8+nQYNGpAuXTo8Hlgs7unpSYsWLSI9FhEREYnA/v1QogRHjnpQIuNxlu99hW++gUmT4L6FMs9k35l9FJtcjMMXD7Os8TLaFm7rnobF7RRwCQCdOnVi06ZNJEuWjK5du1KhQgX8/Pw4ePAg3377LTVr1gQgb968rF+/niRJktC8eXOaNm1KokSJ2LBhQ7iU8K6qUaMG7dq1Y/z48ZQoUYIiRYo88TVffvklbdq0YfTo0dStW5d9+/axatWqh+oVKVKEzZs388orr9C+fXt8fHwYPnx4uH1dgwcPJnv27DRs2JAiRYqEpYd/kIeHB8uXL6d58+YMHTqUBg0asHz5ckaNGhUuyImMGzduPNV+qgwZMrBp0yZy5crFhx9+SP369bl48SLLly+natWqYfXuBc8HDx6kbt26DB06lJEjR5IuXTqSJk0ark2Hw4HD4Xiq+xAREZH7rFsHpUqx/mZxinru4tSVRKxcCe3bg7uOwVr19ypK/VAKYwyb3t9EtderuadhiRrGGH098FWoUCHzOAcOHHjsdXe6evVqtPUlrnPHc8mQIYMZOnSoG0bjuhMnThhvb2/Tr1+/aO03Ot4z69ati/I+JPL0XGIfPZPYSc8l9nmqZzJ7tjFeXmZ8ur7G09Np3nzTmL/+cu+4vt35rYnTN47JNyGfOXHlhHsbfw7EpvcKsNO4EFsoaYZIDDh8+DA3b96kXbt2UdZHSEgInTt3plKlSqRKlYojR44wbNgwEiRIQMuWLaOsXxERkZeOMTBiBHe6f06H9AuY+F9tfHxg9mx4YFHJU3MaJ5+v/Zyhm4dSNVtVfqz/I4m9oy6TtbiPAi6RGPD6669z4cKFKO0jTpw4nD59mo8//pgLFy6QMGFCSpcuzfz58yNMty8iIiJPweGATz7h/JjZNEi9h/X/5aJ7dxg0COLEcU8XIXdCaP5Tc+YfmE/bQm0Z4zMGTw99jH9e6EmJvKDixo3L4sWLY3oYIiIiL66QEGjShN8XHaJW0kOcupqC6dOhaVP3dXHuxjlqz63N1n+3MrzycLqU6PJUSbck5ijgEhERERGJrAsXoHZtft6ciibeu0mcIC4bVkGxYu7r4tD5Q1SfXZ2T104yv8F86ues777GJdooS6GIiIiISGQcPYp5qySDtlWgrrWYN/PE5ddf3RtsBR4LpMT3Jbh66yrrmq9TsPUcU8AlIiIiIuKq334juHgF3gsaSE9HPxo3tggMhP/9z31dzN4/m8ozKpMmYRq2tdxG8YzF3de4RDsFXCIiIiIirli1in9LNaLMpZ+Yd/cdBg+GmTMhfnz3NG+MYUDgAHwX+VIiYwm2tNhC1uRZ3dO4xBjt4RIREREReZKpU9nWcjJ1rM3c8E7BzwssatZ0X/O3Hbdpu6wtU/ZMoUneJkyuORlvT2/3dSAxRgGXiIiIiMijGAMDBzK911+0sgLImNmTtcs8yJXLfV1cvnmZej/WIyAogN5le9O7bG9lInyBKOASEREREYnI3bs4PvyYHpNfYwTTKV/WyfwFHqRM6b4ujl0+hs9sHw5fOMzU2lNpnr+5+xqXWEF7uCTM1q1badiwIRkyZCBu3LikTJmSypUrM23aNBwOR0wP77GOHj2KZVlMnTrVbW0OGjSITJky4enpSf78+QE4ffo0tWrVIlOmTFiWxVdffeW2/gC++uorFi1a5NY2RUREJPI8QkK4UsOXGpNrM4JufNTOsOoX9wZbO0/tpNjkYpy8epJVTVYp2HpBaYZLAPuDfufOnalQoQJDhw4lc+bMXLp0iV9++YUPP/yQZMmSUbt27ZgeZrTZsWMHPXv2pFu3btSpU4fEiRMD0K9fPzZs2MCECRPImjUrWbJkcWu/X331FaVKleKdd95xa7siIiISCefOkejjbyh2ZDT/eLzOxPHQpo17l/j9/OfPNF7YmLSJ0rKu+TpypM7h1vYl9lDAJQQGBtK5c2c+/vhjvvnmm3DXateuTefOnblx40YMjS5mHDx4EIC2bduSNWvWcOX58uWjZs2aYUGYiIiIvEB272Z1tVE0PDubOIkTsGZpHMqWdW8XX2/7mk9WfUKR/xVhSaMlpE2U1r0dSKyiJYXCkCFDSJEiBcOGDYvw+muvvUbevHkBOHfuHG3atOGNN94gQYIEvPLKK7z33nucPHky3Gv8/PwinP0pV64c5cqVC/v5+vXrtG/fnkyZMuHt7U3atGmpVKkSf/75Z1idsWPHUqJECVKkSEGyZMkoXrw4y5cvf+r73bt3L7Vq1SJ58uTEjx+fkiVLsnHjxnBj9PPzC7t3y7Lw8/PDsizWr1/Pxo0bSZIkCZZlcfToUQCCgoLw9fUlderUeHt7kz9/fhYvXhxh33Xr1iVlypTEjx+f7NmzM3jwYACyZMnCsWPHmDVrFpZlhfUrIiIi0WTaNCYXm0S1s1NJmcHJr3u93RpsOZwOOqzoQKdVnajzZh3WNV+nYOsloBmul5zD4WD9+vXUqVOHePHiPbH+xYsXiRcvHoMHDyZ16tScOnWKkSNHUrJkSf7880+X2rjfJ598wpIlSxg0aBCvv/46Fy5cYPPmzVy+fDmsztGjR2nZsiVZsmTh7t27LF26lBo1auDv70+1atUi1d/u3bspXbo0BQoUYNKkSSRIkICJEydSqVIltmzZQqFChRg/fjwzZ85k8ODBLFq0iPTp05M+fXratm1LmzZtiBMnDsOHDydhwoSkT5+eEydOUKxYMdKkScPo0aNJnTo18+bNo169evz000/UqlULsJcplitXjmzZsjF69GgyZszI4cOH2bdvHwCLFy/Gx8eHfPny0adPHwBSp04dqfsTERGRp3D7Ns5OnfliQgYGM4Eq5W/RvssBXn21tNu6uHH7Bo0XNmbpX0vpXLwzwyoPI45HHLe1L7GXAi536QTscX+z8R3xwdX3Yn4gkjkczp8/T0hICJkzZ3apfvbs2fn666/DfnY4HJQsWZJMmTKxYsUK6tatG6n+t27diq+vLy1atAgre7CNESNGhP3Z6XRSsWJF/vrrLyZOnBjpgKtbt25kypSJgIAA4saNC0CVKlXInTs3/fv356effiJnzpxhywgLFCgQNlOXOXNmEidOjKenJ0WLFg1bUtinTx+MMWzYsIGUoTtpq1SpwokTJ/jyyy/DAq6uXbuSMmVKtm3bRoIECQCoUKFC2NgKFCiAt7c3qVKlonhxnSgvIiISLU6d4uY77+G3vS3zaESrFk7GTfBm82b3JQz779p/1JhTgz2n9zDOZxztirRzW9sS+2lJoUTahAkTyJcvH4kSJcLT05NMmTIBcOjQoUi3VaRIEaZOncqgQYPYuXNnhNkQd+3aRY0aNUibNi2enp54eXmxevXqSPcXEhLChg0baNCgAR4eHty9e5e7d+9ijKFSpUoEBgZGevwAK1euxMfHh6RJk4a1effuXapUqcLevXu5evUqwcHBbN68GV9f37BgS0RERGLYxo1cyF+RSr8OYh6NGDIEvp3kgZeX+7rYf2Y/xSYX49D5QyxptETB1ktIM1zu4t7s4GFCroVEaXKGe3uJjh075lL9MWPG0KFDBzp37szw4cNJnjw5TqeT4sWLc/PmzUj3P2bMGNKlS8cPP/xAz549SZEiBc2aNWPgwIEkSJCAEydOULFiRXLmzMmYMWPC0rT36tUrLLGFqy5evIjD4aB///70798/wjpOpxMPj8j9HuLs2bNMnz6d6dOnR3j9woULxI0bF6fTScaMGSPVtoiIiEQBY2DMGP7uPB4fjxUc98zM3Onw7rvu7Wb1P6upP78+Cb0SsvH9jRRIX8C9HchzQQHXS87T05Ny5cqxevVqbt26hbe392Prz507l4oVKzJy5MiwsqCgoIfqxYsXj9u3bz9UfuHChbBldwCJEiVi8ODBDB48mGPHjrFgwQJ69OhB3LhxGTp0KCtXruTKlSv8+OOP4YKV4ODgSN9rsmTJ8PDw4KOPPqJZs2YR1olssAV20Fq6dGk+/fTTCK9nyJABh8OBh4fHQ8lFREREJJoFB0OrVmyZHUStuDsgUSLWLvGgZEn3dvP97u9pu7wtOVLlYPl7y3kl6Svu7UCeGwq4hB49elCuXDm6dev2UFp4sAOqa9eukTdvXoKDg0mSJEm461OmTHnoNZkzZ+bMmTOcP3+eVKlSAfDPP/9w6NAh3nrrrQjHkTlzZrp06cKsWbP4/fffgf8PrLzum9v/66+/2Lx5c6RnixImTEjp0qXZu3cvBQsWfKrgKiJVq1Zl69at5MqVi/jx4z+yXqlSpZg5cyZffvnlI+t5e3sTEhLilnGJiIjIA44cgbp1+XHfmzTzDOSVTHHw97d4/XX3deE0Tr4I+ILBmwZT5bUq/NjgR5J4J3nyC+WFpYBLKFOmDKNGjaJz584cPHgQPz8/MmXKxKVLl1i7di2TJ09m9uzZ5M2bl6pVqzJ06FAGDRpE0aJFCQgIYMGCBQ+12aBBA3r16oWvry+dO3fm/PnzDB48OCz4uqdEiRLUqlWLPHnykChRIjZs2MDevXtp3tw+ab1SpUp4enrSrFkzunTpwn///Ufv3r3JlCkTTqcz0vc6atQoypQpQ5UqVWjRogXp06fn/Pnz7N69G4fDwZAhQyLdZr9+/ShatChlypTh448/JkuWLFy6dInff/+dI0eO8MMPPwB28o+yZctSokQJunTpQsaMGTly5Ah79uxhzJgxAOTMmZONGzeybNky0qVLR6pUqdx+uLKIiMhLacUKTOP3GHa7Iz3oQ8li8NNP8MBHk2dy8+5N/H7yY94f82hdsDVjfcbiFceNG8Lk+WSMidYv4BVgAXAFuAosAjK58LrCwHfAn0AwcByYBbwaQd2jgIngq44rYyxUqJB5nAMHDjz2ujtdvXo12vravHmzqV+/vkmXLp3x9PQ0yZMnN5UrVzYzZswwDofDGGNMcHCwadu2rUmVKpVJlCiRqV69ujly5IgBTO/evcO1t3jxYpMrVy4TL148kzdvXrNq1SpTtmxZU7Zs2bA63bt3N/nz5zdJkiQxCRIkMLlz5zZff/11uHbmzZtnsmfPbry9vU3OnDnNnDlzTPPmzU3mzJnD6gQFBRnATJky5Yn3eeDAAfPuu++a1KlTm7hx45r//e9/pmbNmmb58uVhdSZNmmQAExQUFO61JUuWNGXLln3ouZw4ccK0aNHCZMiQwXh5eZl06dKZSpUqmRkzZoSrt3v3blOjRg2TNGlSEy9ePJM9e3YzZMiQsOsHDx40pUqVMvHjxzeAad68+RPv53kQHe+ZdevWRXkfEnl6LrGPnknspOcShRwOY/r1M7fxMq1SLjBgTKNGxoSEPP5lkX0m526cMyW/L2nogxm6aahxOp1PP2Z5pNj0XgF2GhdiC8uuGz0sy0oA7AVuAV+EBkEDgARAXmPMjce8dgRQAjvI+gP4H9ALSAPkN8acuK/uUezArM8DzRwyxlx60jgLFy5sdu7c+cjrBw8eJEeOHE9qxi2uXbsWpUkz5OnouUROdLxn1q9fH+5QbYkd9FxiHz2T2EnPJYpcvgzNmnF16XoaZtjEqlN5+ewzGDAAnrSzIDLP5PCFw/jM9uHElRNMrzudhrkaPvvYJUKx6b1iWdYuY0zhJ9WL7iWFrYCsQHZjzN8AlmXtAw4DbYBRj3ntUGPMufsLLMvaDASFtvvlA/XPG2O2uWvgIiIiIvIc+f13qFuXf4PuUD3DEf44k5JJk6BlS/d2s+n4JurMrYNlWQQ0D+CtVyLeqy4vr+g+h6sWsO1esAVgjAkCNgO1H/fCB4Ot0LJjwDns2S4REREREZg3D4oVY8+lzBRLfoiga6nw97fcHmzN/X0uFadXJGWClGxrsU3BlkQougOuXMDvEZT/AeSMbGOWZeXAXlIY0YFMNS3LCrYs65ZlWdssy6oT2fZFRERE5Dly9y507QqNGuGf+UNK3/wFj3jebN4Mb7/tvm6MMQzeOJjGCxtT7H/F2PLBFl5L8Zr7OpAXSnTv4boNjDLG9HigfADQwxjj8hJHy7I8gbVADuwlipfuuzYG+BV7uWFa4GOgLNDUGDPzEe21BloDpE2bttDcuXMf2XfSpEnJli2bq0N9Jg6Hgzhx4kRLX+I6PZfI+fvvv7ly5UqU9nH9+nUSJUoUpX1I5Om5xD56JrGTnsuz87p0iZz9+pF8zx4G5ZtIr/2tee216wwatJ9UqR4+G/RJHvVM7jrvMvrwaPxP+1MxTUW6Z+9OXI+47rgFcUFseq+UL18+Vu7hAjtRxoOsp2hnLPAWUP3BRBjGmPbhGresxcA2YDAQYcBljPkOOwsihQsXNo/bjHfw4MFoS5ig5Ayxk55L5MSLF48CBQpEaR+xaROt/D89l9hHzyR20nN5Rtu3Q9OmOM9doFu13xmxIhfVq8PcuYlJlOjplvlF9Eyu3LxCg/kNWH16Nb3K9KJvub5Y1tN8jJWn9Ty+V6J7SeElIEUE5clDr7nEsqzB2LNRHxhjfnlSfWOMA5gPZLQsK72r/TyhTXc0I/LC03tFRESi1KRJUKYMIR4JaVjqJCNW5KJdO/uMLXdOhBy/cpxSU0qx7ug6fqj1A/3K91OwJS6J7hmuP7D3cT0oJ3DAlQYsy+oJ9AA6GGNmRKLve++IZ/705+XlRUhICAkSJHjWpkReeCEhIXh56dBHERFxs5s34eOP4fvvOVe+IbWuzWR7gBcjR8Inn4A7Y6Fdp3ZRY04Ngu8Es9J3JRWzVnRf4/LCi+4ZriVAccuyst4rsCwrC1Ay9NpjWZbVAfvcrp7GmDGudhq636sBcNwYczqSY35ImjRpOHnyJMHBwfrtvcgjGGMIDg7m5MmTpEmTJqaHIyIiL5Ljx6F0afj+ew61HU3xY3PZ87sXCxZA587uDbaWHlpKmall8I7jzZYPtijYkkiL7hmuSdgJLH62LOvewcf9gRPAt/cqWZaVGfgH6GeM6Rda1gj4ClgJBFiWVfy+dq8aYw6E1muMnWLeP7TdtMBHQCGgsTtuIkmSJACcOnWKO3fuuKPJR7p58ybx4sWL0j4k8vRcXOPl5UXatGnD3jMiIiLPLCAA3n0Xbt0icOBG6owohacnrF8PxYq5t6sx28fQaVUnCqYvyNLGS0mXKJ17O5CXQrQGXMaYG5ZlVQBGAzOwl/mtBToZY67fV9UC4hB+Bq5qaHnV0K/7bQDKhf45CDtV/HDs/WLB2BkLqxpjVrnrXpIkSRItHyLXr18f5ckGJPL0XERERKKZMTByJHz6Kbz5JrPeX80HPTPw6qvg7w9Zsz65CVc5nA7G/T2OBScXUDt7bWa9M4uEcRO6rwN5qUR7lkJjzHGg3hPqHOWBzIXGGD/Az4X2twEVnnqAIiIiIhK7XLsGLVrA/PmYevUZmGMmvbp5U7YsLFoEKSJKyfaULgRfoNlPzfA/6U+nYp0Y8fYI4njoKBh5ejGRFl5ERERExDWHDsE778Cff3J70Aja/NWZqQMsmjSByZPB29t9XW05sYVGCxpx5sYZOr3eidFVR7uvcXlpRXfSDBERERER1/z8MxQtCmfPcnlRAD5ruzB1qsWXX8L06e4LtpzGyfDNwykzpQxecbzY8sEWameo7Z7G5aWngEtEREREYheHA3r1gjp14I03OPbzHkr1LMuGDTB1KvTt675MhBeCL1BrTi26r+lO3Rx12d16N4UyFHJP4yJoSaGIiIiIxCYXL8J778GqVdCiBTvfH0fNet6EhNhFFdy4U3/LiS28u+Bdzt44y9hqY2lXpJ0OMxa3U8AlIiIiIrHDnj32fq2TJ+G771iSthWN34bUqWHtWsiZ0z3dOI2TEVtG8Pnaz8mcLDNbW2ylYPqC7mlc5AFaUigiIiIiMW/GDChRAm7fhsBAvglpRZ06dpC1bZv7gq3zweepOacmn675UV12oAAAIABJREFUlHdyvMPu1rsVbEmUUsAlIiIiIjHn9m1o3x6aNYNixXDs2EWnOcXo2BFq1bIPNE7npvOGNx/fTIFvC7DmyBrG+YxjXv15JI2X1D2NizyCAi4RERERiRn//Wdvyho7Fjp35sbPa6jXLi1ffw2dOsHChZDQDecNO42TYZuHUXZqWbzjeLO1xVbt15Jooz1cIiIiIhL9Nm+G+vXh6lWYO5fTZd+lZiXYvRu++cae9HKH88Hnaf5Tc/wP+9MgZwMm1ZykWS2JVgq4RERERCT6GAPjxsEnn0CWLLB6NQc8cuNTHM6dg8WL7aWE7rD5+GYaLWzE2RtnGeczjg8Lf6hZLYl2WlIoIiIiItEjOBiaN7enr6pWhV9/JeBsbt56C27dgsBA9wRbWkIosYkCLhERERGJekFBULIkzJxpn1z8889M+zkZVapAxox2JsJCbjhv+HzweWrMrhGWhXBX613KQigxSksKRURERCRqrVoFjRvbywmXLcNU86F3b+jfHypWhAULIFmyZ+9m0/FNNFrQiHPB5xjvM562hdtqVktinGa4RERERCRqOJ0wcCBUqwavvAI7d3Krog/NmtnB1vvvg7//swdbTuNk6KahlJtajnie8djWYhsfFtF+LYkdNMMlIiIiIu535Yq9X+vnn+G992DSJC7dSkDdKrBhAwwYAJ9/Ds8aE50PPk+zxc1Y8fcKGuZqyKSak0jincQ99yDiBgq4RERERMS9DhyAunXhn3/g66+hfXuOBFn4+NhbuWbNsmOwZ6UlhPI8UMAlIiIiIu4zf769VjBRIggIgDJl2L4dataEu3dh9WooU+bZuriXhfCLgC94NfmrbGuxjQLpC7hn/CJupj1cIiIiIvLs7t6F7t2hYUPIkwd27YIyZVi4EMqVg8SJYevWZw+2zgefp/rs6ny29jPq5azHrta7FGxJrKYZLhERERF5NufOQaNG9oxWu3YwejTGKy6jRkK3blCsGCxZAqlTP1s395YQng8+z4TqE2hTqI2WEEqsp4BLRERERJ7er79CvXpw9ixMmQJ+fty9Cx0/hvHj7UszZkD8+E/fxYNLCLe22KpZLXluKOASERERkafz/ff2jFb69LBlCxQsyPXr9mTX8uX27NaQIeDxDJtYzt04R7OfmrHy75W8m+tdvqv5nbIQynNFAZeIiIiIRM6tW9ChA3z3HVSqBHPmQKpUnDoFNWrA3r0wYQK0bfts3Ww8tpHGCxtrCaE81xRwiYiIiIjr/v3XXie4Ywd89pl9gnGcOOzfDz4+cPkyLFtmn3X8tO4dZNxrXS8tIZTnngIuEREREXHN+vV2FsKQEFi4EN55B4BffoH69e1MhBs3Qv78T9+FlhDKi0Zp4UVERETk8YyBUaPs5YMpU9qJMkKDrUmT7JmtV1+F7dufLdjaeGwj+b/Nz7qgdUysPpE59eYo2JLnngIuEREREXm069ehcWPo0gVq17aXEr75Jk4nfP45tG5tx2EbN0LGjE/XhdM4GbxxMOWnlSehV0K2tdxGm8LaryUvBi0pFBEREZGIHT5sz2QdOGCnG+zeHSyLmzfBzw/mzbMDrrFjwcvr6bo4d+McTRc3ZdU/q7SEUF5ICrhERERE5GHLlkGTJuDpCStXQuXKAJw/D3XqwObNMHSonfr9aSeiNh7bSKOFjbgQfIGJ1SfSulBrzWrJC0dLCkVERETk/zmd0Ls31KwJr70Gu3aFBVuHD0OJErBzpz27FTrhFfkuQpcQlptWTksI5YWnGS4RERERsV26ZM9q+fvbawbHj4f48QF7Rqt2bbtaQAC89dbTdXH/EsJGuRvxbY1vtYRQXmia4RIRERER+7TiwoVh9Wr71OIffggLtubNg4oVIUUK2Lbt6YOtwGOB5P82P+uPrufbGt8y+53ZCrbkyQzgDxQB79PeMT2aSFPAJSIiIvKymz3bXit48yYEBkLbtmBZGGPv02rUCIoUga1bIVu2yDfvNE4GbRwULguh9muJS3YA5YHqwCXwvqiAS0RERESeF3fuQKdO4OtrR1S7dkHx4mGX2rSBHj3sgGv1avsIrsg6e+Ms1WZVo2dATxrmasiu1rvIn+4ZDuuSl8NhoAFQDDgAjLW/X815NUaH9TS0h0tERETkZXT6NDRsaB+g1akTDBsWltv96lX70qpV9llb/fuDx1P8mj7wWCCNFzbmQvAFvq3xLa0KttKsljzeGaAvMAnwBnoDXYDEMTmoZ6OAS0RERORls3Ur1K9vJ8mYPds+2DjUiRNQvbp99NbkydCiReSbv5eF8Mv1X5ItRTb83/MnX7p8brwBeeFcA0YAI4FbQGugF5AuJgflHgq4RERERF4WxsDEidCxI2TKBCtWQN68YZd/+w1q1IDr1+1LodngI+XsjbM0XdyUX/75hca5G/NtjW9J7P0cT09I1LqNPZvVDziLvYxwIPB6TA7KvRRwiYiIiLwMQkKgXTuYOhV8fGDmTEiePOyyv7+9jDBFCti0CfLkiXwXG45uoPHCxlwMuch3Nb6jZcGWWkIoETPAfOBz4B+gHLAUKBqDY4oiSpohIiIi8qI7ehRKlbKDrd69YenScMHWhAn2OcdvvGGnfY9ssOU0TgYGDqTC9Aok9k7M9pbbaVVI+7XkEdZhB1bvAgmwU74H8EIGW6AZLhEREZEX2+rVdppBh8MOtGrUCLvkdMKnn8KIEfa+rblzIVGiyDV/9sZZmixqwuojq7WEUB5vH/ApsBJ4BZgG+AJxYnJQUU8zXCIiIiIvImNgyBCoWhUyZICdO8MFWyEh9hLCESPgo4/gp58iH2xtOLqB/BPzE3gskO9qfMesd2Yp2JKHHQOaAfmB7cBw4K/Qshc82ALNcImIiIi8eK5eBT8/WLzYnt2aPBkSJgy7fPYs1K4N27fDqFF2VvjIrP67d5Bx7/W9yZYiGyt8VygLoTzsAjAYGANYQDegB5D8cS968SjgEhEREXmRHDwIdevC339HGE39+aedM+P0aVi40K4aGVpCKE8UAnyDHWxdA5pjn631SkwOKua4vKTQsqy8lmX9aFnWacuybluWVTC0fIBlWW9H3RBFRERExCWLFkHRovb5WmvWwCefhAu2NmyAt96CGzdg/frIB1vrj64n/8T8bDy+UUsI5WF3ge+xU7r3AEoDe4EfeGmDLXAx4LIs6y3sFZf5gEWEX23pAbR1/9BERERExCUOB3z2GdSrB7lywa5dUK5cuCozZ9rnaqVNa2ciLBqJjHAOp4MBgQOoOL2ishDKwwywBDtSaAlkBDZgp3nPHYPjiiVcneEaCqwFcgAdsFdh3rMTKOTmcYmIiIiIK86ftxNjDBkCbdrY01gZM4ZdNgb694emTaFkSdiyBV591fXmz944S7VZ1ei1rheNcjdiZ6ud5E2b98kvlJfDVqAMUBt7hmvBfWUCuL6HqxBQzxjjtB7+VcZ5IK17hyUiIiIiT7RrF7zzDpw5A99/Dx98EO7y7dt2DDZ1qh1wTZ4MceO63vz6o+t5b+F7XLp5iUk1J9GiQAvNaontEPAZsBhIB0wEPgC8YnJQsZOrM1y3gPiPuJYOuOJqh5ZlvWJZ1gLLsq5YlnXVsqxFlmVlcuF1hS3L+s6yrD8tywq2LOu4ZVmzLMt66Hc0lmV5WJb1mWVZRy3LumlZ1l7Lsuq5OkYRERGRWG/qVHvKyhjYtOmhYOvyZahW7f/POp42zfVgy+F00H9D/3BLCFsWbKlgS+A/oA2QC1gD9Af+Di1TsBUhV2e4NgEdLMv66b4yE/r9A+zzop/IsqwE2OdI38LOV2KAAcA6y7LyGmNuPObljbAf7TfAH8D/gF7ATsuy8htjTtxXtz/QFegJ7Ap97XzLsmoYY/xdGauIiIhIrHT7tp15cMIEqFgR5syB1KnDVTl2zM5EePiwHXA1b+5682eun6HJ4iasObIG3zy+TKg+QYkxBK4Cw4DRwB3gI+ALIPXjXiTgesD1JXbQ9RswHztQamJZ1jCgOODqtstWQFYguzHmbwDLsvYBh7Hj4lGPee1QY8y5+wssy9oMBIW2+2VoWRrsYGuIMWZEaNV1lmVlA4YACrhERETk+XTyJNSvb2e96N4dBg4Ez/Af5+6db3zzJqxaBeXLu978uqB1vLfoPS7fvMzkmpP5oMAHmtV62d3CXi44AHsjUWPsqY3XYnJQzxeXlhQaY34DygGXgT7YSTM6AfGA8saYgy72VwvYdi/YCm07CNiMvdXucWM4F0HZMeAc9mzXPVWAuMDMB6rPBPJEtARRREREJNYLDISCBeH332H+fBg69KFg6+efoWxZiB8ftm51Pdi6t4Sw0oxKJPVOyvaW22lRUPu1XmpOYDZ2yrxO2BkId4aWKdiKFJfP4TLG/GqMKQskAbIAyYwxpY0xOyPRXy7g9wjK/wByRqIdACzLygGkAe4P+HJhx+J/P1D9j9Dvke5HREREJMYYA199BRUqQLJksH27Pcv1gG++sc/VypXLngDLkcO15s9cP0PVWVX5cv2XNM7dmJ2tlYXwpbcGKAL4AkmBVcBqlJf8KVnGmCdXsqzvgEHGmKMRXMsEfGGMae1CO7eBUcaYHg+UDwB6GGNcXeKIZVme/H+q+uzGmEv3jbWWMSbdA/WzYS9dbGaMmRFBe62B1gBp06YtNHfuXFeHEqWuX79OokSJYnoY8gA9l9hHzyR20nOJffRMYqdHPRePkBCyjxhB2oAAzpcsycHPPsORMGG4Og4HTJiQjYULM1Kq1Dl69jxIvHhOl/r97dJvDPhzANfvXqdDtg74pPPRrFaol/G9kuhwIrJ+l5UUO1MQki6EoA+COFvxbCSmaKJebHou5cuX32WMKfzEisaYJ35hTyoWfcS1QoDDxXZuA4MjKB8I3HWljfteMxF7y97bD5RPAv6LoP7r2HvPmj6p7UKFCpnYYt26dTE9BImAnkvso2cSO+m5xD56JrFThM/l77+NyZPHGMsyZuBAYxyOh6pcv25M7drGgDGdOhlz965r/d113DV91/c1Hn09TPYx2c2+0/ue7QZeQC/Ve+WIMeY9Y38STmmMGW2MuRmjI3qk2PRcgJ3GhbjF5Rmlx0gLhLhY9xKQIoLy5KHXXGJZ1mDs2ajmxphfHrh8EUhuWZYV+hdxfx/3rouIiIjEXv7+4OsLHh6wYgVUqfJQldOnoWZN2L0bxoyBjz92rekz18/gu8iXtUFraZK3CROqTyBR3NgxYyDR7Bz2tMd47FR6nwPdsZcRits8MuCyLKs24RNZ9LIs68HEFfGBssBuF/v7A3uP1YNyAgdcacCyrJ5AD6CDiWBpYGgf3tjb+e7fx3Vv75ZL/YiIiIhEO6cT+veHvn0hXz5YtAhefTjf1x9/QPXqcO4c/PSTHXi54v4shN/X+p7387+vJYQvoxvAV8DQ0D+3AHoTPg2duM3jZriyApVD/2ywU7/ffqDOLex8JZ+62N8SYIRlWVmNMUcALMvKApTEDqIey7KsDthJKXsaY8Y8otrK0HH6An3vK28C/G7srIgiIiIiscvly9C0KSxbBs2awcSJdrrBB6xdC/Xq2ZcCA6GQC4kMHE4HAzcOpO+GvryR8g1+afILedLmiYKbkFjtLvADds7x/4A6wCDsjAgSZR4ZcBljRmMfbYZlWSeAGsaYvc/Y3yTgY+Bny7K+wA7k+gMngG/vVbIsKzPwD9DPGNMvtKwRdiy+EgiwLKv4fe1eNcYcCB33WcuyRgOfWZZ1DXv27V2gAk9IPS8iIiISExIeOQItW9onFo8bBx9+CBHMPE2dCq1aQfbs9qrDTJme3LaWEAoG+An4DDgEvIV9sm7JmBzUy8OlPVzGmFfc0Zkx5oZlWRWwA7kZ2Od5rQU6GWOu31fVAuIQPidK1dDyqqFf99uAfU7YPT2B60BHIB32P62Gxpil7rgPEREREbeZO5eCH30EyZPD+vVQ8uFPwcZA7972asNKlWDBAkjqwj6bgKAAfBf5agnhy2wT9r6srcCb2IFXLexP1RItIpU0w7KsJEA27AOPwzHGbHGlDWPMcaDeE+oc5YF/BsYYP8DPxT4c2EsPB7hSX0RERCTaXbkCnTrB1Klcy5OHZKtWQfr0D1W7dcue/Jo5Ez74wF5p6OX1+KYdTgcDAgfQd0NfsqfKriWEL6MD2DNaS4AM2OvM/Ijkp39xB5f+yi3L8sZ+TI15dCb+OO4alIiIiMgLbd068PODf/+FL75gb9mylI0g2Lp40T7MODAQBgyAzz+PcKVhOKevn8Z3kS8BQQFaQvgy+hd7j9YUIBH2Hq2OQIIYHNNLztUY9wvsBBotsR9fB+yEGX5AaqBzVAxORERE5IUSEgI9e8Lo0fD667B5MxQvjlm//qGqR46Ajw8EBcHs2dC48ZObDwgK4L2F73H11lUtIXzZXMbOOvgV9gm6HbHTvKeKyUEJuH5udAOgHzAz9OctxphJxpiSwO9AxagYnIiIiMgLY9cuO6Xg6NHw0Ufw229QvHiEVbdtsy+dOwdr1jw52HI4HfRd35dK0yuRPH5ydrTawQcFPlCw9TK4BYzCPhBpKFAfO3vBKBRsxRKuBlyZgD9C90bdARLed20y9lJDEREREXnQnTvQr58dQV29CqtWwdixkDBhhNUXLoTy5SFJEti6FUqXfnzzp6+f5u2Zb9NnQx+a5G3Cr61+JXea3FFwIxKrOLFT0GUHugBFsHNzzwCyxNyw5GGuBlwXsFeBgr0yNO9915JjH4AsIiIiIvf7808762Dv3vDuu7B/P7z9doRVjYGRI6FBAyhQwA623njj8c0HBAWQf2J+tp7Yyg+1fmBanWnar/WiM9iHJBUEmmHPYq0JLcsfg+OSR3J1D9d2IB/gDywC+luWlQD7+LTuwOaoGZ6IiIjIc8jptGexPv3Unsn68Uc7knoEh8Pio49gwgSoXx+mT4/wzOP/r+900D+wP/029CN7quysabZGs1ovg53Yn7zXAVmBudgbf1ydQpEY4WrANQzIHPrnAcAbwGDsx7sTaOf+oYmIiIg8h44fh/ffh4AAqF4dJk2KMN37PdevQ8+eudm+Hbp3h8GDweMxH6BPXz/NewvfY93RdTTL14xxPuM0q/Wi+xv7lNkfsWe0vgHaAHFjclDiKlcPPt4B7Aj98xWgtmVZ8YF4xphLUTg+ERERkeeDMfZhWR9/bM9wTZoELVo8No/7/v3QrBns25eCiROhTZvHd7H2yFp8F/ly9dZVptSegl9+P/feg8QuZ4H+wETs4KoX0BVIEpODksh64gSkZVlxLcvaYVlW5fvLjTEhCrZEREREsNMJ1q9vR09588LevfZpxY8Itq5ehc6d7b1aJ07AoEH7HxtsOZwO+qzvQ+UZlUkRPwW/tvpVwdaL7Dp2fvDXgAnYBzP9E1qmYOu588SAyxhzG3sJoSPqhyMiIiLynFmyBHLnhmXLYNgwWL8esmaNsKoxMHcuvPkmfPWVHZMdOgTFil18ZPOnr5+m8ozK9N3Ql6b5mvJrq1/JlSZXFN2MxKg72AFWNqA3UAU4EFqWLgbHJc/E1T1ca4BKQEAUjkVERETk+XH1KnzyCfzwA+TLZx+YlSfPI6v/+ad9/FZAABQsCD/9BEWLPr4LLSF8SRhgIfZBxYeBMsBPQMTHtMlzxtWAaxQw27IsD+zH/x/2P40wxpjjbh6biIiISOy0YQM0b26vB/z8czvte9yIMxjcuAEDBtgp3xMmhHHj7L1aceI8unmH00G/Df3oH9ifN1O9ydpmazWr9aLagJ15cAeQC1gKVAd0ZvULw9WAa1Po9+5At0fUecx/GyIiIiIvgJs3oWdPGD0aXnsNNm2CEiUirGqMPYvVqZOduLB5c3vFYZo0j+/iv2v/4bvIl3VH19E8X3PG+YwjYdyID0mW59h+4DNgOZAR+AH7XC19on7huBpwteaBGS0RERGRl8ru3dC0KRw4AO3a2dFTwogDoX/+gfbtYcUKe5Xhxo1QqtSTu1hzZA2+i3y5duualhC+qI5j78+aBiTFPnzpY+Ax567J883VtPCTo3ogIiIiIrHS3bswZAj07WtPT61cCVWqRFj15k0YOtQ+S8vLC0aNsrPEe3k9vguHcdB7Xe+wJYQBzQK0hPBFcwn7FNtvQn/uCvQAUsTYiCSauDrDJSIiIvLyOXTITvW+Ywe89x6MHQvJk0dY1d/fntU6cgQaNbL3bGXI8OQu/rv2H133dmXPlT345fdjbLWxWkL4IgkBxgKDgCtAc6AvkCkmByXR6Ylp4UVEREReOk4njBljH5T1998wbx7MmhVhsHX8OLzzDlSvbs9krVkDc+Y8OdgyxjD/j/nk/zY/B68dZErtKUypPUXB1ovCAUwFsmNnQXgL2AtMQcHWS0YBl4iIiMj9Tpywlwx26ADlysH+/dCw4UPVbt+2VxrmyAGrVtnLCPftg4oVXejiyglqza1FwwUNyZgkIxMKTtB+rReFwU6EkR94H0gPrAste/SpAfICU8AlIiIiAnZawZkz7SwXW7fCd9/B8uURTlUFBNhHb332Gbz9tp1Ho0ePR2aGD+NwOhizfQw5x+ckICiAEZVHsL3ldl5N+GoU3ZREq+1AOaAGcAuYD2wLLZOXlvZwiYiIiJw/D23bwsKFULIkTJtmp31/wKlT0KULzJ0LWbPa8ZiPj2td7D+zn1ZLW7H95HaqvFaFCdUn8GpyBVovhL+wDy1eCKQFxgMtgSckS5GXQ6RnuCzLim9Z1v8sy1KwJiIiIs+/pUshd277+9Ch9qHGDwRbd+/aR2+9+SYsXmyfc/z7764FWzfv3qTn2p4U/K4g/1z6h5l1Z7LCd4WCrRfBaeBDICewCjsZxt+hZQq2JJTLQZNlWdWw/xkVDC0qCuy2LOtbYJ0xZm4UjE9EREQkaly9Cp07w/ffQ9688Msv9vcHbNpkH7u1fz9Uq2bn0ohg8itC64+up/XS1hy+eJjm+Zoz8u2RpEyQ0s03ItHuGjAcGAncBtoCvbBnt0Qe4NIMl2VZNYFl2P+8vnjgdScAP7ePTERERCSqBAbam7CmTLE3Yu3Y8VCwdfYs+PlB6dJw+TIsWmQvIXQl2LoYcpGWS1pSflp5HMbB6qarmVpnqoKt591t7BTvrwH9gZrAwdAyBVvyCK4uKewDTDfGVARGPHBtP5DbnYMSERERiRI3b0LXrnb2wThxYONGGDQIvL3DqjgcMGECZM8Os2fbyTAOHoS6dcGyHt+8MYZ5v88jx7gcTN0zle5vdWf/h/uplLVS1N6XRC0nMA976WB77E++O4C5QLYYHJc8F1xdUpgT+yxssJNd3u8SkMptIxIRERGJCr/9Bk2bwh9/wIcfwrBhkChRuCq//movH9y5EypUgHHj7H1brjh+5Tjtlrdj+eHlFEpfiJW+KymQvkAU3IhEqwDsc7R2AXmBFUAV4AnBt8g9rs5wXQMeNQeeGTjnnuGIiIiIuNnduzBwIBQtChcvwooVMH58uGDr4kU7SWGxYnDypH1w8Zo1rgVbDqeDr7d9Tc5xOVl3dB2j3h7FtpbbFGw95xL+nRCqAhWxP+lOB37DLlOwJZHg6gzXWqCHZVn+wI3QMmNZVlzgI+y8LCIiIiKxy19/QbNmsH07NGpkT1mlSBF22emEqVPh00/h0iXo1An69IEkSVxrft+ZfbRa2oodJ3dQNVtVJlSfQJZkWaLiTiS6HAb6QuHZhSE5dmKMdkC8mB2WPL9cDbg+x16p+if2OdkG6Abkw575qh8loxMRERF5Gk6nvRGrWzeIF8+esmrUKFyVPXvgo49gyxb76K3x4yNMUhihkDsh9A/sz/Atw0keLzmz35lNo9yNsJ60yUtir6PYiTCmAd5wvPFxMo/LDMlidljy/HNpSaExJggoDKzGzscCUBnYDRQzxvwbNcMTERERiaR//4WqVeHjj6FsWfvArPuCrStXoGNHKFQIDh+2ExUGBroebAUEBZB3Yl4GbxpMk7xNOPjRQRrnaaxg63l1Enu91hvALOykGEcgqFWQgi1xC5dmuCzLSgicMsY0j+LxiIiIiDwdY+y0gh99BHfuwMSJ0Lp1WGrBe5e7doUzZ+y8GQMGQPLkrjV/MeQiXX/pypQ9U3gt+WusabqGilkrRuENSZQ6CwwBxmNnIWyJvaYrY+j1gzE0LnnhPDHgsizLC7gCvAMsifIRiYiIiETW+fN2BLVgAbz1FkybBtn+P1/3gQN2HLZ+PRQpAkuXQuHCrjVtjGHeH/PouLIjF4Iv8GnJT+ldtjfxveJHzb1I1LqIfWjxN8AtoBn2ocWvxuSg5EX2xIDLGHPHsqyzwN1oGI+IiIhI5CxfDi1bwoULMGSIPYUVJw4A169D//4wahQkTmxPerVsGXb5iY5dPkY7/3b4H/anSIYi/NLkF/KlyxeFNyNR5gowOvTrGtAY6I29lFAkCrmaNGM28D7gH4VjEREREXHdtWvQpQtMmgR58sDKlZDPDoaMgUWL7KyD//4LH3xgx2KpU7vWtMPpYMyOMXwR8AUAo6uMpn3R9sTxcDFSk9jjOjAWGIZ9emw9oC+QKyYHJS8TVwOuv4B3LcvaCvwM/McDByAbY6a7eWwiIiIiEdu4EZo3h6NH7ZzuffuCtzdgJ8Jo3x5WrbLjr3nz7FWGrtp7ei+tlrbi11O/4vO6D+N9xpM5WeaouQ+JOiHARGAw9jla1YF+QMGYHJS8jFwNuCaGfv8fUCyC6wb7ODgRERGRqHPzJnz5JYwYAa++aqcXLFUKgJAQGDwYhg61M8F//TW0aweeLn7aCbkTQr8N/Ri+ZTgpE6RkTr05vJvrXWUffN7cBiYDA4FTQCXsdO/FY3JQ8jJzNeB6PUpHISIiIvIke/ZA06Z2mvc2beygK1EiAJYtgw4dICgIfH1h+HBIn971ptceWUubZW3459I/vJ//fUa8PYIU8VM8+YUSe9zF/vV/P+AYUBp7U0zELUlcAAAgAElEQVTZmByUiIsBlzHmn6geiIiIiEiE7t6FYcOgTx9IlQr8/aFaNcBeUdixIyxZAjlyQEAAlC/vetMXgi/QdXVXpu6ZSrYU2VjbbC0VXq0QJbchUcQBzAX6AH8DRYHvsE+M1eSkxAKuznCJiIiIRL/Dh+29Wlu3QsOGMH48pEzJrVv2BNfAgeDhYcdjHTtC3LiuNWuMYc7vc+i0shOXbl7is1Kf0atML6V6f544gUXYmQYPAPmwDzCqgQIt+T/27juuyrqN4/jnPgxRHChO3CM1xYHiygEHBctdZuUs98jKkZo+au6y8smn1BxpqeUoG45MBRluCRwkmgvU3AqKDGWd3/PHrThChQTOOXC9Xy9f+hzOfc51nrsDfM/vd1+XRcno4OOTPNIk41FKKWmqKYQQQoisoRR89RWMGaOnqNWr4Y03APD1heHD4cQJ6NoVPv8cypfP+EOfuXmGYb8N4/dTv9PIpRF+nfyoW6puNr0QkeUU8Bv67KxDwPPAD+jdBw1mrEuIx8joCtd+/hm4nNEvP7wF7MjKooQQQgiRh124oPdx37YNfHxg2TIoW5YLF2DUKPjhB32m8ZYt0LZtxh82xZTCl/u/ZGLARDQ0/vfi/3i70dvS6t1aKMAPPWjtB6oCK9HnackpFBYso9dw9Urvdk3TigFb0D9nEEIIIYT495SCNWv01oJJSfr2wSFDSE7R+GKOfglXSgpMm6YvfDk4ZPyhD10+xIANAwi9FEr759qzoP0CKhSpkG0vRWSxHehBawdQAb0LYR/AzpxFCZExz7TwqpSKRh8j92HWlCOEEEKIPCkqSt8y2KOH3v3i0CEYOpQdOzXc3OD998HTE44ehUmTMh62EpITGOc7DvfF7vx962/WdF3Dxu4bJWxZi/2AD3qnwZPAfPTpsP2RsCWsRlY0zUhA/6xBCCGEECLzNm+G/v310DVrFowZw5UoW8b0gZUroWJFWL8eOnXK3MP6RfgxeNNgIm5E0K9+Pz71+VRavVuLg8BkYBNQApgDDAWkp4mwQv96hUvTNIOmaa7ob4djWVeSEEIIIfKEuDh9nlb79nq79+BgUseOZ95CW2rUgLVr4T//0Ve1MhO2ohKieOvXt/Be6Y2NZoN/H3+Wdl4qYcsahAOvAg2A3cAsIAIYhYQtYbUy2qUwmX82zTCgN92MA9pncV1CCCGEyM127dLbvUdGwtixMG0a+w7mY1gjOHgQvL1h3jyonokeyEopVv25ihFbR3Dzzk0mtJjAxFYTpdW7NTgJTEUfVFwQ/WKVkUARcxYlRNbI6JbC2fwzcN1Bn+P9m1LqRkafUNO08sDn3B9H5weMUEqdy8CxswB3oCFQDOirlPo2nfsFkv5c8ZFKqbkZrVUIIYQQWSwxESZPhk8/hUqVICiIqFot+WA4fP01lC2rdyF89VXQMjFL6czNMwzZNIStp7fSuGxjlnRcIq3ercEZYDqwHMgHjAPeR++FLUQukdEuhROz4sk0TSsA+AOJwJvoIW4GEKBpWl2lVPxTHuId9IkLm9B70zxJGDD4kdvOZLZmIYQQQmSRw4ehd2/4808YOBDTp3NY+kMhPugCMTF6Y4zJk6FQoYw/ZIophf/t+x+TAydj0Ax88eIXDGs0TFq9W7oLwEz0boMG9N/wPgBKmbMoIbJHVjTNyIyBQBWghlLqFICmaWHoC8mDgf8+5fgiSimTpmnVeHrgilVK7XvWgoUQQgjxjFJT9RWtyZPB2Rk2beJAmfYMawv790OrVjB/Pri6Zu5hD146yMCNAwm9FEqH6h1Y0G4B5YtkYgKyyHlXgI+BrwATMACYAJQzZ1FCZK/HBi5N0xZn4nGUUurR1aT0dAL23Qtbdw+M1DRtN9CZpwQupZQpEzUJIYQQwtxOndKv1dqzB7p14+bHC5n0eTEWLND7ZKxYAb16ZW77YEJyAlMCp/Dfvf+leIHirH11Ld1qdUPLzIOInBUNfAp8gb7PqQ/6XK3K5ixKiJzxpBWudvzzuq3Hyej9agPr07k9HOiWwcfIKDdN02KAAuhdFP+nlFqaxc8hhBBCiPQoBYsWwejRYG+P+u57VqZ0Z0wzjevX9dnG06eDk1PmHtb3tC+DNw0m8mYkA9wG8In3JxTNXzR7XoN4djHoV+5/DsQC3dEbYmSiGYoQ1u6xgUsplR2Lu8WA9BpsRANZ+d1yB/A9+mg8J/TPUb7WNK2MUmpGFj6PEEIIIR514YI+V2vrVvD25sjYFbw9vTQ7dkCTJvD779CgQeYe8nrCdUZtHcXKsJVUd65OwJsBeFbyzJbyRRaIA+YBn6D/5tcVvQthbXMWJYR5aEpldHEqC55M05KAOUqp8Y/cPhMYp5TKaJv6aujXfaXbpfAxx/wCvAiUUErFpfP1QcAggFKlSjVcs2ZNRh4228XFxVGwYEFzlyEeIefF8sg5sUxyXixPdp+Tkv7+PDd3LoakJA73e4/Z199m3U/lKVgwhUGDInjppUsYMjEFVCmF31U/5p+eT1xKHD3K96BXxV7YG+yz7TWYQ255rxgSDbhscKHCqgrY37QnqmkUkX0jiav+j1+9LF5uOSe5jSWdF6PRGKqUcn/a/Z50DZcLcFUplXL330+klLqYgbpuoK9yPaoo6a98ZaXVQBegDrD30S8qpRYDiwHc3d2Vp6dnNpeTMYGBgVhKLeI+OS+WR86JZZLzYnmy7ZxER+v7BNeuRTVuwo/df2bkpy5cvAgDB8JHH9nh7FwDqJHhh4y8EcmQ34aw7fQ2mpZrypKOS3AtmcnOGlbC6t8rSegdB2cCF4E2wHRwbuqMs5X2eLf6c5JLWeN5edKK0t9AMyAYOM/Tr9PKSP/VcNJfTK4FHM3A8c/i3pW0ObekJ4QQQuQFW7ZAv35w7RrH31vAO+GD8R1pwM0Nfv5Z30aYGSmmFObum8vkgMnYGGz48qUvGeo+VFq9W6IUYAUwDX06a0v04cXpTUMVIo96UuAaBJx+4N9ZEVQ2AJ9pmlZFKRUBoGlaJaA5+vSF7NQDuA38mc3PI4QQQuQNcXEwZgwsXEjC8w2Z+dIBPl1QmgIFYN48GDIEbDKZkQ5cOsDAjQM5cOkAHat3ZH67+dLq3RKlAmuAKcApoDH6PiFv7n/ELYQAntw0Y+kD//46i55vCTAcWK9p2kT0EDcdfTVt0b07aZpWET3sTVNKTXvgdg+gBFD67k3umqbF3a1x3d37tEQPbz+jDzougj5kuRPwQQaGKwshhBDiaXbv1tu9R0Swocsy3j3wFmeXafTpA598AqUyOcA2PimeKYFT+Hzf55RwLMGP3X6k6/NdpdW7pTGh/4b1IfrepHroH6d3QIKWEI+Ro4OPlVLxmqZ5oTcHXYn+1twOjHikkYWGvkXx0ctqp/LwIvXbd//cOwbg0t3jpgHFgWQgDOihlFqdda9GCCGEyIMSE2HKFPjkEyLKNOe9pvvZ9Kszrq4QFKQPMc6sbae3MWTTECJvRjKwwUBmt5ktrd4tjQI2AZOBQ8DzwA/o3Qcz0QRFiLwow4FL07TiwOvoV7s6PPLljA4+Ril1Dv3t+aT7nCGdz0mUUp4ZePxTwEsZqUUIIYQQmRAWBr17cyfsOJ80+JmPjnbCNkZjzhx45x2ws8vcw12Lv8aobaP4Luw7qjtXJ/DNQDwqycU/FkUBfsBE9Kv6q6J/ZN6djF29L4TIWODSNK06emc/h7t/bqDPtzKgj7SLza4ChRBCCGFmqanw2WcwaRJbHLvyTpk9nDrgyOuvw5w5ULZs5h5OKcXKsJWM2jqKW4m3mNRqEhNaTsDB9tHPc4VZ7QAm3f27AnoXwj5AJoO1EHldRle4PgUOAJ3RR9n5oHccfBP9M4/22VKdEEIIIczr9Gl4803+3n2WkWWD+OlCM6qXBN8V0KZN5h8u4kYEQzYNwTfCl2blmrGk4xJql5RpuBZlP3rQ8gXKAPOB/kA+cxYlhPXK6K7bRuhvtzv3jlNKJd6dXbUAmJsdxQkhhBDCTJSCxYtJquvOJ6FePJ8vgs3RTZk5U99ZmNmwlWJK4dPdn+K6wJV95/cx76V57Oq3S8KWJTkIdASaol+nNQe9hdkwJGwJ8QwyusJVGIhSSpk0TbuF3ozinmD0VS4hhBBC5AYXL8KAAQT+nsAwx0Mcu1ORzp1h7lyoVCnzDxd6MZQBGwdw6PIhOtfozLx28yhXuFyWly3+pXD0roM/AUWBWcA7QEFzFiVE7pHRFa4zwL0Gr8d5uOnFS8DNLKxJCCGEEOaydi2XarWm57Y+GAnkTskKbNoEv/6a+bAVnxTP6K2jafx1Yy7HXWZdt3X88vovErYsxUmgF1AH2IYeuiKB8UjYEiILZXSFyw9oA6xDb+m+StO0F9Dni7sCH2VPeUIIIYTIEdHRpAx7l/lrnZls8wd3DAWY/B/44AON/Pkz/3BbT21lyG9DOHPzDIMaDGK292ycHJyyvm6ReWfQp6AuR98qOA54H3A2Y01C5GIZDVwfAPkBlFJrNE1LRG8RXwB9YPHC7ClPCCGEENlu61b29FrAsOvTOEw9Xmxj4st5BqpVy/xDXYu/xoitI1j15ypqONcg6K0gWlX8F8O5RNa7AMxE7zZoQN82+AH39zAJIbJFhgKXUuoO9xtmoJT6Bfglu4oSQgghRA6Ij+fa8Kl88G0NlrGe8qWS+GkBvPyyAe0f0zCfTCnFisMrGLVtFLGJsUxuNZkJLSeQz1a6LZjdFeBj4CvABAwAJgCys1OIHPHYwKVpmhcQrJSKy8F6hBBCCJEDUnfu4euuvzP+2gfEGoowbmQKk6ba4+iY+cc6HX2awZsGsz1yOy+Uf4HFHRZL90FLEAV8BnwBJKLP0JoEVDZnUULkPU9qmuEL1Lr3PzRNM2iatkPTtOeyvywhhBBCZActOZmQvvNp1sqWIdemU6++gcN/2vDxZ7aZDlvJqcnM3jUb169cCb4QzIJ2C9jZd6eELXOLAaagB6vZQBfgKLAMCVtCmMGTthQ+uplAA1oAhbKvHCGEEEJklxu7wvnu1assvTWUUvlv8f2XCXTv55Tp7YMAIRdDGLBhAIevHKZLzS7Me2keZQuXzfqiRcbFAfOAT4Ab6D2lpwKSf4Uwq4y2hRdCCCGEtUpMZFvP5bi2dGLZrTd4t2Mkf11yokf/ApkOW3FJcYzaOoomXzfhavxVfnrtJ355/RcJW+Z0G72HdBX0lu4vAKHovaUlbAlhdhntUiiEEEIIK5QQsJ9xXU8x78ab1CpynmmTdtJ/tOe/eqzfT/7O0N+GcjbmLEMaDuHjNh9TxKFI1hYsMi4RWIreefAi+gCf6UBTcxYlhHjU0wJXWU3Tqtz9t80Dt/1j0LFSKiJLKxNCCCHEvxcXxx8DFtF7bXuO05ORXSKZuaoy+/efyvRDXY2/yogtI1h9ZDU1i9dkZ9+dtKjQIhuKFhmSDKxAD1dngZbAKsDDnEUJIR7naYFrXTq3/fqY+9o85nYhhBBC5KDk3/2Y2f0IM2Lew6XgLbavTsCrQ+a7JSilWH54OaO3jSY2MZYpHlP4oMUH0urdXFKBNegNMU4BjYHFgDf/vPJeCGExnhS4+uZYFUIIIYR4djducHzAp/T+uQt/MILeba/wxZpSODll/qFORZ9i8KbB+Ef607x8c5Z0XMLzJZ7P+prF05mAn4EP0bsN1gM2AB2QoCWEFXhs4FJKLc/JQoQQQgjx75nW/cyCfiGMjZ1Ifgf4cWkSr/YolenHSU5NZs7eOUwNmoq9jT1ftf+KQQ0HYdCkz1aOU8AmYDJwCHge+AG9+6CcDiGshjTNEEIIIazZ5ctc6D+ZvptfxZdZvNQ8hqU/FqFMmcw/1B8X/mDgxoEcvnKYl2u+zJcvfSndB81BoU9DnQQEA1WBlUB35AIOIayQBC4hhBDCGikFy5ez5u2dDE34jCQ7RxbOTWXQ0CL/qtX7RP+JfBn8JaULlubn137m5edfzp66xZPtACYCO4EKwNdAH8DOnEUJIZ6FBC4hhBDC2kRGEt3vfd4OfJU1LKVZ/dus+NGeatUy/1CbT25m6G9DORdzjqHuQ/mo9UfS6t0MCh0tBLPQV7bKAPOB/oD0JxHC6kngEkIIIaxFairMm8e2cdvpm7SQq4ZSzJxmYuy4/Nhm8if6lbgrjNg6gjVH1vB88efZ1XcXzSs0z566RfpSgG3AfGi4uSGUAOYAQ4H8Zq1MCJGFJHAJIYQQ1uDoURL6vs3Y4K7MZwO1nkti4xobGjTI3MMopVh2cBnvb3uf+OR4pnpOZVzzcdLqPSedAr4BvkUfWFwCIgZEUOXzKlDQrJUJIbKBBC4hhBDCkiUlwSef8MfUzfQyreAE1Rg5QjFzlj35M7kK8tf1vxgdNpqDNw/SokILFndYLK3ec0oC+nTTZUAQepfBdsA8oD2c23OOKgWrmLFAIUR2kcAlhBBCWKqQEJL7DWbmnx2Zoe3ExQW2rwAvr8x1xYi4EcG0oGmsDFtJfkN+FrZfyMCGA6XVe3ZT6F0GlwGrgVjgOeAj9EYYLuYrTQiRcyRwCSGEEJYmIQE+/JDjczbR23YVf+BG717wxRdkaojx+VvnmbFjBksPLsVGs2FEkxG00Frwsrt0IMxW19DbuC8DwoECQDf0JhgtkGHFQuQxEriEEEIISxIYiKn/QBZEtGWszWEKFLJl3WLo2jXjD3El7gof7fqIhSELMSkTgxoMYkLLCZQtXJbAwMBsKz1PSwG2ooesDXf/d1NgCfAaUNh8pQkhzEsClxBCCGEJYmJg7FguLN5E3/xr8aUF7drC11+T4SHGUQlRfLrnU74M/pLElETerPcmkzwmUcmpUraWnqedQg9Zy0lrgMF7QD+glhnrEkJYDAlcQgghhLlt3AhDhrD6kifD8p0kScvPwoUwaBAZGmIccyeGz/d9zn/3/pe4pDi61+nOhx4fUt25evbXnhfFAz8BS9EHFT/SAAN785UmhLA8EriEEEIIc7l6Fd57j+g1WxlW5HvWqpdo1gBWrCBDQ4zjk+L5MvhLPtn9CTfu3OCV519hqudUXEu6Zn/teY00wBBC/EsSuIQQQoicphSsWgXvvce2m43pW+gMV+MLMXMmjB3LU4cY30m5w8KQhXy06yOuxl+l3XPtmOY5jYYuDXOm/rzkKvAdDzfAeA19y6A0wBBCZIAELiGEECIn/f03DBlCwuYAxpZawfzUV6lVHjau5KlDjJNSk1h2cBkzdszgQuwFvCp7Md04nRfKv5AztecV0gBDCJGFJHAJIYQQOcFkgkWLYNw4/kiqR68SFzhxpSgjR8KsWeDg8PhDU0wpfBf2HVODpnLm5hmalWvGipdX4FXZK+fqzwukAYYQIhtI4BJCCCGy24kTMGAAyTv3MrPyUmac642Lg8b27eD1hMxkUiZ+CP+BKYFTOB51nAZlGrCg3QJerPYiWka6aYine1wDjPnoDTDszFeaECJ3kMAlhBBCZJeUFJgzBz78kL/s69K70kVCIkvQu/eThxgrpVh/fD2TAybz59U/qV2iNj+/9jNdanaRoJUV7jXAWAqsQRpgCCGylQQuIYQQIjscOgT9+2M6cJD59RYz9nh/HGM11q17/BBjpRTbTm9jYsBEQi6G8Fyx51j1yipeq/0aNgabnK0/N7rXAGMpcBRpgCGEyBESuIQQQoisdOcOTJ8Os2dzoagrfetewvdwKdq1e/IQ46AzQUwMmMiuc7uoWKQiyzoto3e93tga5Ef1M0mvAUYzpAGGECLHyHdxIYQQIqvs2gUDBsDx46xu9RXDDg8i6ZSBRYtg4MD0hxjvO7+PSQGT8Ivww6WQCwvaLaB/g/7Y28j03GdyEviG+w0wSgIjgL5IAwwhRI6SwCWEEEI8q9hYGD8e5s8nulxdhnlcZG1QGZo1e/wQ44OXDjI5cDKbTmyieIHizPGZw1D3oeS3y5/z9ecW8cA69NUsaYAhhLAQEriEEEKIZ7FlCwweDH//zdbOC+gXPJiruw2PHWJ89NpRPgz8kHVH1+Hk4MRMr5m82+RdCtoXNE/91k4aYAghLJwELiGEEOLfiIqCUaNgxQoSqtdn7Mv7mP9zGWrVgo2b/jnE+FT0KaYGTeX7sO9xtHdkUqtJjGo2CieHx7QqFE/2uAYY/YHmSAMMIYTFkMAlhBBCZIZSsG4dDB8O0dEE91tI750DOfGzId0hxudizjE9aDrfHPoGext73n/hfcY2H0vxAsXN9xqs1b0GGEuBjTzcAON1oJD5ShNCiMeRwCWEEEJk1MWLMGwYrF9PcoPGzHwljBlLSuHiAv7+YDTev+ul2EvM2jmLxQcWAzCs0TDGtxhPmUKPaVMoHk8aYAiRp12+fBk/Pz98fX1p3769ucvJNAlcQgghxNMoBUuXwvvvQ2Iif41ZSm//voQs1P4xxPh6wnVm75rNvD/mkZyaTD+3fkxsNZEKRSqY9zVYm3sNMJYCOwEbpAGGEHlEQkICO3fuxNfXF19fX8LCwgBwdnambt26Zq4u8yRwCSGEEE9y+jQMGgT+/phaeTLf4wfGfloCR0ceGmJ8885N5uyZw9z9c4lPiqdX3V5M9phMtWLptCgU6VPAfvQugw82wPgY6I00wBAilzKZTBw+fJht27bh6+vLrl27SExMxN7enubNm/PRRx/h7e2Nm5sbO3bsMHe5mSaBSwghhEhPair8738wcSLY2nL+o5X09euJ33TtoSHGsYmxfLH/Cz7b+xk379ykW61uTPGcQq0Sstctw64CK9GDljTAECJPOH/+PL6+vmzbto3t27dz7do1AFxdXRk2bBg+Pj60bNkSR0dHM1f67CRwCSGEEI86cgT694fgYOjQgdVtv2XYJGeSk0kbYnwn5TZz9izg490fcz3hOh2rd2SacRr1S9c3d/XWIQXYgh6ypAGGELleXFwcgYGBaSHrr7/+AqBUqVK0bdsWb29v2rRpg4tL7lvKzvHApWlaeeBzwBv9Mys/YIRS6lwGjp0FuAMNgWJAX6XUt4+570BgNFAZOAN8rpRamAUvQQghRG6VlKS3GZw1C4oUIXrJTwzze5m172hpQ4zLV0pkwR9fM3PnTC7FXcK7ijfTjdNpUq6Juau3DifRQ9Zy4BL3G2D0A543Y11CiCyVmppKaGho2jbBPXv2kJKSgoODAx4eHgwYMABvb2/q1KmDpuXuZewcDVyaphUA/IFE4E303dozgABN0+oqpeKf8hDvAIeATejjDB/3PAOBRehjD/2A1sACTdM0pdRXz/xChBBC5D779+urWuHh0LMnWzvNp9/IIly9CjNnwqj3U/j+yHKmzZvGuZhztKjQgtVdV+NRycPclVu+xzXA6Ic0wBAiF4mMjExbwfL39+fGjRsAuLm5MXr0aLy9vWnevDkOD87OyANyeoVrIFAFqKGUOgWgaVoY+uddg4H/PuX4Ikopk6Zp1XhM4NI0zRaYCaxUSv3n7s0Bmqa5ANM1TftaKZWcBa9FCCFEbhAfD5Mmwdy5ULYsCes2MzbgJea/DrVqwa/rUzmZby11Fn3IqehTNHJpxJKOS/Cu4p3rP5V9Juk1wKiONMAQIhe5efMmAQEBaSHr9OnTAJQrV44uXbrg4+ND69atKVGihJkrNa+cDlydgH33whaAUipS07TdQGeeEriUUqYMPEczoAT6/PkHrUSf2NECCMhM0UIIIXKp7dv1C7IiI2HoUIK7fULvIQU5cQJGjFA0eXM9ffdMJPxaOHVL1WX9G+vpWL2jBK0nSa8Bxuvoq1nSAEMIq5acnMz+/fvT2rXv378fk8mEo6MjRqORd999Fx8fH2rUqCHfJx+Q04GrNrA+ndvDgW5Z+BwAR9J5DtBHJErgEkKIvOzmTX2m1tKl8NxzJG/fwYyglsz0BhcXxawV+/kxYRhz1x+khnMN1r66lldrvYpBM5i7csv0uAYYX6N3G5QGGEJYJaUUJ0+eTLsOKyAggNjYWAwGA40aNWLChAl4e3vTtGlT7O3tzV2uxcrpwFUMuJHO7dFA0Sx8DtJ5nuhHvi6EECIv+vVXGDYMrl6FceP4640p9B7oQEgIeL9yiZuefZgQ4Udlp8p82/lbetbtia1Bmvqm6wTwDdIAQ4hcJCoqiu3bt6eFrHPn9L52lStXpkePHnh7e+Pl5UXRoln1q3vupymlcu7JNC0JmKOUGv/I7TOBcUqpDP1Eu3sN10nS6VKoadp/0BtxOCilEh+43RZIBiYrpaan85iDgEEApUqVarhmzZrMvLRsExcXR8GCBc1dhniEnBfLI+fEMlnSebGLjua5L76gZFAQcVWrcnT0GFYe9WLx4irY5Uui5KuTiKw4hxL5StCrQi9eKv0Sdobc183hWc+J4baBkkElKf17aZzCnFAGRVTTKC6/dJmoplEo25z7vSI3saT3itDllXOSlJREeHg4ISEhhIaGcuLECZRSODo60qBBA9zd3WnYsCFly5Y1d6mAZZ0Xo9EYqpRyf9r9cvojuxukv8JUlPRXvv6NB1eyLj1we7FHvv4QpdRiYDGAu7u78vT0zKJynk1gYCCWUou4T86L5ZFzYpks4rwopfdzHzlSb5AxcyY3u4/hP4Ps8PODEvWCudamM/GlTcxtMZfB7oNxsM29HbT+1Tm51wBjKXoDjDjSGmBofTSKlylOcYpncaV5i0W8V8RDcus5UUpx9OjRtBWsoKAgEhISsLW1pWnTpvTo0QMfHx/c3d2xtbW81X1rPC85/f9iOPevsXpQLfRLa7PqObj7PA8Grlp3/86q5xFCCGHpzpyBwYNh2zZ44QVYupTVB2sy2C2VhDu3ocN7JDdfx8ctxjG88XAc7R3NXbFlucL9BhjHkAYYQlipy5cv4+fnh6+vL35+fly8eBGA6tWr069fP7y9vfH09KRw4cJmrjR3yunAtQH4TNO0KkqpCABN0yqhf9v+IIueYy9wHeiJPoPrnl7oq1u7s+h5hBBCWFmUqnUAACAASURBVCqTCebPh/F3d7B/+SXRbwyj98A4Nv8KlNtPwQFv836HLoxoGkkRhyJmLdei3GuAsRR96qU0wBDC6ty+fZudO3emrWKFhYUB4OzsTOvWrfHx8cHb25sKFSqYudK8IacD1xJgOLBe07SJ6JsUpgN/ow8qBkDTtIrAaWCaUmraA7d7oLd8L333JndN0+IAlFLr7v6drGnaJPRBxxfQQ5cX+udx7yilkrL3JQohhDCrv/6CAQNg925o2xYWLWJ5SD6G1Ygh4WZB7Lw/ZOToFMa29MO5gLO5q7Uc6TXAGIk+UEUaYAhh0UwmE4cPH05r175z504SExOxt7enefPmzJo1Cx8fH9zc3DAYpNtqTsvRwKWUitc0zQv4HH2TggZsB0YopeIeuKuGPof+0f8ipgIeD/zvt+/+uXfMvedZqGmaAkYDY4BzwHCl1IIsfDlCCCEsSXIyfPopTJ0KBQvC8uWcbNOalwedIvw3D7QSR+nxv9/571vDKFWwlLmrtQxxwDr0LYM70X/ytgP63/079/UMESLXOH/+fFrA8vPz49q1awC4uroybNgwfHx8aNmyJY6OslXa3HL8Sjil1Dmg61Puc4Z0doYrpTwz8TyLeGDVTAghRC4WGgr9+8Phw9CtG9c+nsy7G/1YWzcBFeVB3c5+/LS4JtVKjjZ3pean0DffL+MfDTDoA5QxX2lCiMeLi4sjKCgobZvgsWPHAChVqhRt27bF29ubNm3a4OLiYuZKxaMsr/WIEEIIkVG3b8OUKTBnDpQoQezq5cwoeoLPB2wkOWgMjsViWLz+Ej06tTF3peZ3GfgOGs1rBGcBR/RrsqQBhhAWKTU1ldDQUHx9fdm2bRt79+4lOTkZBwcHWrVqRf/+/fH29qZOnTpomryBLZkELiGEENYpKAgGDoSTJ0l6qzdzu5Zlmv8XxK/9Ci42ovNrMSxf7EyRvNwPIxHYCHyL3ggjFVJqp0gDDCEsVGRkZNo2we3bt3Pjhj41yc3NjZEjR+Lj40Pz5s1xcMi9oytyIwlcQgghrMutWzBuHCxciKlSJX6YO5Bht3/mxvweGLbvxqmQDV+vg65d82jSUsAB9JC1Cr0/b1lgLPAmHLx00Opm2AiRW8XExBAQEJC2TfDUqVMAlCtXji5duuDt7U3r1q0pWbKkmSsVz0IClxBCCOvx228wZAjq4kUOdTfS1TWcyLObcfbdBkca8GI7+PprKJMXr0O6AnyPHrT+BPIBLwNvAW3QG2LAwxMqhRA5Kjk5meDg4LRtgsHBwaSmpuLo6IjRaOSdd97Bx8eHGjVqyDbBXEQClxBCCMt37RqMGAGrVhFdxYW33inORqcAap6dRsE147mTasuiRfoOwzz1O0oS8Bt6O/fNQCrQBPgKfUBxUfOVJoQApRQnT55M2ybo7+9PbGwsBoMBd3d3xo8fj7e3N02bNsXe3t7c5YpsIoFLCCGE5VIK1qxBvfsupps3+PLFoox1v0jd4t54bFtJ0OZSNGsGK1ZAtWrmLjYHHUIPWd8DUeidBUejr2bJzCwhzCoqKort27enhayzZ88CULlyZbp3746Pjw9eXl4ULSqfiOQVEriEEEJYpvPnUUOHoG36jbCKDvTslopdvYpMtP2dRZMbc/WqxsyZMHYs2OaFn2bXuL9l8DBgD3RGH0zsjfxEF8JMEhMT2bt3b9p1WKGhoSilKFKkCF5eXowbNw4fHx+qVq1q7lKFmci3ZyGEEJbFZEItXkzK+6NISbrDhLbg16Ey45vOYveyznz4lUatWrBpE7i5mbvYbJaMvlXwW2ATkAK4A/OBN4BiZqtMiDxLKcXRo0fTrsMKCgoiISEBGxsbmjVrxpQpU/D29qZRo0bY5olPg8TTyH8FQgghLIY6cYIbvbtRLDiMHZVhZq8K9H91Ft3i3+CtHjacPAkjR8KsWZCruyKHoYes79BXtkoBI4A3AVfzlSVEXnXlyhX8/PzStglevHgRgOrVq9OvXz+8vb3x9PSkcOHCZq5UWCIJXEIIIcwvJYWIye9Q9rPFGAwmxr5ejBpjZrOp9pt8PMuON2eBiwv4+4PRaO5is8l1YDX6tVkHATugE/p1WS8iP7GFyEG3b98mJCSE3377DV9fXw4fPgyAs7MzrVu3xsfHB29vbypUqGDmSoU1kG/fQgghzOpP3+/IN/htqkfeYkvtfFyaPYnpbd8n4mQ+WrWA0FDo0we++ILcN8Q4GX0g8bfoA4qTgQbAF0APwNlslQmRpyQlJbF//34CAgLw9/dn7969JCUlYW9vT/PmzZk1axY+Pj64ublhMBjMXa6wMhK4hBBCmEXY2T84NrIXr6w/wY0CGhum96LN2IU42Doyb54+29jREdatg65dzV1tFjvC/S2DV4ASwHD01ay6ZqtKiDwjJSWF0NDQtIC1e/duEhIS0DQNNzc33n33XYoXL87w4cNxdHQ0d7nCykngEkIIkaOOXTvGqsXD6THXn9evQ1jb+lRe9gudXCpx/jz07Qt+ftCuHSxdCqVLm7viLBKNvmXwWyAE/SdwR/SQ9RL6FkIhRLYwmUwcPnw4LWDt2LGD2NhYAFxdXRkwYABGoxEPD4+0du2BgYEStkSWkMAlhBAiR0TciODjLRNx/d9qpgbDrRKFif31a+p27oZSsGoVvP02JCeTe4YYpwDb0EPWevRBxfWAuehbBkuYrTIhcjWlFMeOHcPf3x9/f3+CgoKIjo4G9EYXPXv2xGg04unpScmSJc1crcjtJHAJIYTIVn/H/M2MHTM4t+5rFm4wUT4GEgf1x+nTz6FQIaKjYehQ+OEHcs8Q46PAcmAlcAkoDgxFX82qb76yhMitlFKcPn0af39/AgICCAgI4MqVKwBUqlSJLl26YDQaMRqNlC1b1szVirxGApcQQohscTnuMl+e+pLd2zYye0sKiw4qkp+rimHjt+Rv0QKALVugXz+4dg3rH2J8A1iDvpoVDNgA7dFDVnv0QcVCiCxz7ty5tIDl7+/P+fPnAXBxcaFNmzZ4eXlhNBqpXLmymSsVeZ21/lgTQghhgZRS7Dq3i8UHFvNj+I90/DOJ49scKBxrggnjsJs0CRwciI+HMWPgq6+gVi347TcrHWKcCviih6xfgUT0OVlzgJ7o87OEEFni0qVLaatX/v7+REREAFC8eHGMRmNawKpevTqa1e9HFrmJBC4hhBDP7HrCdVYcXsGSA0s4eeUvOv1dgOCjpakbfBbcasKyZVBf30u3fz/07g0nT8KoUfrKltUNMT6OHrJWABeBYsBAoC/gBsjvekI8s+vXrxMUFJS2inXs2DEAnJyc8PDw4L333sNoNFK7dm1p1S4smgQuIYQQ/4pSiqCzQSwOXcxPR9dR71wyUyNK0/FQYfJH3wKnGCIGDqTKggVga0tyMkyfDrOsdYhxDLAWPWjtRd8y+BL6zKwOQD6zVSZErhATE8OOHTvSAta9YcOOjo60atWKfv36YTQaqV+/PjY2NmauVoiMk8AlhBAiU67FX2P54eUsDl2MOnmS/kfzMfdYAUpejAH7aOjYEXr2hHbtOLd3L1VsbTl2TF/VsrohxqmAP/AN8AtwB6gFfIq+ZbCM+UoTwtrFx8eza9eutIAVGhqKyWTCwcGB5s2bM2PGDLy8vHB3d8fOTuYmCOslgUsIIcRTmZSJgMgAFh9YzO4/fuaVsBR+PV6QWpGgtCQ0zxdgWk99QrGT0/3jTHq4srohxie5v2XwPOAE9ENvgOGObBkU4l+4c+cOe/fuTbsGKzg4mOTkZOzs7GjSpAkTJ07Ey8uLJk2a4GB1+4yFeDwJXEIIIR7rStwVvj30Ld/vXUTdvZEMDLdl1alUbExAvarwSU+07t2hXLl/HPv33zBmTD0OHLCSIca3gB/Qg9ZuwAC0RW+A0QmQ3/+EyJTk5GSCg4PTAtaePXtITEzEYDDg7u7O6NGjMRqNNG/eXAYMi1xNApcQQoiHmJSJ7RHbWRq8kPjNv/LGYRP7jxvInwSmCmUwjO2pbxl0df3HsZcv6x0HN2wAX19QqrBlDzE2AQHoIesn4DZQE5gN9AJczFaZEFYnNTWVgwcPpg0b3rVrF/Hx8WiaRr169Xj77bcxGo20bNmSIlaxp1iIrCGBSwghBACXYi/xzcFlhPwyH+OeS3wZrlEiXpHqVBibt96Anj0xtGgBD3QDUwqOHNED1saNegdCgAoV9PlazZqF0LNnE/O8oCc5jT6YeDlwDigCvIm+ZbAxsmVQiAwwmUwcOXIk7RqsoKAgYmJiAKhVqxZ9+/bFaDTi4eGBs7OzmasVwnwkcAkhRB6WakrFN8KXjRvnUHr9drqHKSbcgFR7O+jYAXq/ic2LL0K++y34kpJgx477IevMGf32Ro30LoQdO0LduvqKVmDgbfO8sPTEAuvQG2DsRA9VPuirWZ2B/OYrTQhroJTi+PHjaQErICCAqKgoAKpVq8Zrr72Gl5cXnp6elLbo/cNC5CwJXEIIkQddjL3I2u1fcGv5YtoF32D+RTBpcKdFU+g7CJtXXnmojWB0NGzerAesLVvg1i19dpa3N0yYAB06QBlL7NhnAoLQtwyuAxKA6sAsoDfwz0vPhBB3KaWIjIx8KGBdunQJgPLly9OhQ4e0YcPly5c3c7VCWC4JXEIIkUekmlLxPfQzfy39mOe3HeDd02Cj4EbNSqSMGIJtj14UKFs27f4nTugBa8MG2L0bUlP1phevvaavYrVpAwUKmPEFPUkk97cMngEKo7dxfwtohmwZFOIxzp8/n9bkIiAggLNnzwJQunRpjEZjWsCqUqUKmkVemCmE5ZHAJYQQudzf1yPYuWQSBX78FZ8/E3gxBW6UKkzMiJ4UGzCcorVqAZCSAnt33t8qePy4fnzduvDBB9CpE7i7P3QJl2WJQ2988S0QiB6qWgMzgS6ApYZDIczoypUrBAYGpgWskydPAlCsWDGMRiNjx47FaDRSs2ZNCVhC/EsSuIQQIhdKSU1m349zublsPk12n6VHAtwqaMelrt5UGDqeoi09wGDg1i3Ytk4PWZs3Q1QU2NmBpycMH66vZFWsaO5X8wQK/Xqsb9FbuscD1YAZ6FsGK5itMiEsUnR0NEFBQWkBKzw8HIDChQvj4eHB0KFD8fLyok6dOhgs9tMVIayLBC4hhMhFLv7hz8kvplDx9z20iErlti2cbP48qYNGUPrVtyhsb8/Zs7Bxgb6KFRAAyclQrBi0b68HrLZtoXBhc7+SpziLPpT4WyACKAi8gb5lsDmyZVCIu27dusXOnTvTAtahQ4dQSlGgQAFatmxJ79698fLyws3NDVtb+bVQiOwg7ywhhLByyefP8de8KTj88BPPRd6ilAaHazsTNao7dYdOwbWIMyEhMH+6vpIVFqYfV6MGvPeevlWwWTOw+N+1Eri/ZdD/7m1ewBTgFUDmpgpBQkICu3fvTrsOKyQkhNTUVPLly8cLL7zA1KlT8fLyolGjRtjb25u7XCHyBEv/8SqEECI9sbFc+24xMUvnU/lAJHUUhJWz4/chbXB9dwY1KzZh+3ZYOBY2bdIHEhsM0KIFfPaZvpJVvbq5X0QGKGA397cMxgKVgalAH6CSuQoTwjIkJiayb9++tIC1b98+kpOTsbW1pXHjxowfPx6j0UizZs3In19mHwhhDhK4hBDCWiQlkbL5Ny4tnkOJ7XspkWQizgl+7FSNkoNGUL3+YII32/LVOPDzg9u3oVAhePFFfRXrpZfAamaP/s39LYOn0FevugF9gRaAXFoi8qjk5GRCQkLSAtbu3bu5c+cOBoOBBg0aMHLkSIxGIy1atKBgwYLmLlcIgQQuIYSwbErBnj3ELPsK23U/43jrNvnzw1p3R5LfeJ3ybtM5FejC51MhOFg/pGJFGDBAX8Xy8ACr2TWUAPyKHrL80Fe3PICJQFf067SEyGNSU1M5fPhw2jVYO3bsIC4uDoC6desyZMgQjEYjrVq1wsnJyczVCiHSI4FLCCEs0bFjpK5cwe2Vyyh4/ip2trChJhxt0xy752dzOawZmz4zcO6cfvcmTWDGDH0ly9UVrKZ7swL2Ad8Aa4FbQEVgMvqWwSrmK00Ic1BKER4enhawAgMDuXnzJgA1a9akT58+GI1GPDw8KFGihJmrFUJkhAQuIYSwFBcvwpo13Pl2KQ5/HgUNdleBX7pW5Ualj4k/1Y4dSwsQGwv584O3N0yerHcXLF3a3MVn0gXubxk8gT4j61X0LoMeyJZBkWeYTCZOnjzJhg0b+OqrrwgMDOTq1asAVKlSha5du+Ll5YWnpycuLi5mrlYI8W9I4BJCCHO6dQt+/hnTyhVoAYFoSvGnC8xvUYPwku9z+9wrHPulKCaTRpky8MYb+ipW69Z66LIqd7i/ZdAXMAEtgXHo12cVMltlQuQIpRRnzpwhJCQk7U9oaCgxMTEAlC1blrZt2+Ll5YXRaKSiRQ/BE0JklAQuIYTIaUlJsGULfPcdpo0bMNxJ5HRROz6q0wI/hx7cvtSN67v07hb16sF//qNfj9Wwod5p0KooYD96yFoD3ATKAxOAN9GHFAuRCymlOH/+/EPhKiQkhOjoaADs7OyoV68e3bt3x93dnXz58tGzZ080q9kPLITIKAlcQgiRE0wm2LMHvvsO9eOPaNHRnHV0ZmrZTmzSOnHzUmeSwwphZ6fw8tLoOA46dNAbYFgdBRwBNkGjRY30IcX50Wdl9QWMyJZBketcunTpH+Hq3tZAW1tbXF1deeWVV3B3d8fd3R1XV1fy5cuXdnxgYKCELSFyKQlcQgiRnY4ehe++g1Wr4OxZTthXZXaJPqwv3Y6oax5w2p6ixUx072qgUyfw8dEoZI1b66LROwtuAbYCF/WbU2qnwBL0LYNFzFWcEFnr2rVr/whXFy/q/9EbDAZq1apFu3bt0sJV3bp1ZQaWEHmYBC4hhMhqFy7A6tXw/feYDh1mv9aYRcXfYX1hb27eqgsXoHzVePr2sqNzZ2jWzICNjbmLzqRUIBQ9YG1B3zZoApwAb+BFwAcOnjqIp6enuaoU4plFR0cTGhr6ULg6d7c9qKZp1KhRAy8vr7RwVb9+fRwdHc1ctRDCkkjgEkKIrBATAz/9BN9/T7z/fvxozerC77MpXxviE0tBVApV6l5kxGux9Hi1EM89Z4W/kF1GX73aCmwDogANcAf+gx6yGvPwT5ZTOVyjEM8gJiaGAwcOPBSuIiIi0r5erVo1XnjhBd59913c3d1xc3OjcOHCZqxYCGENJHAJIcS/lZgIv/8O33/PxQ0hbEry5heHcWw3tCLZ5ACJMVRoGM57r0Yxsk9NijtXMHfFmZME7OX+Ktahu7eXBNqjByxvoLhZqhPimcTFxXHw4MGHwtWJEyfSvl6pUiXc3d0ZNGgQ7u7uNGjQgKJFi5qxYiGEtZLAJYQQmWEywa5dqO++5/CaY2yM9WC9zXhCUxvoX3eIxKnJD7z+Sn4m9fakbNEXzFtvZp1BX8HaAmwHYtF/UrwAzEIPWfWQphfCqty+fZtDhw49FK6OHTuGUgqAcuXK4e7uTp8+fXB3d6dhw4YULy6fJAghsoYELiGEyIgjR0hcvobA5WfZcK0pG7WJ/K3KAyYovR+b5yfTtn0iYzq3w6NSb+vpNnYbCOL+Ktbxu7dXAHqgBywvQHZNCSuRmJhIWFjYQ+EqPDyc1NRUAEqVKkWjRo147bXX0sJVaaubHC6EsCYSuIQQ4nHOn+f617/y27IrbPy7HlsZRxyFsLe9jVZ1O9T4kOeanmSYsSu9676HcwFnc1f8dAo9VN0LWEHoA4kdAA9gCHrIqoF+fZYQFiw5OZnw8PCHwlVYWBjJyckAODs706hRIzp16pTW1MLFxcV6PhARQuQKOR64NE0rD3yOvvNfQ28kPEIpdS4DxzoA04Fe6L2wDgHjlFI7HrnfGSC96TUvK6V+faYXIITI1dSNmxyf78eGb6LYEFGbvQzFhA3FC0bj5LqVuCrfQLXdvFa/E4MaDqJ5+eaW/8vbLfTtgfdC1r3vtjW5H7Baoc/KEsJCpaSkcOzYsbRgFRoayqFDh0hMTATAyckJd3d3Ro8enRauKlSoYPnvTyFErpejgUvTtAKAP5AIvIn+WesMIEDTtLpKqfinPMRS9Eu1xwARwNvAVk3TmimlDj1y363AlEduO44QQjwiJT6RXf8NZuOKG2w4XYtT6lUAXEueo3mjXwip9D+uF99F7ZK1GdNwEL3qrqRY/mJmrvoJTMBh7gesPUAKUBBoA0wA2gKVzFSfEE+RmprKiRMnHlq5OnjwILdv3wagUKFCNGzYkHfeeSctXFWpUkXClRDCIuX0CtdAoApQQyl1CkDTtDDgJDAY+O/jDtQ0rR76FQX9lFLf3L0tCAgHpgGdHjnkulJqX5a/AiFErhBzw8SWuX+x4ftYfo+ozg3VEnsS8axwCqPnr+ytuYgjSVvIb5uf111fZ2CD2TQr18xyf6G7jt6qfcvdv6/cvd0NeB99FasZYG+W6oR4LKUUp0+fTgtWf/zxBwcOHCAuLg6AAgUK0KBBAwYPHpwWrp577jkMBuncIoSwDjkduDoB++6FLQClVKSmabuBzjwhcN09NhlY+8CxKZqmrQE+0DQtn1IqMZvqFkLkAhERsHHRRTaujSfobCVSqEVxrtOpyhEadrzFgcab+fHMcrYlx1PHqQ7zGs6jZ92eODk4mbv0f0oBgrm/ihWCvmfAGfAhbfAw0gtAWBClFGfPnn1o5SokJISYmBgA8uXLh5ubG2+99VZauKpZsyY2VjcZXAgh7svpwFUbWJ/O7eFAtwwcG6mUSkjnWHug2t1/39NR07QEwAY4CHws128JkbeYTBAcDBu+u8WGdYmEXykBuPA8Rxld5Vd8ujtwovVpFp1YzvLLhyhwpgBv1H6DQQ0H0bhsY8tbzTrP/cHDvsBN9PbsTdE3UL8INET/rieEmSmluHDhwj/CVVRUFAB2dnbUq1eP7t27p4WrWrVqYWdnZ+bKhRAia+V04CoG3Ejn9mjgadMEn3Tsva/fsxH4A4gESgHDgV80TeutlPouUxULIaxKfDz4+sLGdYls2pDK1dgC2FCAVoTQv+KfdHizGDGvFGfBmd/pGL6WhB0J1C9dnwXtFtCjTg+KOBQx90u4LxHYxf1VrCN3b3cBXkEPWG14+ndPIXLA5cuX/xGurlzR97ba2Njg6upKly5d0sJVnTp1yJcvn5mrFkKI7KfdG/qXI0+maUnAHKXU+Edun4nebfCxAVDTNF+goFKq2SO3e6NfsdBKKbXzMcfaAPuA0kqp8o+5zyBgEECpUqUarlmzJuMvLBvFxcVRsGBBc5chHiHnxXIkJ2ucP1+AkJB8HAgpw4HQoiSl2lKEm7zE77Qttpv6L0J023qstznCpkubiIiPwMHgQOtSrelYpiPVC1a3mNWs/BfyUyy4GEX/KErRg0WxuWODydZETJ0YohtHE904mvjK8VbTsl3eK5YnK87JzZs3OXHiBMePH0/7c/36dQAMBgMVKlSgRo0aaX+qVq0q4eop5L1ieeScWCZLOi9GozFUKeX+tPvl9ArXDR5eibqnKOmvXj0oGn0UZ3rH3vt6upRSqZqm/QjM1jStjFLqUjr3WQwsBnB3d1eenp5PKSdnBAYGYim1iPvkvOQ8kwkiI+HIEf3Pn3/CkSOK48chJUVPH1UMkQw1fU+nojtp2asStr3fYG+pCsw9sIQfwt/jdsptGpZpyCLjIrq7dqdQvkJmflVAPBDA/VWs03dvrwL0B14Eg6eBogWLUpSiVKWqeer8l+S9Ynkye05u3LhBaGjoQytXZ8+eTft6jRo1aNu2bdrKVf369S3mlyFrIu8VyyPnxDJZ43nJ6cAVjn4t1qNqAUczcOzLmqYVeOQ6rlpAEnAq/cPS3Ps8OOeW9IQQmaYUXL78aLCC8HBIeOCdX6nAFVxTw+iYEkId/qRuvqPUfq0eWq+eRDfrwYLw1Sz5oy/h18IpaF+QPvX6MLDBQBq6NDTfiwP9O1A49wPWTvTvYAUAIzACfatgNXMVKPKyW7duceDAgYfC1enTp9O+XrVqVZo2bcrw4cNxd3enQYMGFC5c2IwVCyGE5cvpwLUB+EzTtCpKqQgATdMqAc2BDzJw7FT05hrL7x5rC7wObHtSh8K79+sGnFNKXX7G1yCEyCI3b+pB6l6ouvfn7jX1AJQsdBvX/7d35/FVlnf+/1+fkAQIO0hYkhAggQAJJAIiokJcQFyIVazS1qXWWte2fls71rHTr7V2ps53ps60nd93apfpTJfvzHQbgxbXGrcKapVdAmEPyJoACSQkJNfvj+s+J+dkgUBO9vfz8bgfh9znvs+57tyck/M+13V/rkE7uLv/X8ipeoMct5ZsNjBo7Gi48MJgeYii8nLempLEMx88w2/+uYCTdSeZkzKHnyz5Cbfk3MLAxE78xr0cP8X7C/iCF3uC9TnAl/BzYl0C9OuU1kkvVVlZyerVq6PCVXFxw3SV6enpzJ49m89//vPhcDV8eBeef05EpIvq6MD1Y3wBi2fN7Bv473q/DewGfhTayMzS8QNrnnDOPQHgnFttZv8F/JOZJeALYtwHTAA+E7Hvp/Al5v8YPO4o/ATJs4BPtfcBikhTVVWwaVN0sFq3DkpLG7YZNLCenJRybkzdSs7wVUzfvYLs6vdJrjgI8cNgzhwfrube4P89YgTOOdbuX0thcSE/WfsTdq3cxeC+g7nr/Lu4e9bd5I3O65wDrgf+QkMv1spg3RBgIb4H6yogtXOaJ73PkSNHWLNmDatXr2bFihU8+OCDfPTRR9TX1wOQkpLC7NmzufXWW5k9ezazZs1i5MiRndxqEZGeoUMDl3PuuJldDjwN/AI/zO9V4CHnXGXEpoYvbNx4VsM7ge8ATwJDgTXAYufcBxHbbAeSgf+Dv17sBL5i4WLn3IsxPygRCTt1CkpKmg4HLCnx12ABRHasmgAAIABJREFUJCbC1Kx6Fkw9xPQZm8g59jY525Yzbu87WDEQHw+5uXDXXLjwUz5kTZoEQVGLmroaXt/xOoWrCincXMiuo7swjGmDp/Gzgp9xc/bNDEgc0PEHv5+Gku0v4SciNmA28Bg+YF1Ix3/NJb2Kc44dO3awevVqVq9eHQ5ZkddcDRs2jHnz5nHTTTeFw9WYMWM6sdUiIj1bh//pd87tApaeYZsdNFODyzlXBXwlWFradyVwedtaKSKn4xzs3t00WH30EZwMBveaQWYmTM9xLLvyMDmsJ6fsDSZtWk78ug9hXZ3fMD0dLp0LF37Sh6vzz4f+/aOer7yqnBUlKygsLmRFyQqOnTxG//j+LMxYyDfnf5NrJ1/Lpvc3kX9+fsf9EmqBd2joxfowWJ8MXI3vxVoIqJNA2kl1dTUbNmyICldr1qzh2LFjgK8WOHnyZC666CLuvfde8vLyyM3NZdOmTVx22WWd3HoRkd5D37WKyGkdOhQdqkJL8JkOgJQUmD4drrwSctIrmF63mikfv0bSB2/Bn96Fo0f9hoMG+eGAjzzScP3VqFHNPu+28m0UFhdSWFzIGzvfoM7VMWrAKG6edjMFWQVcMfEKkhKSwttvYlN7/hq8nfgerBfw12RV4Pvi5+H73hcDeTTtmxdpowMHDoR7q0K3mzZtoq7Of3ExYMAAcnNzufXWW8nNzSUvL4+cnBySkpKaPFbkdVoiItL+FLhEBIDKSti4sel1VsG8pQAMG+aD1a23+tucyTVk161l2Ma3YdUq+P0q2LbNbxwX5ze65ZaGcDVlCvTp0+zz17t63tvzng9ZmwtZf8DP8ps9Mpu/uvivKMgqYE7KHOKsA9NMFfAGDb1YoUw3Dn9F6GJ8f3oXmitZure6ujq2bNnSJFx9/HHDbCapqank5eVxww03hMPVxIkTiYtT0hcR6YoUuER6mZoaKC5uOhxw+/aGbfr3h+xsuPrqIFjlQE62Y8yJrdi7q3y4+rdVsHq1f0Dw3VwXXgj33ANz58KsWTDg9NdSnag9wavbXqWwuJDlm5ez//h++lgf5qfP5+mrnmbJ5CVkDO/AeaccUExDL1YRUA30BRbgp0ZfDEyh20w8LF1XZWUla9eujQpXa9eupaqqCoD4+HimTZvGwoULw8MBc3NzGTFiRCe3XEREzoYCl0gP1fxEwQQTBftt+vSBrCw/yu9zn/PBavp0GD8e+hwrh3ff9eHqn4OQFarXnpQEs2fDQw819F6lpLSqXfsr9/Pc5uco3FzIy1tfpupUFYMSB3H1pKu5Put6rs68mmH9h535gWLlGPAnGnqxQrUFsoB78AFrPn6eLJFz4Jxjz5494WAVClclJSU456eGHDZsGLm5udxzzz3hcDV16lT69u3bya0XEZG2UuAS6eYiJwqOHA7YeKLgCRN8oCooaOi1mjwZ+vYFamth7Vofqv6wClauhM2b/Y5mMHUqXH99Q7jKzvbVBFvVPsdHhz4KX4+1snQlDse4IeO46/y7KMgqYMH4BST2SYz9L6fZBuHrm4YC1tvAKWAgcAV+RsCr8BNOiJyl2tpaPvrooybh6nDE5HIZGRnk5uZy2223hcNVWloaZuo2FRHpiRS4RLqR1kwUPGqUD1N3390QrKZN8/UqAJ/Qdu0KhgWu9LcffADV1Q0PcOGFcMcd/vaCC2Dw4LNq56n6U7y1661wyNpavhWAWWNm8Xj+41yfdT0zRs3ouA+Yh4CX8QHrJSA0/Xke8DA+YM0DOijzSc9QXl4ergwYClcbN26kJhhm269fP6ZPn84NN9wQDlYzZsxg8Fm+nkREpHtT4BLpgqqqfIn1xsMBoyYKHuTD1NKlwTVWwdJkrtJjx+C9932v1apgaGCoEka/fjBzJtx3X0PvVXp6eM6rs3Hs5DFeLHmRws2FPL/5ecqry0nsk8gVE67g4XkPc93k60gd3EEz/Z7Cz74X6sV6D9+zNRxYhB8muAjQ1EPSCvX19eG5rSLD1a5du8LbjBo1iry8PBYtWhQOV5MnTya+lT3BIiLSc+kvgUgnau1EwdOmQX5+Q6iaPh3S0prJRadOwZoNDcFq1SpfejC4ToTJk2HRIh+s5s6FGTMgIeGc27/r6C6WFy+ncHMhr21/jdr6Wkb0H0FBVgEFWQUsnLiQQX0HnfmBYiDxYCL8jIaS7eX48uwXAo/je7Fm48u4i7SgqqoqPLdVZDGLiooKwM9tlZWVxcUXX8z9998fDlejR4/u5JaLiEhXpcAl0gEiJwqOHA4YOVFwXJyfKDgnB5YtaxgOmJl5msul9uyJDlfvvw/Hj/v7hg/3wermmxuGBg4f3sbjcHy470MKiwt5tvhZVu9bDcCk4ZP48oVfpiCrgHlp8+gT186pxuGLW7wBvOmXecXz/H1jgE/ge7GuxPdqiTRj//79TcqvFxcXh+e2GjhwILm5udx+++3h8uvZ2dnNzm0lIiLSEgUukRhrzUTBqak+TC1c2NBrNXWqL8feouPH4S9/aQhXK1f6wAW+l+r8832pwdDQwIyMcxoa2NjJUyd5bcdr4eux9lTsIc7imJc2j7+/8u8pyCog67ysNj/PadUDGwmHK94EQsMrhwIXw9YFW8l4IAOmo5LtEiU0t1VkEYvVq1ezb9++8DZpaWnk5eWxdOnScLiaMGGC5rYSEZE2U+ASOUetmSh4+HDfU3XbbdHXWQ0deoYHr6+HTZuiw9X69RB8887EiTB/fkO4ysvz12PFyKETh/jjlj9SWFzIi1tfpLKmkgEJA7gq8yoKJhdwzaRrGDmg8cViMVQLfEBDuHoLKAvuGwNcii/VfimQA8TB7qLdZMzowDm7pEuqqKhg3bp1UeFq3bp14bmtEhISmDZtGldddVXU3FbD29j7KyIi0hIFLpFWOngQnn/eL2+/fSEff9xwX1KSr5R+zTUN11jl5MDo0a3sZDpwoCFYrVoF773X0CU2ZIifKOvRRxsCVpPKGG235fAW34u1uZC3dr1FvatnzMAxfGb6ZyjIKuDyCZfTLz52oS7KCWAlDQHrnWAdQCZwPQ0BayLqwRKcc5SWljY7t1XI8OHDyc3N5d577w33Wk2dOpXERJWjFBGRjqPAJdIC5/w1VsuXQ2EhvPOOX5eaClOmVPDAA/3DPVYTJvhrsFqlutqXYY+89mrHDn9fnz6+kMWnP91Q2GLy5LN48Narq69jZenKcMjadGgTALmjcnns0scoyCpg5piZxFk7DKkqw89/9Sb+Oqy/4CsLGjADuAsfri5BlQSFmpqaZue2KisrC2+TmZlJbm4ud9xxR7jnKjU1VXNbiYhIp1PgEolQWwtvveUD1vLlsNVPH8WsWfD447BkiR+99/rrG8nPTz7zAzoHW7ZEh6s1a/wTgS81eOGF8OCD/nbmTN9d1k6O1xzn5W0v82zxszy3+TkOnThEfFw8+ePzeeCCB1gyeQnpQ9Nj/8R7aAhXbwLrg/UJwBz8XFiX4ufCOtNwS+nRysrKoua2WrNmDRs2bKA2eM3069ePGTNmsHTpUvLy8sjLy2P69OkMGtQx1TBFRETOlgKX9HpHjsCKFT5grVjhf+7bF664Ar72NbjuOkhJaeWDHT4M777bEK7efRdC38IPHOgrBX71qw1DA8e0f/fN3oq9PLf5OQqLC3ll2yucrDvJ0H5DuWbSNRRMLmBx5mKG9BsSuyd0wBaiKgiyPbhvID5U3YIPWHOA0xUKkR6rvr6e7du3Nym/Hjm31ejRo8nLy4u63mrSpEma20pERLoV/dWSXmnr1oahgm++6aevSk6GG2/0vVgLF8KAAWd4kJoa31sVWdgidP1IXJy/qOvGGxvC1bRpfshgO3POse7AunBVwff2vgfAhKETuG/2fRRkFXDJuEtI6HPu829FqQPWEF1B8EBw33n4YPXF4DYPvev0QlVVVaxfvz4qXK1duzZqbqspU6ZwySWXhK+1ys3NZdSoUZ3cchERkbbTRx/pFerqfCYKDRXcuNGvz8nxvVgFBb4uxWkvlSovhzfegNdf5/wXX/SpLTSJ1pgxPlTddZe/nT0bOnCIU21dLW/sfCN8PdaOIzsAuDDlQr5z+XcoyCoge2R2bK5nqQbeoyFc/RkIlbxPBxbRUOAiCxW46CWcc+zfv5+SkhK2bt1KSUkJW7ZsYeXKlezevZv6YCbvQYMGha+1ipzbqv9p50QQERHpvhS4pMeqrISXX/Yh6/nnfZXB+HhYsADuucf3ZE2YcJoHKCsLByyKinxvlnPQty9u8mR/3dXcuT5gpabGZM6rs3Gk+ggrtqygcHMhK7as4OjJo/SL78fCiQt57NLHuHbStYwZFIMhi8fwoSoUsN4FgpzJNOBTNASstLY/nXRd9fX1lJaWRoWqyH8fD026DfTp04dx48aRkpLC7bffHr7eavz48ZrbSkREehUFLulRSkt9D9by5fCnP/kOqKFDfbn2ggJYvNhXWW/W4cPRAWvtWh+w+vWDefPgW9+C/HyYM4fV77xDfn5+xx1YYHv5dpZvXs6zxc/yxs43OFV/ipFJI1k6dSkFWQUszFhIUkIbi24coCFcvYEfLlgP9AFmAg/iw9XF+CGD0qPU1tayc+fOqEAVClXbtm3jZKhXF0hMTGTixIlkZmaSn59PZmZmeElPTychIYGioqJOea2IiIh0FQpc0q055yush67H+vBDvz4zEx54wPdiXXwxJDR3udKhQz5gFRX5kLV2rV/fv78PWE884QPWBRf4KhqdoN7V8/7e98PXY607sA6AaSOn8fBFD1OQVcCclDn0iTvHa8McsIPoCoKbg/v6ARcB38AHrLn4ohfS7VVXV7N9+/YmgaqkpIQdO3ZQF5pgG0hKSiIzM5MpU6Zw3XXXRYWqlJQU+nTAdYkiIiLdmQKXdDvV1b73qrAQnnsO9uzx117NmwdPPeV7srKymhnhd/BgdMBa58MLSUl+5yefbAhYnTgxalVtFa9uf5XC4kKWb17Ovsp99LE+XJp+Kd9b9D2WZC0hc3jmuT14PbCR6AqCe4L7huLnvQrNgTUL0Pyw3VZlZWWzw/5KSkooLS3FORfedsiQIUyaNInZs2ezbNmycKDKyMhg9OjRmstKRESkDRS4pFvYv99fh7V8Obz0Epw44ausX3WVD1jXXAPnNR7edvBgw/DA11+H9cHkT0lJvttr2TIfsGbP7tSABXDg+AGe3/w8hZsLeWnrS5yoPcGgxEEszlxMQVYBV2dezYikEWf/wLX4SYVD4eotoDy4byw+WIWWHECX1nQr5eXlzfZSlZSUsH///qhtk5OTycjIiBr6l5GRQWZmJsOHD1eoEhERaScKXNIlOecrCRYW+mXVKr8uLQ3uvNMPFczPbzTS78CB6IC1YYNfP2CAD1if/rTfadasTg9Yzjk2HdoUrir4zu53cDjSBqdxZ96dFGQVsCB9AX3jz3Io43FgJQ0BayVwIrhvEnADPlzNByagCoJdnHOOAwcONBuoSkpKKC8vj9o+JSWFzMzM8NC/UKDKyMhg8ODBnXQUIiIivZsCl3QZtbV+xF/oeqztwWS5s2f7ehVLlkBubsRQwf37GwJWURF89JFfP2AAXHIJ3HprQ8Bq9iKujnWq/hR/3v1nnt30LIWbCykp83N2zRwzk8fzH6cgq4DcUbln19NQhu+1CgWsvwCn8EEqFz88cD5+qODoWB6NxEp9fT179uxpNlBt3bqVysrK8LZxcXGkp6eTmZnJsmXLwoEqMzOTiRMnqrS6iIhIF6TAJZ2qvBxWrPAB64UX4OhRXxTwyivh61+H666DsWODjfftg/+OCFibNvn1Awf6gHXHHT5gzZzZJQIWQMXJCl7c+iKFxYU8v+V5yqrKSOyTyOUTLucrc7/CkqwlpA5Obf0DlhI9wXAwSpJE4ALga/gerHlAS9UYpcOdOnWKnTt3NhuqGlf+S0hIiKr8Fxmq0tPTSezk3lkRERE5Owpc0uFKShomIH7zTT8pcXIy3HSTvx7riit8JxUffxzdg1Vc7B9g0CAfsO68syFgxXed/8qlx0rDVQVf2/EaNXU1DO8/nOsmX0fB5AIWZSxiUN9WTIrs8BUDIysI7gjuG4gvy74MH7Dm4KsKSqcJVf5rrpdqx44dnDp1Krxt//79w5X/rr322qjKf6mpqar8JyIi0oN0nU+p0mPV1cHKlQ3XY4U6pqZPh0ce8SHrggsgbt9eH7C+UuQD1uagPvmgQTB/Ptx1lw9Y55/fpQKWc47V+1aHr8f64OMPAMgcnskX53yRgqwC5qXNIz7uDG2uw895FQpXb+HnxAIYiQ9WXw5uc9GrtxMcP3682UBVUlLC7t27oyr/DR48mEmTJjFz5kxuvvnmqEIVY8aMUZEKERGRXkIf2aRdVFT4aoKFhfDHP/oprxISYMECuP9+fz3W+IQ9PmD9tAhuK4ItW/zOgwf7gHX33T5g5eV1qYAFUFNfw4slL4ZDVumxUgxjXto8nrryKQqyCsgakXX6D9XVwLs0DA/8M1AR3DceuIqGCoJZqMBFBykvL2+xnPq+ffuith05ciQZGRnMnz8/qpcqIyODESNGKFSJiIiIApfEzu7dDQUvXnsNampg2DC49lofsK7K2cOQD4t879X3i/zYQoAhQ3zAuueehoDVhYZUnTx1kuLDxWw4sIENBzew7sA6Xil5hRNvniApIYlFGYt4Iv8Jrp18LckDklt+oKP4UBUKWO8CNcF92cBnaAhYae15RL2bc46DBw+2WE69rKwsavuUlBQyMjK45pprogJVRkYGQ4boQjkRERE5PQUuOWf19fDBBw3XY61e7ddPmgRf/CIUzD3AvOMvE//ma/DXRbB1q99g6FAfsO67zwes3NwuEbBq6mrYcngLGw5uCIer9QfWU1JWQp2rA6CP9SFzeCaXJV/Gffn3cfmEy+mf0EJluP1EF7hYg594uA9+UuEv4isIXgycwxRb0rL6+nr27t3bYjn1xpX/xo0bR2ZmZnjoX6hQxcSJE0lKSurEIxEREZHuToFLzkpVFbz6qg9Yy5f7uhZxcX6aq79/tJyCIa+TtXk5/KEI/nGb32noUD+W8IEHfMCaMaNTA9ap+lOUlJWw4YAPVBsO+nC1+fBmTtX7wgaGkTk8k+zkbG6adhPZI7PJTs4ma0QWfeP7UlRURP7k/IYHdcB2ogNWcAka/YG5wDfwAWsuMKCDDraHqq+v58CBA+zevZvdu3dTWlrKW2+9xdNPPx2u/FddXR3ePiEhgQkTJpCZmcn8+fOjKv+NHz9elf9ERESk3ShwyRnt2wfPP+97sl5+2YeuQYPgqkuPU3DdB1xd+RvOW/kc/F0wcdawYT5gfelL/nb69E4JWHX1dWwt3xrurQr1XBUfLqamzo/lM4wJwyaQPTKbgskFZCdnkz0ymynnTWm55wp8T9U6oisI7g3uG4ofFvj54HYmvmy7tEp9fT0HDx6ktLQ0KlBF/nvPnj3U1tZG7de3b18mTZrE5MmTufrqq6OuqUpLS1PlPxEREekUClzShHOwfn3DUMFVq/z6cWNPcde8LSyJe54Fm39M3z8GXTjDh/tg9dBDDQErLq7D2lvv6tlevr3JUMBNhzZxsq5hfqP0IenkJOdwdebV4WA1deRUkhJOM2SsEtjWaCmBi/98cUOBixR8z1Xo+qtsoOMOv1txznHo0KEmQSoyUO3Zs4eampqo/RITE0lNTSUtLY2LL76YtLS08M+hf69fv57LLrusk45MREREpHkKXAL4Ahevv94wVHDHDr9+zoSDfDvvDQr2/5jpe1/E9gIjRvhg9dUH/W1OTocErHpXz84jO6OC1YaDG/jo4EdUnaoKb5c2OI3s5GyunHhleCjgtJHTGJg4sJkHBXbTNFSFlgONth8CTIRDlx5izM1jfMCagCoI4sPU4cOHmw1RkesiJ/kFP9wvJSWFtLQ0LrrooiZBKi0tjfPOO4+4M/wfU0VAERER6YoUuHqxsjJfsn35cnjhBcexY0a/hFMsHLWOvx7+n1xX9h+M2b4PzjvPB6v8H/jb7Ox2DVjOOXYf291kKODGgxs5Xns8vN3YQWPJHpnNPbPuISc5JxysBvcdHP2AlcAmmg9U22moFAi+oMU4YCJwfXCbEdxOBIb5zYqLihmTPyb2B99FOecoLy9vsVeqtLSU0tJSqqqqovaLj48Ph6kLLriAG2+8sUmgSk5OPmOYEhEREemuFLh6mc2bQ6XbHW+/DXV1xuj+R7g5bgUF/Joral8lqXoAXJ4P+d/wRS6mTm2XgOWcY2/F3vAQwFDA2nhwIxU1FeHtRg8cTfbIbO46/67wUMBpI6cxrH+Qfurx109tA16mdb1UGcB0moaqNCAh5ofapTnnOHr0aIvXS4VuT5w4EbVfnz59GDt2LGlpacycOZOCgoImQ/2Sk5N17ZSIiIj0agpcPdypU/DOO1D4rGP5H2op3uarN8xI+IhH637HEpYze8BO4i5bAPlXQ/5TPmDFcHiWc459lfuaDAXccGADR08eDW83Mmkk2cnZ3J57e3goYPbIbEYkjfC9VNvxAep1zr6XKrRkEO6l6i1CYep0Q/2OHz8etU9cXBxjx44lNTWV3NxcrrvuuiY9U6NHj1aYEhERETkDBa4e6NgxePEFx/JfV/D8K4mUHe9HArVcxms8yHKWjHiH9Csyfe9V/r/DlCkxC1gHjh9oCFURBSzKq8vD2wzvP5zskdl8KudT4aGA2SOyGXl0ZEOIeofT91INpmkvVWgZR6/ppaqoqGgxRIX+XVFREbWPmTFmzBjS0tLIzs5m8eLFTXqmRo8eTXy83h5ERERE2kqfqHqInTscy392kMLf1lBUPJra+niGU8u1/A9LhrzJVVecYvDCCyH/Qcj6QZsD1qETh5oEqw0HN3DoxKHwNkP7DSV7ZDafnPZJspOzmZE0g5wTOYz4eAS23eADYCvN91LF0XIvVehaqh5eI6GysrLF4X2hdceOHYvax8wYPXo0qampTJ06lUWLFoWDVOh2zJgxJCT0kkQqIiIi0skUuLqp+jrH+7/fxfKfH6Lwz+ex9kg6kEwWm/hy0jMUzD3ARUvHEn/FAph82zkHrPKq8maHAu4/vj+8zaDEQWQnZ/OJSZ9gjs0h70QemUczGbpnKLbOGkJVS71UOUAB0cUpengv1YkTJ057vdTu3bs5cuRIk/1GjRpFWloakyZN4vLLL48KUqmpqYwdO1aT+IqIiIh0IQpc3YVznFi9mVd/vI3CFxN5bkcO++rTiSOVSxLf5R/y3mTJjQlMvuV8mHTfWQeso9VH2XhwY0MBiyBYfVz5cXibAQkDmD14Nncn3M2sfrPIOpZF6sFUBu4ZiG0z30sVWfE7speqgOjrqHpwL1VVVdUZS6OXlZU12S85OZnU1FQmTpzIggULmvRMpaSkKEyJiIiIdDMKXF3Zzp3E//o1fvxwMcvXjeflmvlUk8Ugq2Bx2gYKrtzI1feMY8QFc8EuatVDVpysCAeryF6r0mOlAFi9kVGVQX59PjfX3Ex2RTbph9MZsW8EfXf1xfY3SkihXqpsYAnRoaqH9VLV1NRw5MgRysvLWb16dYuB6vDhw032Pe+880hLSyM9PZ1LLrmkSc9USkoK/fr164SjEhEREZH2pMDVhf3g4Z186bffAiB9wEHuvmQbBbcPZf6ysST2nXvafY/XHOejQx81GQq48+hOkmqSmFA+gSlHp3BlzZV85fhXmFg+kVEHRjFgzwDiTkaUgI/Dl0rPIDpQhZbhdJteqrq6Oo4ePcqRI0fCS3l5eat/blwWPWTEiBHh8DR37twmk/ampKTQv3//Dj5aEREREekKFLi6sPkPzuAeW80D38glZ/pIzEY22aaqtopNhzY1DAM8uIGN+zZysvQkE8onkFGWwaSjk7j/xP1MOjKJsYfGMrBsYPSDDMIHqjxgKU0r/nWRUWzOOSorK88qJEX+3LjARGNxcXEMHTqUoUOHMmzYMIYOHcrUqVPD/45c9u/fHy6VnpSU1EG/ARERERHpbhS4urDcBUNZ5o4wfYZRfaqa4kPF4Z6qkt0lVBRXkLgzkfFl48koz2B++Xy+cOwLpJalkljbkJJcnMPSzAeoS4m+jqoDe6mcc1RXV591z1Lkz/X19ad9jsGDB0eFpvHjx5OXl9ckNDX388CBA7FWXvtWVFTE5MmTY/FrEREREZEeTIGrC3vtL6/xu2d/x4qfrmDA7gHhHqvLj1zO6MrRUdvWDawjLjMOm25NilPYOItZL1Vtbe05DccL/bumpua0j5+UlBQVhEaPHs2UKVOaDUqNQ9OQIUM0Ea+IiIiIdCkdHrjMLA14GliI71d5BXjIOberFfv2A74N3AoMBVYDjzjn3mi0XRzwCHAPMBooBp5wzv0uhofS7gb9ZhA//KcfAlAfV0/V6CrcBEf/hf0hk6hg1Wd4n1b1UtXV1XHs2LFzDk0tXccUkpCQ0CQIjR8/vsXepch/DxkyhL59+7b59yYiIiIi0lV0aOAysyTgT/ji4XcADngSeM3MZjjnjp/hIX4KXAt8DT+z0wPAi2Z2kXNudcR23wYeBh4D/gIsA35jZtc55/4Yy2NqT7Pvnc2a4WvIvSGXuPQ4BiQOCF/HFBWK3j5zz1JoOXbsGM65Fp8zLi6OIUOGRAWhrKys0w7Ji/x3//79Wz0sT0RERESkp+voHq678X0yWc65EgAzWwtswfdGfa+lHc0sF/g08Dnn3L8F614HNgBP4Gd6wsyS8WHru865fwh2f83MMoHvAt0mcBWuLeSJ/34C/puo0FRXV3fa/QYNGhQVhNLT08nNzW31dUxxcXGnfXwREREREWmdjg5cBcDKUNgCcM5tN7O3ges5TeAK9q0F/iti31Nm9p/A182sr3PuJHAV/oqlXzba/5fAz8xsgnNue2wOp33V1tZSXV1Neno6WVlZLYakxtcxxcfr0jwRERERka6goz9pm6bqAAARuElEQVSZZwPPNrN+A/DJVuy73TnX+CKiDfiAlRn8Oxs/ZLGkme0ApgHdInAtXbqUESNGkJ+f39lNERERERGRc9DRY8eGA+XNrC8DhrVh39D9odsjrumFSo23ExERERERaVedMfasuYoNramyYK3ct7XbRd9p9gXgCwCjRo2iqKioFU1qf5WVlV2mLdJA56Xr0TnpmnReuh6dk65J56Xr0TnpmrrjeenowFVO8z1Mw2i+9ypSGTCuhX1D94duh5mZNerlarxdFOfcM8AzALNnz3ZdZRhfUVGRhhR2QTovXY/OSdek89L16Jx0TTovXY/OSdfUHc9LRw8pDF1j1dg0YGMr9p0QlJZvvG8NDddsbQD64qf9bbwdrXgeERERERGRmOjowFUIzDWziaEVZjYeuDi470z7JhBRXMPM4oFbgJeCCoUAL+AD2Gca7X8rsL67VCgUEREREZHur6OHFP4YeBB41sy+gb/W6tvAbuBHoY3MLB3YCjzhnHsCwDm32sz+C/gnM0vAVxq8D5hARLhyzh0ws6eBR82sAvgAH8oux5eeFxERERER6RAdGricc8fN7HLgaeAX+EIWrwIPOecqIzY1oA9Ne+DuBL4DPAkMBdYAi51zHzTa7jGgEvgyMBooBm52zi2P7RGJiIiIiIi0rMOrFDrndgFLz7DNDpqpKuicqwK+Eiyn278OH8qePOeGioiIiIiItFFHX8MlIiIiIiLSayhwiYiIiIiItBMFLhERERERkXaiwCUiIiIiItJOFLhERERERETaiQKXiIiIiIhIO1HgEhERERERaScKXCIiIiIiIu1EgUtERERERKSdKHCJiIiIiIi0E3POdXYbuhwzOwjs7Ox2BM4DDnV2I6QJnZeuR+eka9J56Xp0TromnZeuR+eka+pK5yXdOTfyTBspcHVxZva+c252Z7dDoum8dD06J12TzkvXo3PSNem8dD06J11TdzwvGlIoIiIiIiLSThS4RERERERE2okCV9f3TGc3QJql89L16Jx0TTovXY/OSdek89L16Jx0Td3uvOgaLhERERERkXaiHi4REREREZF2osDVScwszcx+a2ZHzeyYmf3ezMa1ct+/NbOXzOywmTkz+2w7N7dXONdzYmazzewZM9tkZifMbJeZ/crMJnREu3u6NpyXdDN71sx2mlmVmR0ysyIzu7oj2t2TteX9q9HjPBq8h73VHu3sTdr4N8W1sOS1d7t7ura+Vsxsqpn9Jnj/qjKzYjP7cnu2uadrw9+Ux0/zWqnuiLb3ZG18DxtnZv8efP46YWabzexJMxvQ3u1uLQ0p7ARmlgSsAU4C3wAc8CSQBMxwzh0/w/4VwGpgG3A7cKdz7uft2eaeri3nxMz+AbgI+BWwAUgB/gZIBvKcc7vbt/U9VxvPSzbwFaAIKAUGA3cD1wJLnXO/b9fG91Btff+KeJyJwFrgOLDFOXdJ+7S454vB3xQH/Bz4UaO71jrnTsS8wb1EDM7LbOBP+PewnwFHgUnAQOfc99qv5T1XG/+mpAKpjVYPAF4A/uCcu7ldGt0LtPG8DAA+BBKAx4FdwAXAt4BC59wt7dr41nLOaengBfgyUAdkRqybAJwCvtKK/eOC20z8f8rPdvYxdfelLecEGNnMunSgHniis4+tOy9tfa0083jxwG5geWcfW3ddYnVOgBfxH/CLgLc6+7i68xKDvykOeLKzj6OnLW38uxKH/wLvD519HD1paYe/KbcFr59rO/vYuvPSxtfKouAcLGq0/rvB/kmdfXzOOQ0p7CQFwErnXElohXNuO/A2cP2ZdnbO1bdj23qrcz4nzrmDzazbCRzE93bJuWvTa6Ux59wp/LfEtTFrYe/T5nNiZp8GZgKPtksLe5+Yvk4kZtpyXvKBaYB6smIr1q+VO4D9+C+Q5Ny15bwkBrfHGq0/gv/iwmLVyLZQ4Ooc2cD6ZtZvwL/BSseL6Tkxs6n4IYUftbFdvV2bz4uZxZlZvJmNNrO/ASYD/xLDNvY2bTonZjYMeBr4K+dcWYzb1lvF4v3rPjM7GVz/8CczuzR2zeu12nJeQkNs+5nZSjOrNbMDZvZ9M+sf01b2LjH7Wx8MMbwM+FXwZZ6cu7acl1eALcBTZjbNzAaa2eX4XrN/da0c5t7eFLg6x3CgvJn1ZcCwDm6LeDE7J2YWD/wrvofrp21vWq8Wi/Py9/gerY+BvwKWOedejU3zeqW2npP/A2zGXzMksdHWc/JL4H7gSuALwAjgT2aWH6sG9lJtOS9jg9v/Al4CFuLfyz4P/DpWDeyFYvn56zb85+h/b2uj5NzPi3OuGv8FRWgYbgXwKvAc8GBsm3nu4ju7Ab1Yc9VKukS3Zy8Wq3PyQ2Aefkx3c28gcnbael7+CfhPYDS+yMyvzewm59xzsWhcL3VO5yToNbkdmOmCQfYSM+f8OnHO3Rbx45tm9iz+2+YnaehpkXNzrucl9IX4L51z3wz+XWRmfYDvmtk059zGmLSw94nV3/rbgQ+dc2vb2B7xzvXvSj/8FxPJ+BC8C5gDfBN/Ddd9MWzjOVPg6hzl+DTf2DCaT/jS/mJyTszs7/DfEN/hnHspRm3rzdp8XpxzpfgqhQDPmVkR8A/4b7/k7LXlnPwI3+tbamZDg3XxQJ/g5yrn3MmYtbT3iOnfFOdchZk9D9zV1ob1cm05L4eD25cbrX8JXwwgD1DgOnux+ls/B5gCPBSjdvV2bTkvd+Gvecx0zm0N1r1hZkeBZ8zsX51za2LW0nOkIYWdYwN+vGpj09AbaGdp8zkxs8eArwNfds79IoZt683a47XyPr7Cp5ybtpyTqcC9+D+goeViYG7w7y7xTWQ31B6vE6P5b5yl9dpyXjYEt43PQegbfxXPOjexeq3cge890fDO2GjLeZkOlEeErZB3g9upbWxbTChwdY5CYG4wDw0AZjYe/8GjsJPa1Nu16ZyY2Zfww28ec879oJ3a2BvF9LViZnH4IVKN35il9dpyTi5rZlmDH752GfDb2De3V4j162Qwfr66VTFqX2/VlvOyAj8n0eJG668Kbt+PTRN7nTa/VswsEVgG/LG5KsVyTtpyXvYBw8ys8RepFwa3e2LUxrbp7Lr0vXHBT5RXAqzDl7sswH/o2Iaf0DC0XTr+G5RvNtp/AXAT/mJAh79m6Cbgps4+tu66tOWc4N946/F/IOc2WqZ19rF156WN5+Vx4PvALcFr5hb8cJx6fOGMTj++7ri09f2rmccrQvNwddo5AR4Gfgx8Gj8s547gcWqASzv72LrzEoO/9f87WP+3+IImXweqgJ939rF11yUW71/AjcFnrxs7+3h6ytLG97Dx+JLwm4P3r8uArwXr3ieYu7azF13D1Qmcc8eDkpVPA7/ADxF4FXjIOVcZsakBfWjaE/kt/AfIkAeCJbSPnKU2npPFwfrFNP028nX8hxg5B208Lx/gx9cvA4bgvwVbg/8Q+XYHNL9HisH7l8RYG89JMXBDsAzBf0h5G7jLOfcucs5i8Fp5Al9x7X58MP4YX+Xz2+3c9B4rRu9fd+Cr5+k64Bhpy3lxzu0ws7n4L1mfBM4DdgPPAN9xXWTuWgvSoYiIiIiIiMSYvnkUERERERFpJwpcIiIiIiIi7USBS0REREREpJ0ocImIiIiIiLQTBS4REREREZF2osAlIiIiIiLSThS4RETkrJjZT8zMmdn3OrstZ8PMHg/meunVzGx88LuY2NltERHpDRS4RESk1cysP/DJ4MfPmFl8Z7bnLP1voNcHLmA8/nehwCUi0gEUuERE5GzcAAwG/ggkA4s7tzkCYGZ9O7sNIiLSPAUuERE5G3cA5cBngSrg9uY2MrNcM/uDmR02syozKzazRxttc4OZvW1mlWZ2zMzeNbOCiPvjzexRM9tkZifNbK+Z/aOZ9YvYZnwwvPF+M/uemR0wsxNm9pyZjY/YzgX/fCzY3pnZ48F9F5jZb82sNKKtfxv05kW2t8jM3jKzK83sg+B51pvZJ87x+G80s5XB4xwxs9+Y2bgznYCIdiwxsw/N7CRwf3Dfg2b2jpmVBY+50syujdg3H3gt+PHliN9FfsQ2d5vZGjOrNrNDZvZTMxt+pnaJiEjzutNQEBER6URmNha4EnjGOXfQzP4HuNHMhjnnyiO2mwMUASXA/wJKgUnAjIhtvgh8H/gffIirBGbih7uF/BJYAjwF/BmYCnw72GZpo+Y9CqwG7sT3vP0t8JKZZTvnaoGLgHeAnwM/CvYpDW7HBfv+HKgAsoFv4ofcLWv0PBnAPwN/BxwCvgr81symOOdKzuL47wX+L/BvwBPAIOBx4HUzm+Gcq+D0JuN/f98GtgFlwfrxwE+AHfi/8UuA58zsGufcCuAD4AHgX4AvAe8F+20M2vXd4Ji+D3wNSAGeBHLMbJ5zru4M7RIRkcacc1q0aNGiRcsZF+ARwAEXBT9fFfx8b6Pt3gB2A0ktPM5gfLD5/Wme69LgsW9vtP4zwfq84Ofxwc8bgbiI7S4O1t8Vsc4BT57hGA0fVG4F6oEREfcVAbXApIh1yUAd8NdncfwDgaPAzxqtHw/UAA+doY1FQdvyzrBdXHAsLwHPRqzPD34XVzbz/HXANxutD/0uP9HZ/we1aNGipTsuGlIoIiKtdTuwxTn3TvDzK8BeIoYVmlkS/gP6r5xzJ1p4nHn40PHMaZ5rMT58/C4YWhgfFOh4Kbh/fqPtf+ucqw/94Jx7G9+zdNGZDsrMBpvZU2a2FTiJD1W/wIevSY023+Kc2xLxPAeAA/hestYe/0X40PmrRsdWCmxq5tias8M5t7qZY5kVDKfcD5wKjmUhkNWKx1yID2mN27UKONbKdomISCMaUigiImdkZhcA04CnzGxoxF2/Bx40s8nOuc3AMPyH9tJmHiZkRHB7um2SgUT8UMPTPUbI/ma22Y8fEncm/4YfKvlN/NDC48Ac/LC7fo22LaOpkxHbteb4k4PbV1q4v7yF9ZE+brzCzNKAV/G9fV8EduFD17fxwzHPJNSukhbub/w7FxGRVlDgEhGR1rgjuH0kWBq7HfgGPizUc/qgcyi4TQHWt7DNYaAaP7SwOXsb/TyqmW1G4QNUi4ICHNcDjzvn/jli/fTT7XcarTn+w8HtZ4ENzdx/puu3wA/xa2wxMAS42TkXDnxBr1trhNq1iOZD3+Fm1omIyBkocImIyGmZWSK+eMQq4OvNbPI0cJuZ/Y1z7oSZvQXcamZPOOeqmtn+z/ieqy8AL7bwtC/gg90Q59yrrWjmTWb2eGhYoZldDKTiC2WE1AD9G+3XF+iDH3oX6bOteM4mzuL4K4BM59y/n8vztCAUrMLHYmaT8UMcI3vcTga3jX8XL+PD4jjn3MsxbJeISK+mwCUiImdyHX442Vedc0WN7zSzH+Er7uXjS44/DLwOvGNm/4j/sD8RX+Thi865iqBE+g/M7HfAr/ABJA+ods79wDlXZGb/D18B8HvAu/gwMB64BngkGMIYMgj4n6AtI/FVBLcA/xGxzUbgWjN7Ad+Ds9c5t9fMVgJfNbOP8b1vn6N1QxFbcqbjP2ZmXwP+xcxGAivwRTRSgAVAkXPu1+fwvK/ghxD+R/C8Y4Bv4YcWRl6zvTnY7nNmVoYPYMXOua1m9hTwQzPLCo6hGkjDX9/1E+fca4iIyFlR0QwRETmTO/CB6Dct3P//8HNy3QHgnHsP36uyG/gBfpLkrxHRy+Kc+yHwSXwv1K+A3wE3AdsjHvdWfKn0m4Bngd8CD+KDVONrtv4Of+3Rz4H/D1/+/CrnS8KHPIi/Pms5vhz6F4L1nwL+gr9m6+fAPuDLLf42zqCVx/8joABfzOIX+ND1LfwXoacdBnma592Ar+KYDhQCf4XvkXyj0XaH8b+LXHyoeg+YFdz31/jfy3zgv/G/90fwAXULIiJy1sy55oaBi4iIdH3B5Mbbgbudcz/p3NaIiIg0pR4uERERERGRdqLAJSIiIiIi0k40pFBERERERKSdqIdLRERERESknShwiYiIiIiItBMFLhERERERkXaiwCUiIiIiItJOFLhERERERETaiQKXiIiIiIhIO/n/AdQexfXZO8KRAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 1008x576 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "failure_rates = np.zeros((8, 5))\n", "\n", "for r in np.arange(1, 9):\n", " print(r, end=\" \")\n", "\n", " #### True evaluation\n", " # Sort by failure probabilities, subjects with the smallest risk are first.\n", " test.sort_values(by='B_prob_0_logreg', inplace=True, ascending=True)\n", "\n", " to_release = int(round(test.shape[0] * r / 10))\n", "\n", " # Calculate failure rate as the ratio of failures to those who were given a \n", " # positive decision, i.e. those whose probability of negative outcome was \n", " # low enough.\n", " failure_rates[r - 1, 0] = np.sum(\n", " test.result_Y[0:to_release] == 0) / test.shape[0]\n", "\n", " #### Labeled outcomes only\n", " # Sort by failure probabilities, subjects with the smallest risk are first.\n", " test_labeled.sort_values(by='B_prob_0_logreg',\n", " inplace=True,\n", " ascending=True)\n", "\n", " to_release = int(round(test_labeled.shape[0] * r / 10))\n", "\n", " failure_rates[r - 1, 1] = np.sum(\n", " test_labeled.result_Y[0:to_release] == 0) / test_labeled.shape[0]\n", "\n", " #### Human error rate\n", " # Get judges with correct leniency as list\n", " correct_leniency_list = test_labeled.judgeID_J[\n", " test_labeled['acceptanceRate_R'].round(1) == r / 10].values\n", "\n", " # Released are the people they judged and released, T = 1\n", " released = test_labeled[test_labeled.judgeID_J.isin(correct_leniency_list)\n", " & (test_labeled.decision_T == 1)]\n", "\n", " # Get their failure rate, aka ratio of reoffenders to number of people judged in total\n", " failure_rates[r - 1, 2] = np.sum(\n", " released.result_Y == 0) / correct_leniency_list.shape[0]\n", "\n", " #### Contraction, logistic regression\n", " failure_rates[r - 1, 3] = contraction(test_labeled, 'judgeID_J',\n", " 'decision_T', 'result_Y',\n", " 'B_prob_0_logreg',\n", " 'acceptanceRate_R', r / 10)\n", "\n", " #### Causal effect\n", " # Integral of P(Y=0 | T=1, X=x)*P(T=1 | R=r, X=x)*P(X=x) from negative to\n", " # positive infinity.\n", " failure_rates[r - 1, 4] = np.sum((test_labeled.dropna().result_Y == 0) & (\n", " cdf(test_labeled.dropna().X, logreg, 0) < r /\n", " 10)) / test_labeled.dropna().result_Y.shape[0]\n", "\n", "# Error bars TBA\n", "\n", "plt.figure(figsize=(14, 8))\n", "plt.plot(np.arange(.1, .9, .1),\n", " failure_rates[:, 0],\n", " label='True Evaluation',\n", " c='green')\n", "plt.plot(np.arange(0.1, 0.9, .1),\n", " failure_rates[:, 1],\n", " label='Labeled outcomes',\n", " c='black')\n", "plt.plot(np.arange(0.1, 0.9, .1),\n", " failure_rates[:, 2],\n", " label='Human evaluation',\n", " c='red')\n", "plt.plot(np.arange(0.1, 0.9, .1),\n", " failure_rates[:, 3],\n", " label='Contraction, log.',\n", " c='blue')\n", "plt.plot(np.arange(0.1, 0.9, .1),\n", " failure_rates[:, 4],\n", " label='Causal effect',\n", " c='magenta')\n", "\n", "plt.title('Failure rate vs. Acceptance rate')\n", "plt.xlabel('Acceptance rate')\n", "plt.ylabel('Failure rate')\n", "plt.legend()\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Without unobservables\n", "\n", "\n", "#### Predictive model\n", "\n", "First build predictive models to give to cdf function." ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "scrolled": false }, "outputs": [], "source": [ "s_logreg = LogisticRegression(solver=\"lbfgs\")\n", "\n", "s_logreg = s_logreg.fit(s_train_labeled.dropna().X.values.reshape(-1, 1),\n", " s_train_labeled.result_Y.dropna())\n", "\n", "s_test_labeled = s_test_labeled.assign(\n", " pred_Y=s_logreg.predict_proba(s_test_labeled.X.values.reshape(-1, 1))[:, 0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Visual comparison" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1 2 3 4 5 6 7 8 " ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1wAAAHICAYAAABajeu4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4VEXbwOHfk0IKhJIQaqRXARGlSlWaoFIsKAJiQQEVpVjQV2kqRWmKH2AFXlDqKwoCdiJFkCKItCC9lxAggRRIMt8f5yRkN5tkE9KA576uvcLOmTMzp+xynp05c8QYg1JKKaWUUkqp7OeR1w1QSimllFJKqRuVBlxKKaWUUkoplUM04FJKKaWUUkqpHKIBl1JKKaWUUkrlEA24lFJKKaWUUiqHaMCllFJKKaWUUjlEAy6llNtE5F0RMSLSLEVaGzvtrbxsm1JKuSO/fWflVXvy235Q6kamAZdSNxgRqWD/J5rW63xet/FGcTNfsIjIj/a2b83rtmSnm/mYZgcRWSMi8XndDpU79POilHu88roBSqkcEwbMc5Eeew1lTgbmAIeuoQx1nROREKANYIC6IlLPGLMlj5ullLv+AGoCZ/K6IUqpm4MGXErduHYbY0ZkZ4HGmHAgPDvLVNelJ7FGSEwAhgBPAwPyskFKucsYEw3szut2KKVuHjqkUKmbmIj4iMjLIvKLiBwTkcsiclxE5ohIZRf5U93DlUa5Vex8n7u7TESOisheEQkSkU9F5ISIJDrdL1ZVRGalaOsREflYRIq7ub1edt2/iEh5EZknImfstBA7z0MiskBE9otIrIicE5GfReQe530B/Gy/fSfFkM14p3yl7TYeEJE4ETkpIv8VkfJutFdE5JDdRu808uyz21jAfu8nIkNFZLuIXBSRCyKyW0S+FJHS7uwnNzwJnAP+A+wHHhcRn3S2o42ILLO3I1ZEDorIbBGp5ZSvqIi8JyI7RSRGRCJE5E8RGZxGmSvsPLH2Oq+JiJdTvj72cekpIo+JyFa77GMi8oGI+KfIm+ExFZEGIjLVri9KRC6JyGYR6eeijSnPt9L25+qsiESLyG8icnsa+6uaiMwQkcP2OXNCRH4Qkfuc8nmISD8R2WAf64sislZEOqd1LFzUlfyZFpG+IrLN3p+f28tDROQdEdkoIuF2e/4VkfdFpJDztgJNAU9xHMb8llOd3UTkd/vcjBGRv0Skj7ttzmB7HrP3Qbi9nw+KyGIRuStFnlTD4JyO1S1ifQdEiMh5EZkvIsF2vqYistI+9qftc8jTqQ1un3NubM+dIrLIritOrM/7aBEpmIkyvEVkuL0vYkVkh4g8m07+bPsOzMznRakbmfZwKXVzC8bqpfgdWAJEAjWAx4AOInKHMSY3hw/6AqFYPwYtBLyBKACxAq/lgA/wHXAQa1jQ80A7EWlojHH3/rRgYB1wFJgNFAOu2MvGAhex9skpoDTQBfhZRB40xnxn5/sNKAf0AlYCq+z0xKRKRKS6vT0lgGXAInud7kB7EWlsjDmQViONMUZEvgaGAu3sMpKJSGOgEvCZMeaynfy13d7VwI92WgXgIeBT4ERGOyc9ItISqAx8YoyJE5E5wDCgM7DARf7XgHHABeBbu/5bsIYk/gnssPOVtttc2U6fAvgBdeztn5iizIH2+9N2meeAFnY9DYBHXDS9O9Aaa5jtD0B74BXgdhFpb4xJxI1jCvS1110FLAUK2++niUgVY8wrLuoOBNba7Z2FdTy6Ar+JSA1jzOkU23a3Xa4v8D2wCygONAGewj4HRMQDa38/BGwHZmJ9bu4DvhWRAcaYj120JS3/Ae6y614BHLfTWwEvA7/a22CAxsCrQHMRaW6Mibf30Uis3s4QYFSKspP2IyIyCRgIHMA6FrFAW+AzEalujHk1E212ICIvYw173gvMBS4BZYGWWOfHH24UE2Rv5wFgBnAH0A0IEZGhWOfOCuAzoAPWOXQeeM9FWe6cc+ltz8NYn+dYrO+8k0B94A2gpYi0MsZcSaeIJLPstoQBH2F9303E+o5zJdu+A8na50WpG48xRl/60tcN9MK6mDNYQ2ZGuHjVSJHXFyjtoox7gARgulP6u3bZzVKkJd3L81aKtCp22ucuyna5DCv4MVgX0AWclvkAR4CzQHWnZd3t9Sa7sW+87LwG+BgQF3kqukgrjXUButspPdW2Oy3fgHWx1NQpvRkQD3zrRptr23V87WLZFHtZC/t9kP1+gYu8fkDBbDi/Ztp1NLXfV7Xfr3CRtz7WxddeoJTTMm+gRIr3S+xyXnVRTkiKf99m77u1QOEU6QJMs8vokiK9j52W6HTeemBdABrgiUwc0/KAh4vz6me7XSFO6Unn28SU5xvwjvP22sfoJHDZ+Zyxl5dN8e8X7PU/TNkeoBCwyT7vSrnaBqcykz7T54BqLpaXAPxdpI+w13vMKX0NEJ9GXffZ6ywCfFKkF0hxLOpdw7m5Dev+Uj+ndAEC0zvGTsdqtNO6y+30CKB9imUBWEH0GcAzO885oCRW0POv83HECrgMMNCNfdLOzrvOaZ/XAeJcnetk73eg258XfenrRn7pkEKlblzVgeEuXjWSMhhjYo0xqXo8jDG/Yf0a2iZ3murgdXO1tyZJZ6xfzd8xxoSlXGCMmQv8jdUr564YrAsE47zAuOhxsvfRt0B1sYceZkREGmL1tkw3xqx1Km8NVu/F/SmHZblijNmOdSHZKeUwIrGGzj0KHMbqGQLrwidp+5zLiTHGXHKn7WkRkQDgYeBA0jYZY/7F6pFqJyJlnVbpi3XBOtQYc9KpPVeM3bNj79MHgH+welyd2340xdt+gCfwgjEmMkUeA7xpv3V1Liy393tS/kSsXh2Anultt1NbDhmnnglj9fB8ZrerlYvVokh9vs20/9ZPkfYg1oX2p87njF3PsRRvX8C6n/KVlO0xxlzECqJ8sHol3DXdGLPHRZ2njXXPk7Op9t/MfEe8gBWE9DXGxKWo4zLwtv320UyU58plrAv5ZMYS4eb6F7CC4eR1udpzu9EY82OKZVFYwVhxoIyLsq7lnOsNFMQKyE86LXsfK/hz5zsvqZ7hTvv8H+ArVytk13egvV5WPi9K3XB0SKFSN67vjDEZXnCJSAOs4UFNsX7NTvm94OpCKydddA6obI3sv7eJyAgXy32AkiJS1Lg3rHBfWvnsoW1vYg17uQWrFzCl0li9cRlJanO5NNpcEuuCowqQ0dTqc7Ausrpw9SKpLdbQyLFJF/LGmAgR+QV4Qqx7xL7DCsa2GGMS3GhzRrphXQTOcUqfjbW9vYHRKdIb2H9/yqDcpKDjF+eLMxcaYfW+dhURV+d3LCl+VEhhjXOCMWabiEQCdTOoM5mI+GINsesGVMPqUUrJ1X1yYS6ClqTgqWiKNLf2l4gUxhpOewD4j4g4Zylp/3W1H9KyKZ36HgWeA26325vyx9rM3BfYCCugGeCizUn3AGamzc7mYwWb20VkPtaQuHVpBIxp2WOMcf7BIing+dtF/qRlZbB64VO6lnMu6fujhbi+1+8y7u2rpHpWu1i2BmuYqoNs/A7M6udFqRuOBlxK3cTs+3GShnb8iDX0Kxqrp+RpXP9qm5NOp5EeaP9NdXHgpCDW/RRZqse+MX4j1navwrpX4wLWr/L3AM25emGYkaQ2d7VfaXHn5ve5WPdVPM7VgKuH/dc5+OmKdU9Vd67e93RGRCYC41z16mVC0v53rnM+MAlrMo2UAVcR4FLKnqg0FLH/Hk83lyUQK1Adlk4eV/s0rSnAT2P1nrrrW6wL0Z1Y99ecwfr8VMK6l8XV+XHBRVpSL0zKCRfc3Q/F7L8VsXqt0+L2xAqk/Zl4A+uYnsLqzTmKNRTNA6tXyt3PA1jtFrKvzc5GYw077ofVtreBGBGZCwxx88cYV+dqvBvLXE1qcy3nXNL3x6B08rjzvLMiWD9kper1xjqmDrL5OxCy9nlR6oajAZdSN7c3sS4UmhljNqRcICI9XK/ilqReCk8Xywqns15awUDShc7dxpjQrDbKjXr6YN1k/5ox5oOUC+zhcs0zUUdSm58yxszMdAtTMMYcFZFVWMP2imMFxV2Av40xO5zyXgReA16zJ+1oDbwEjMGaRGBKVtogItWwekEBwlz0UABUtSdRSPo1/TxQQUQKZxB0JV0IuxPgR2JNcFLQuDdhQJLgNNJL4PpCOhURaYJ18fg90Dllb5z9eemVifa44u5+SGrv78aYVtdYZ5JUnwmxZr58E6vn5vaUw/Lsz8PbzutkIAo4Z4ypcA3tTJP9Y8J0YLqIlMKaLOMZrB+PimJNMJKbruWcS1pe0Rhz8BracAEoLyJ+LoKuki7yZ9t3YC58XpS6bug9XErd3CoDp1wEW2WwJt/IqqQLR+d7egDqZaG8pPY1zlpz3JY0Ff7SlIliRRdNXORPGqbnKrDM7jZ/hfUjWTesYMvV0D4HxpgwY8xU4F47qdM11J/Uu/Ub8IWL11KnfGD9Ug7Wjfvp2YR1wd/ann0vPRuwfiS4071mJ0v1KAMRuQ3rB4CUQ8XSO6ZJ58cyF0MfmzpnzgK39pcx5hxWb3SdzEwxngUlsIaA/eHiHqi0tjcB+4kGLpZtwBpim+M958aYk8aY+Vjn/n7gPnGavj0XuHvOuZJd3x9J9bgKlFw93iM7vwNz+vOi1HVDAy6lbm6HgWC79wKwns2FNYNflnvA7Yuzg1hTF5dPUXZJrk5skBnfYA2zelNE6jsvFBF/EWmUerVMO2z/db4YeAWoRWpJF6GuAss/gL+APiLS0Xmh/WycdJ9n5mQh1lCuHvYrEWuoYcoyS4qIq0Ak6ZfsmBR5/UWkhojcklHF9oXqE1hDgbobY/o4v7CmYj8HPJJiIpBP7HaOtXscUpbpJSIlIHkyiKVYMxC6euZWyv071S5zqnOZdt5SIuLq3paO4vhMNw+uTuWdMnBN75i6PD9EpClWT8q1Wow1zOs5SfHcqBT1pAxUpmANO/tYXDwDTURqi5vPp0tH0oyJd9r34qRsh6tp0MHafx64vjdnCtaQwi/s+9Cc21zJ6fsi6dlY7gydQ0TauwiqCmIFjZez6T7GzHD3nHPlS6we6ffF9TMRi6Zxb5ezpHpGpjxPRKQOV4clp5Sd34E5/XlR6rqhQwqVurl9DNwNrLNvMk/EmnXMA2vGuFuvoezJ9mu9iCzCmvK6E9bN25UyU5AxJkZEHsG6h+RPEfkJ654Ab6z7WFpi3W9w/zW0F6zn1byK9YyY1lhBXtJsg8sB58BpJ9b9GD1EJNbOn2iMed8YY0TkMazn0yyzhwRuxdrH5bF+cT6FNe17howxF0RkGdY9WolAqNOsdWDd4L5RRLbadZ3AGp7WFStY+ihF3ruw7t/7lYxnmmtvl/OdSfHMKKf2xdn3yjyPFXzNMMZsFpE3se4/2y0i32BdxJe16xyDdQ6Cdd9NbeADEXkI6zzxwbrIq4MdNBpjtoj1vKUPgT0ishwruA/EmqK+OdZzu3Y7NXEF1nOE5tttaIfV2/oLjhe/aR5TrCB6C9DTDjo2Y/2K3wlrWvsHM9iP6bLP8+5YQ7BWicj3dnuCsHo6/sWaJRKs/XYXVo/iPSKyEut8KoMVuNbFOm/Dr6E98SLyCTAA2GLv60CsGSVDsSZ8cbYSqwd2oYj8iBWwrTLG/GGMWSIiH2B9xvban+OjWD1pNbEmiuiGNbU7XP1R2K2AC/gfECEif9hlFMT6TiiBNY19bnP3nEvFGHNCRHph/aiy0973e7G2qRLW7H6fAy9mUM5P9ueyO/C3iCzBGl7ZHevzf5/TKtn2HUgOf16Uuq6YfDA3vb70pa/se3H1OVwZPuPJzt8d6+I8Guui4EusC5RUz9PBzedwpVg2BGs4z2VgD9a9REnPbXL1HK69GbS1PFYPx36s3p4IrCnTPwTqu7GtSc/a+SWdPHdiBSHn7dcKOy3Vttv5m9n76pK93HmfBWM9kHcXVg9TpP3vz7HuScvMsX2Qq88KesrF8mJYF5ar7WMZh/Ur8yKggVPepOOW5r5IkXchTs+3SiNffTvfaqf0e7EmZTmHNYvgAeC/QE2nfIH2vvrXbvtZYD3wsou6mmJdYCf1wpzEetbQWzg+CyvpmUg9sabR3mq34TgwHtfPmErzmAKl7LafwPrMbLLLTe/ZTqn2cQbLamLN/HjC3rbjWBe7HZzyCdZ9MKH2uRqLFWj8gDUlf6ptc1GXy/M6xXIf+5zaa5e/F2vCEj9X7cd6ptYkrM9zvPM+sfPch/W5Cre375i9DYOBoBT57rDXn+nm5+MFrGD1kN3WU3a5j6Rx7rt7rNL7jnP1nZipcy6D8mvb59sRe1+dwQpcxuD0TMJ09ou3fQyT9stO4Nm06iUbvwPJxOdFX/q6kV9izLVMWKWUUkrlXyLSB+uZP72MMRkN41L5iIi8hBW81TLGOPdY5lt6zimlnOk9XEoppZTKj5oBi6+nYEsppVzRe7iUUkople8YY7rldRuUUio7aA+XUkoppZRSSuUQvYdLKaWUUkoppXKIDil0oXjx4qZChQp53QwALl26RMGCBfO6GcqJHpf8R49J/qTHJf/RY5I/6XHJf/SY5E/56bhs3rw53BgTnFE+DbhcqFChAps2bcrrZgAQGhpKq1at8roZyokel/xHj0n+pMcl/9Fjkj/pccl/9JjkT/npuIjIoYxz6T1cSimllFJKKZVjNOBSSimllFJKqRyiAZdSSimllFJK5RANuJRSSimllFIqh2jApZRSSimllFI5RAMupZRSSimllMohOi18FkVGRnL69GmuXLmSo/UUKVKEXbt25WgdKvP0uLjH29ubEiVKULhw4bxuilJKKaVUntCAKwsiIyM5deoUZcuWxc/PDxHJsbqioqIICAjIsfJV1uhxyZgxhpiYGI4dOwagQZdSSimlbko6pDALTp8+TdmyZfH398/RYEup65mI4O/vT9myZTl9+nReN0cppZRSKk9owJUFV65cwc/PL6+bodR1wc/PL8eH3iqllFJK5VcacGWR9mwp5R79rCillFLqZqYBl1JKKaWUUkrlkFwPuETkFhFZJCIXRCRSRL4RkXJZKOcNETEissbFMg97+UERiRWRv0XkoezZAqWUUkoppZRyT64GXCLiD/wG1AB6A72AqsBKESmYiXIqAf8B0roT/x1gBPAx0AFYDywUkY5ZbrxSSimllFJKZVJu93A9C1QCuhhjvjXGfAd0AsoDfTNRzjTgKyDVg5BEpATwCjDWGDPeGLPSGNMXWAmMvdYNuNGtW7eObt26UaZMGQoUKEBQUBBt27Zl1qxZJCQkZHt9oaGhjBgxgsTExGwv2x2TJ0/mm2++SZU+YsQIvfdIKaWUUiof2XgwAmNMXjcj03I74OoErDfG7E1KMMYcANYCnd0pQEQeB+4A3kgjS3ugADDHKX0OUEdEKma20TeLyZMn07RpUyIiIhg3bhy//PILX375JdWqVaN///58//332V5naGgoI0eOzHcBV58+fVi3bl0etEgppZRSSqUUFXuFIQv+5pHp69h8Kvs7AHJabj/4uBbwnYv0HcAjGa0sIsWAScBrxpiINHogagFxwF6n9B3231uBA+42+GaxatUqBg8ezIsvvshHH33ksKxz584MHjyYS5cu5VHrLFeuXMHLyytXep5CQkIICQnJ8XqUUkoppVTaNh86x8D5Wzh2LoaX7qnCbV7H87pJmSa52S0nIpeBicaYoU7p7wJDjTHpBoAi8jlQHWhhjDEiEgp4GWOapcjzKdDJGFPKad0qwL/AE8aY2S7Kfg54DqBkyZJ3zps3L812FClShCpVqqS7rdklISEBT0/PHK/noYceYvPmzezevRtfX990827atIlRo0axceNGjDE0aNCA4cOHU79+/eQ8/fr1IzQ0lPnz5/Paa6+xdetWSpcuzYABA3jmmWcAGD16NGPHph7lGRkZyaFDh6hTpw4TJkzg8OHDzJ8/n1OnTnHw4EESEhJ45513WLVqFcePHycwMJAmTZrw7rvvUqZMGYey/vnnH8aMGcPatWuJiYkhJCSEHj16MGTIEGrXrs3hw4cd8j/++ONMnz49uW2RkZEO7Ro5ciRLly4lIiKCcuXK8fTTT/PCCy8kB4GrV6/mvvvuY968efz666/873//Q0Ro3bo148ePp2jRopk7MDeIvXv3cuHChRyt4+LFixQqVChH61CZp8cl/9Fjkj/pccl/9JjkrYREw5J9V1i6/wqBvkLf23yoWswzXx2Xu+++e7Mxpn5G+XK7hwvAVYSXYZeFiDQHngDuMOlHiZKVOowxnwKfAtSvX9+0atUqzby7du0iICDAIW3k0h3sPB6ZxhpZl5mA69YyhRn+QK0s1bFmzRq6dOlCcHBwunm3bdtGx44dufXWW5k5cyYiwtixY+nYsSPr16+nbt26AHh7exMVFcWzzz7LwIEDGTlyJDNmzGDQoEHUrVuXu+++mxdeeIEzZ87wxRdfsGbNmuTtDAgISP4gTZgwgQYNGvDZZ5+RkJBAcHAwhw8fJiAggHHjxhEcHMzx48eZMGEC7du3dwgYN2zYQJs2bahSpQqTJ08mJCSEf//9l23bthEQEMC3335Lx44dqVu3LiNGjAAgODiYgIAAfHx8ktsCkJiYSMeOHfnrr78YNWoUlStXZuXKlbz55ptERUUxevRoAPz9/QEYOnQo999/P3PnziUsLIzXXnsNX19fZs2alenjcyPw9fWlXr16OVpHaGgo6X1uVd7Q45L/6DHJn/S45D96TPLO4bPRDJy/hb8OR/PgHWUZ2akWAb7ewPV5XHI74DoHBLpIL2YvS88nwBfAURFJ6ibwAjzt9zHGmDggAigmIuIUmBWz/0ZkufU3qPDwcGJiYihfvnyGeUeNGoWPjw+//vprcm9N27ZtqVChAiNHjnS4HyoqKoqpU6dy9913A9CiRQt++ukn5s6dy9133+0wbK9Ro0Z4eaU+HUuWLMnixYsdhhFWr16dDz/8MPl9QkICTZs2pVy5cqxYsYKuXbsC8MorrxAUFMT69euTA6F77rkneb169erh4+ND8eLFady4cbrbvXz5ctasWcOMGTN48skniYqKokuXLly6dIkJEyYwePBgihcvnpy/RYsWTJkyBYB27doRFhbG559/nhykKqWUUkopR8YY/vfXMYZ/tx0PD2FK93o8ULdMxivmc7kdcO3AusfK2a3AzgzWrWm/+rlYdg4YBEy26/ABKuN4H9et9t+M6smSrPQsuSMqKipVb1peWrVqFffff7/D0LjChQvTqVMnli5d6pDX398/OdgC8PHxoWrVqqmG8aWnS5cuLgOUadOmMX36dPbt2+dwb1lYWBgA0dHRrF27lldffTU52LoWq1atwsPDg+7duzuk9+zZky+++IJ169bxwAMPJKffd999Dvnq1KlDXFwcp06dolQph9GuSimllFI3vfPRl/nP4u0s++cEjSoGMvHR2ylb1C+vm5UtcjvgWgKMF5FKxpj9ACJSAWgKDE1nPYC7XaRNBjyBAVwNrn4ALgM9gJEp8vYEttuzIqoUgoKC8PPz49ChQxnmjYiIoHTp0qnSS5Uqxblzjp2UxYoVS5XPx8eH2NhYt9vmqq4pU6bw0ksvMXjwYD744AOKFStGYmIijRs3Ti773LlzJCYmZtvEFxEREQQGBiYPNUySFDxFRDh2nAYGOnbkJq2XmW1XSimllLoZ/LEvnMHz/yb8Yhyv3Vudvi0q4+lx44wIyu2A6zPgReA7EXkL616rd4AjWEMGARCR8sA+YJQxZhSAMSbUuTAROY81aUbyMmPMaRGZBLwhIlHAX8CjwD24OfX8zcbLy4tWrVrx888/ExcXlyqoSCkwMJCTJ0+mSj958mSqICM7uOrdmjdvHq1bt2bChAnJaQcOOMbRxYoVw8PDg2PHjmVLOwIDA4mIiODy5csUKFAgOT1pXwQFBWVLPUoppZRSN4vL8YlM+CmMT1fvp2JQQRY/35Q6IUXyulnZLlefw2WMuYQV+OwBZmM9vPgAcI8x5mKKrILVc5XV9v0HeBd4GfgRqwetmzFmabpr3cSGDh3K2bNnefXVV10uP3DgANu2baNly5YsW7aMqKio5GVRUVEsXbqUli1bZrrepOAuJibG7XWio6Px9vZ2SJsxY4bDe39/f5o1a8acOXPSLdvHx8etulu2bEliYiILFy50SP/qq68oUKBAhveAKaWUUkqpq/aejqLr1LV8smo/3RuW4/uXmt2QwRbkwSyFxpjDwEMZ5DmIGzMXGmNapZGegBVwvZv5Ft6cWrRowcSJExk8eDC7du3iySefpFy5cpw7d45ff/2Vzz//nK+//pq3336b77//ntatW/P6668jIowbN47o6GiGDRuW6XpvvdW6tW7ChAl06NABT09Ph+nlXbn33nsZN24co0ePpmHDhvz2228sWrQoVb7x48fTsmVLmjRpwpAhQwgJCWH//v1s3bo1eUKLW2+9ldWrV/P9999TqlQpihcvToUKFVKV1aFDB5o1a0a/fv04c+YMFStWJDQ0lM8//5w33njDYcIMpZRSSinlmjGGOX8e5r1lO/Ev4MWnve6kXa0b+/72vJgWXuVTAwcOpGHDhkyaNIlXXnmF8PBwAgICqF+/Pp988gkPPPAAHh4ehIaG8p///IfevXtjjKFx48b8/vvvyVPCZ8b999/P888/z9SpUxk1ahTGGDJ6NtywYcM4f/48kyZNIjY2lpYtW/Ljjz9SqVIlh3wNGjRg7dq1DBs2jAEDBhAXF0f58uV56qmnkvOMGTOGZ599lm7duhETE0Pv3r2ZOXNmqjo9PDxYtmwZb775JuPGjePs2bNUqFCBiRMnMnDgwExvt1JKKaXUzSb8YhyvL9rGr7tP06JaMOMfvo0ShdN//uuNIFcffHy9qF+/vtm0aVOay3ft2kXNmjVzpS35bZZCZdHjkjm58Zm5Hp/LcTPQ45L/6DHJn/S45D96TLLXyrDTvLrwbyJj43mjQw16N6mARxYmxshPx0VE8u2Dj5VSSimllFI3gdgrCYxZvotZ6w5Ro1QAX/VpTPVSN9eP1hpwKaWUUkoppbLdjuMXGDhvK/+evsgzzSryavvq+Hp32K9wAAAgAElEQVR75nWzcp0GXEoppZRSSqlsk5ho+GLNAT74MYyi/t789+mGtKgWnNfNyjMacCmllFJKKaWyxckLsQxZuJW1e8/S7taSjH3oNgILFsh4xRuYBlxKKaWUUkqpa7binxO8sfgf4q4kMvbBOjza4BZEMj8xxo1GAy6llFJKKaVUll2Ki2fk0h0s2HSU20KKMPnR26kUXCivm5VvaMCllFJKKaWUypKtR84zcN4WDkVE88LdlRnYphrenh553ax8RQMupZRSSimlVKYkJBqmrtzL5F//pVRhX+Y/14SGFQPzuln5kgZcSimllFJKKbcdiYhm0PytbDp0js63l2FU59oU8fPO62blWxpwKaWUUkoppTJkjOHbrccY9u0OACY/ejtd6pXN41blfzrAUjlYt24d3bp1o0yZMhQoUICgoCDatm3LrFmzSEhIyOvmpengwYOICDNnzszrpiillFJK3XAuxFzhpXlbGTT/b2qUDmD5y8012HKT9nCpZJMnT2bw4MHcc889jBs3jvLly3Pu3Dl++ukn+vfvT9GiRencuXNeN1MppZRSSuWiP/efZfCCvzkZGcsr7arRv1UVPD10und3acClAFi1ahWDBw/mxRdf5KOPPnJY1rlzZwYPHsylS5fyqHVKKaWUUiq3XY5PZPIve5j2+z7KB/rzv/53cfstRfO6WdcdHVKoABg7diyBgYG8//77LpdXrlyZ2267jTNnztC3b1+qVauGv78/t9xyC48//jjHjh1zyP/kk09SoUKFVOW0atWKVq1aJb+/ePEiAwYMoFy5cvj4+FCyZEnatGnD7t27k/N8/PHHNGnShMDAQIoWLUrjxo1ZtmxZtmy3UkoppZRKbd+Zizw07Q+mhu6j2523sOyl5hpsZZH2cGWXFUPh5D/ZXqxfQjx4unmYStWBDmMzXUdCQgKhoaF06dIFX1/fdPNGRETg6+vLmDFjCA4O5vjx40yYMIGmTZuye/fuDNd3NmjQIJYsWcLo0aOpWrUqZ8+eZe3atZw/fz45z8GDB+nTpw8VKlQgPj6epUuXcv/997N8+XI6dOiQ6e1VSimllFKuGWOYt/EIo5buxMfbg+k97+De2qXzulnXNQ24FOHh4cTExFC+fPkM81avXp0PP/ww+X1CQgJNmzalXLlyrFixgq5du2aq7nXr1tGjRw+eeeaZ5DTnMsaPH5/878TERFq3bs2ePXuYPn26BlxKKaWUUtkk4tJlXv/fNn7eeYpmVYoz/pG6lCqSuR/TVWoacGWXLPQsuSMmKoqAgIAcKTurpk2bxvTp09m3b5/DfV1hYWGZLqtBgwbMnDmT4sWL065dO+rVq4enp6dDns2bNzN8+HA2btzImTNnMMYAVvCnlFJKKaWu3ao9Zxiy8G8uRF/hrftq8nTTinjoxBjZQu/hUgQFBeHn58ehQ4cyzDtlyhSef/552rRpwzfffMOGDRtYv349ALGxsZmue8qUKfTt25cvv/ySBg0aUKJECQYNGkR0dDQAR44coXXr1kRERDBlyhT++OMPNm7cyL333pul+pRSSiml1FWxVxIYuXQHT3y5gWL+3nz7QlP6NK+kwVY20h4uhZeXF61ateLnn38mLi4OHx+fNPPOmzeP1q1bM2HChOS0AwcOpMrn6+vL5cuXU6WfPXuWoKCg5PeFChVizJgxjBkzhkOHDrFo0SKGDh1KgQIFGDduHD/88AMXLlxgwYIFhISEJK+XFJAppZRSSqms2X0ykpfnbiXsVBRP3lWBoR1q4OvtmfGKKlO0h0sBMHToUM6ePcurr77qcvmBAwfYtm0b0dHReHt7OyybMWNGqvzly5fn1KlThIeHJ6ft27cv3WGH5cuXZ8iQIdSpU4ft27cDVwOrlHXu2bOHtWvXur9xSimllFIqWWKi4cs1B+j08VrOXrrMjKcaMKJTLQ22coj2cCkAWrRowcSJExk8eDC7du3iySefpFy5cpw7d45ff/2Vzz//nK+//pp7772XcePGMXr0aBo2bMhvv/3GokWLUpX3yCOP8Pbbb9OjRw8GDx5MeHg4Y8aMoXjx4g75mjRpQqdOnahTpw6FChXi999/5++//6Z3794AtGnTBi8vL5544gmGDBnCiRMnGD58OOXKlSMxMTFX9o1SSiml1I3idGQsQxb+zep/w2lTswRjH7qN4oXSHt2krp0GXCrZwIEDadiwIZMmTeKVV14hPDycgIAA6tevzyeffMIDDzxAu3btOH/+PJMmTSI2NpaWLVvy448/UqlSJYeyqlSpwqJFi3jrrbfo0qUL1apVY+LEiYwePdohX4sWLViwYAFjx44lPj6eSpUqMWnSJF566SUAatWqxVdffcWwYcPo1KkTlStXZuzYsfzwww+Ehobm1q5RSimllLru/bTjJK//bxsxVxJ4t0ttejQqh4jeq5XTNOBSDu666y7uuuuuNJf7+fkxbdo0pk2b5pCeNHNgSl26dKFLly4Oae3atXN4P27cOMaNG5dum7p160a3bt0c0h577DGH9xUqVHDZBqWUUkqpm1305Xje+X4XczccplaZwnz4WD2qlCiU1826aWjApZRSSiml1A1q29HzDJy3lQNnL9GvZWUGt61GAS+dxiE3acCllFJKKaXUDSYh0TD9931M+nkPwQE+fN2nMU0qB2W8osp2GnAppZRSSil1Azl2PoZB87ey4UAE991WmtFd6lDE3zvjFVWO0IBLKaWUUkqpG8R3W4/x1rfbSUw0THikLg/eUVYnxshjGnAppZRSSil1nYuMvcLw73aweMsx7ihXlMmP1qNckH9eN0uhAZdSSimllFLXtY0HIxg4bysnI2MZ2KYqL95dBS9PnRgjv9CASymllFJKqevQlYREPvr1X/5v5V5CivmzoG8T7ixfLK+bpZzkeugrIreIyCIRuSAikSLyjYiUc2O98iLynYgcEpEYEQkXkVAR6eAir0njdXvObJVSSimllFK552D4JR6evo4pv+3lwTtCWP5ycw228qlc7eESEX/gNyAO6A0Y4F1gpYjcZoy5lM7qhYBw4C3gKFAYeBZYLiIPGWO+cco/E/jEKW3PNW+EUkoppZRSecQYw8JNRxmxdAfenh783+N3cN9tpfO6WSoduT2k8FmgElDdGLMXQES2Af8CfYGJaa1ojNkBPJMyTUSWAQeApwDngOuYMWZ99jVdKaWUUkqpvHPu0mXeXPwPK7afpEmlICY+WpfSRfzyulkqA7k9pLATsD4p2AIwxhwA1gKdM1uYMSYeuABcybYW3mREJMNXhQoV8rqZeWb69OmICCdPnsyxOsaPH8+SJUtSpQ8dOhRfX98cq1cppZRS1481/4Zz74er+GXXKd7oUIOv+jTSYOs6kds9XLWA71yk7wAecacAEfHAChSLY/WYVQNedpG1v4i8CiQA64HhxpjVWWn0jWzdunUO77t27UrdunUZMWJEcpqPj08ut+rmMn78eO6//346derkkP7CCy/w4IMP5lGrlFJKKZUfxMUnMP7HMD5bfYDKwQX5oncDapctktfNyj2xF+DoRji8Hg6vxz/40bxuUabldsAVCJxzkR4BuHuX3/vAEPvfF4HHjDG/OuWZA3wPHAfKA68Cv4lIW2NMqKtCReQ54DmAkiVLEhrqMhsARYoUISoqys3mXpuEhIQcratWrVoO7wsUKECRIkVSpafVhri4uBs6IIuNjQXg4sWLDvsgO4+LMYYrV66kKq9o0aIULVo01861nBQbG5vuZyo7XLx4McfrUJmnxyX/0WOSP+lxyX/ywzE5FpXI9G1xHIlK5J5yXjxa3RD+7xZC/83TZuUon9gzFLmwK/lV8NJBBIPBg4uFKnLF90yeH5dMM8bk2gu4DIxxkf4eEO9mGSFAfeB+YAEQC9yfwToBwCFgjTt13HnnnSY9O3fuTHd5doqMjMy1uowxpnz58qZHjx4ulz366KOmcuXK5vfffzeNGjUyvr6+5rXXXjMxMTEGMGPGjHHIv2vXLgOYuXPnOqT//PPPpmXLlqZgwYKmYMGCpmPHjm7v04zWfeqpp0xISIhJSEhwWO/SpUumUKFC5vXXXzfGGHPx4kUzYMAAU7NmTePv729Kly5tOnfubPbs2eOw3rRp0wxgTpw4YYwxyds6YsSIDLf1jz/+MF26dDFly5Y1vr6+pnr16mbYsGEmNjY2OU/JkiUN1uQxya++ffsaY4x5/fXXjY+Pj0M9586dM/369TMlS5Y03t7epnr16mbKlCkOeVasWGEAs2LFCvPcc8+ZYsWKmeDgYNO7d29z4cIFt/ZzdsuNz8zKlStzvA6VeXpc8h89JvmTHpf8Jy+PSWJiopm59oCp9p/l5o5RP5lfdp7Ms7bkqIR4Y05sM+bPT41Z+LQxE241Znhh6/VeGWNmdTJm5Rhj9q00JjbKGJO/PivAJuNGbJHbPVznsHq5nBXDdc9XKsaYo1izFAJ8LyKhwHisHq201omyJ9h4Jq0812rchnHsjtid7eUmJCTg6enpVt4agTV4veHr2d6GlMLDw+nVqxevv/46t956KwULFszU+t988w2PPPIIXbt25euvvyYhIYExY8bQokULtm3bRunSac+y4866TzzxBDNmzCA0NJR77rkned3Fixdz8eJFevXqBUB0dDRxcXGMGDGCkiVLEh4ezscff0yTJk0ICwsjKCgoazsohYMHD9KgQQOeeeYZChUqxD///MOoUaM4dOgQM2fOBGD58uW0bduWZs2a8cYbbwBWD6sr8fHxtG/fnp07d/Luu+9So0YNvvvuOwYMGEBERATDhg1zyP/888/TpUsX5s+fz/bt2xk6dCg+Pj588onz5J1KKaWUyi/ORMXx2qK/WRl2hlbVg/ng4boEB9wgo4kuX4Jjm+Hwn3B4nTVUMC7SWhZQGso1hnIvwS2NoGRt8LwxHhmc21uxA+s+Lme3AjuzWOYmYKAb+QSrB0FdgwsXLjB//nzat2+fnJY07C4jiYmJvPzyy7Rv355FixYlp7ds2ZJKlSrx4YcfMnbs2Gtat2XLlpQrV47Zs2c7BFyzZ8+mXr16yUMlg4ODHQKPhIQE2rVrR3BwMAsWLKB///7u7ZB0dO/ePfnfxhiaNWuGn58f/fr1Y8qUKQQEBHDHHXfg7e1NcHAwjRs3Tre8b7/9lg0bNjB37lwee+wxANq3b09kZCRjx47l5ZdfpkiRq2O627Zty8SJE5P/vWPHDubOnasBl1JKKZVP/brrFK8t2sbFuHhGdqrFE03KIyJ53aysu3g6+d4rDq+Dk9sgMR4QKFET6jwMtzS2Aq2i5eB63tZ05HbAtQQYLyKVjDH7AUSkAtAUGJrZwuwJNJoB+zLIVxi4D/gzs3W4K6d6lqKioggICMiRsrPC39/fIdjKjB07dnD06FHGjRtHfHx8cnrhwoVp0KABq1atuuZ1RYQePXrw8ccfM3XqVPz8/Dh58iS//PIL48ePdyjzq6++YvLkyezZs4fIyMjk9LCwsCxtn7Nz587x7rvvsnjxYo4ePcqVK1cn09y3bx+3356553CvWrWKAgUK8MgjjvPL9OzZk6+++ooNGzbQtm3b5PT77rvPIV+dOnX44osvOH/+PEWLFs3CFimllFIqJ8RcTuC95TuZs/4wNUoFMPe5xlQrmX+u/9xiDITvuRpgHVkPEfutZV6+UPZOuOslKNcEbmkAfjfPQ5pzO+D6DHgR+E5E3sLqcXoHOEKKhxSLSHmsIGqUMWaUnTYCazjiWuAkUApriGBD4PEU674CVAdWcnXSjFfs/D1ydOtuAqVKlcryuqdPnwagR48e9OiR+lBUq1YtW9Z94oknGDNmDN9++y3du3fn66+/Bhx7nBYuXEjPnj3p06cPo0aNIigoCA8PD9q0aeN2j11Gevbsybp16xg5ciR169bF39+f1atXM3jw4CzVERERQYkSJVINMU06JhEREQ7pgYGOo3eTJjfJru1TSiml1LXbfuwCL8/bwr4zl3i2eUVeaV8dHy/3bifJU/FxcHyr1XN15E8ryIqxr0X8g6zA6s6nrL+l64JXgbxtbx7K1YDLGHNJRO4BJgGzsYb5/QoMNMZcTJFVAE8cnxP2F9bQwceAIlhB199Ac2PM2hT5woCu9qsIEIkVpD1jjNmQE9t1M3HVre3t7Y2npyeXL192SD979qzD+6T7oiZMmECLFi1SlZPeM6cys26NGjWoX78+c+bMoXv37syZM4d27do53Bs1b948atWqxWeffZacFh0dzYULF9JsA7i/rVFRUaxYsYL333+fAQMGJKdv3Lgx3fLTExgYyJkzZ0hMTMTD4+pHI+kZYdlx35lSSimlckdiouHT1fuZ8FMYgQULMOeZRjSrWjyvm5W26Ag4ssHquTq8Ho79BQlx1rKgKlC9o30PVmPr/Q06PDArcv1ONGPMYeChDPIcxAq6UqYtwRqSmFH5S4Gl19BElUmenp6ULVuW7du3O6QvW7bM4X2dOnUoU6YMu3btYvDgwZmqI7Pr9urViyFDhvDbb7+xZcsW5s6d67A8Ojoab29vh7SkiSzSk7Stu3btckh33tbo6GiMMQ51GGOYNWtWqjJ9fHyIiYnJsO6WLVsyZcoUFi9ezEMPXf0IffXVV/j5+dGgQYMMy1BKKaVU3jt+PoYhC/5m3f6zdKhditFd61CsYD7qATIGzh28OjTw8Ho4Y08O5+EFpW+Hhs/awwMbQaHgPG1ufndjTP2h8txjjz3GxIkTGTduHPXr12flypUsXLjQIY+npycff/wxjzzyCNHR0Tz00EMEBQVx8uRJ1q5dS7Vq1XjxxRddlp/Zdbt3786QIUN44oknCAgIoHPnzg7l3XvvvQwcOJDXX3+ddu3a8eeffzJt2jQKFSqULdtasmRJbr/9dsaOHUvx4sUpWrQon376KeHh4anKu/XWW1m5ciXLly+nRIkSlChRgnLlyqXK17lzZxo2bMjTTz/N8ePHqV69OkuWLGHOnDmMHDnSYcIMpZRSSuVPy7ad4I1vthGfaHj/odt4pH5I3k+MkRBvTWhxxJ498PCfcNEaQYNPEbilIdR5xOq9KnMHFPDP2/ZeZzTgUtli+PDhREVFMWnSJKKjo3nggQeYOXMmzZo1c8jXtWtXVq5cyejRo3nmmWeIiYmhdOnSNGnShJ49e6ZbR2bWDQ4O5t577+X777/nqaeews/Pz2H5Cy+8wPHjx/nvf//Lxx9/TKNGjZKnaHdnW8+ePZvhti5cuJDnn3+evn37UrBgQbp3786TTz7Jgw8+6JDv/fffp1+/fjz88MPExMTQt29fpk+fnqpeLy8vfvzxR4YOHcp7771HREQElSpVYsqUKWkGqkoppZTKHy7GxTP8ux3876+j1L2lKB8+ejsVimfu8TrZJi7KmpI9afbAo5vhyiVrWZFyULEFlGtk9WAF1wQPj/TLU+kS65ldKqX69eubTZs2pbl8165d1KxZM1fakt9mKVQWPS6ZkxufmdDQUFq1apWjdajM0+OS/+gxyZ/0uOQ/2XlMNh86x6D5Wzl6LpoX767CgNZV8fbMxSDmwrGrQwMPr4dT28EkgnhYz7tKuvfqlsZQpGzutSuTLl25xMa1G/PNZ0VENhtj6meUT3u4lFJKKaWUygHxCYl8vHIvU37bS+kivszv24QGFQIzXvFaJCbCmV1XhwYeXg8XDlvLvP0hpAG0eNUKsMrWB9/COduebBCXEMfsnbP54p8v6B907c9KzW0acCmllFJKKZXNDp+NZuD8Lfx1+Dxd65VlZOdaFPb1znjFzLoSA8c2p3j+1QaIs2ddLlTSCqyaPG9NblGqDnjmQBtyiDGGnw79xKTNkzh28RitbmmFX4JfxivmMxpwKaWUUkoplU2MMXzz1zGGL9mBCHzUvR6d6pbJvgounnEcHnjib0i8Yi0LrgG1u1pDA8s1hmIVrtvp2XeE7+D9je/z1+m/qFasGp+1+4zGpRsTGhqa103LNA24lFJKKaWUygYXoq/w5rf/sGzbCRpWDGTSo7dTtug19MgYA2f3pui9Wm+9B/D0gbJ3wF0vWgHWLQ3BP4eHK+aCU5dO8dGWj1iybwmBvoEMbzKcrlW64ulxHTwMOg0acCmllFJKKXWN/tgXzpAFf3MmKo7X7q1O3xaV8fTIZO9S/GWrx+rwOnuK9vUQbT9Sxi/Q6rWq18uaPbDM7eDlk/0bkkdi4mOYuWMmM7bPID4xnqdrP82zdZ6lUIGMH9mT32nApZRSSimlVBZdjk9kws9hfLpqPxWDCvLN83dxW0hR91aOOQdHNl4NsI5thvhYa1lgJajazp5BsAkUr3rdDg9MT6JJZPmB5UzePJlT0adoW74tg+4cxC0Bt+R107KNBlxKKaWUUkplwd7TFxk4fwvbj0XSvWE53r6/Jv4F0ri8NgbOH746NPDweji9CzDg4QWl60L9Z+zp2RtBQMlc3Za8sPX0Vj7Y+AHbwrdRM7AmY5uPpX6pDGdZv+5owKWUUkoppVQmGGP46s/DvLtsJ37ennza607a1SrlmCkh3nreVcoAK+qEtcynsDU9e60HrQcMl70TCuTRQ5DzwImLJ5j01yRWHFhBsF8w7zR9h06VO+EhN+YDljXgUkoppZRSyk3hF+MY+r9t/LLrNM2rFmfCI3UpUdgX4i7C0Y32vVfr4OgmuHzRWqlwCJRvevUBwyVuhet4Eoisir4SzRfbv2DWjlkAPHfbczxT+xn8vf3zuGU5SwMupZRSSiml3LAy7DSvLtxGZOwVxrQtzqMlj+Ox9hsrwDq5HUwCIFCyNtTtfnV4YNEb536krEg0iSzZt4SP/vqIMzFn6FCxA4PuGETpQqUzVU7c/gPW0MzrzI3Zb6cyZebMmYgIe/fuTbUsPj4eEWHEiBG537AbWE7v09DQUEaMGEFiYqJD+sGDBxERZs6cmWN1K6WUUjea2MtXmDp/CT//dyxjZQrbi71G99Xt8Fj0JGyeZQ0RbD4Yev4Phh6C/mvgvvFQ5+GbPtjadHITj33/GG+vfZvSBUszu8Ns3m/xfqaCrdiwPRx96WX2d+xIgZ27crC1OUN7uJS6AYWGhjJy5EjeeustPDyu/q5SunRp1q1bR+XKlfOwdUoppVQ+Fx9HkfM7YPVmov5dC4fX8zyXwBtMgRJISCMo18/qwSp1G3h653WL850jUUeYtHkSPx/6mZL+JRnbfCwdKnbI1H1acf/+y5n/m0rUDz/gUagQxZ9/ntMVK+RYm3OKBlxK3UR8fHxo3LhxXjdDKaWUyn/iL8P+lbD9GwhbTr24SABOmzL849GEmo3aUb1BGySw0g05PXt2uXj5Ip/+8ylzds7By8OLF25/gd61euPn5f4DoOP27SP8/6YSuWIFHv7+BPXvR1Dv3ngWLYoJDc25xucQHVKoMm3EiBGIiy+aJ598kgoVKiS/Txq+Nn36dN544w1KlSpFQEAAPXv2JDo6mr1799K+fXsKFSpElSpVmDVrlkN5e/fupVevXlSsWBE/Pz8qVapE//79OXfuXKp6Q0JC2LJlC82bN8ff35+qVasyffp0t7YnPDyc/v37U7ZsWXx8fKhRowaffvpp8vINGzYgIixdujTVuv379yc4OJgrV64AMG/ePO655x6Cg4MpVKgQ9erVS7VdrjjvuyStWrWiVatWye9jY2MZNGgQtWvXplChQpQqVYoHHniA3bt3J+cZMWIEI0eOBMDb2xsRST5eaQ0pnDNnDnXr1sXX15fixYvTq1cvTpw44ZCnQoUK9OzZk3nz5lGzZk0KFixI/fr1WbNmTYbbp5RSSuVLCVdg7y/w7Qswvgp83Q32rCC6Skfe8XmFerHTGVt5Ni1emUv1e/tCUGUNttKQkJjAoj2LuG/xfczYPoMOFTuwtMtS+tXt53awFbf/AMdeeZX99z9AVGgoQc8+S+VffqbEyy/jWdTNZ5vlQ9rDlU1Ojh5N3K7dGWfMpPiEBCI83ZvFxqdmDUq9+WaW60pISCA+Pj5V2rUaM2YMrVq1YtasWezcuZPXXnsNDw8PtmzZwrPPPssrr7zCtGnTeOqpp6hfvz61atUC4Pjx44SEhDB58mSKFSvG/v37GT16NB07dmTdunUOdURGRvL4448zcOBAhg0bxowZM+jfvz/Vq1fn7rvvTrNtkZGRNG3alJiYGEaMGEHFihX58ccf6d+/P3FxcQwYMICGDRtSvXp1Zs+ezQMPPJC87uXLl1mwYAGPP/443t7WUIL9+/fz8MMPM3ToUDw8PFi1ahV9+vQhJiaGfv36XfO+jIuLIyoqirfeeovSpUsTERHB1KlTady4Mbt376ZUqVL06dOHo0eP8sUXX7BmzRo8Mzh/Pv30U/r27cujjz7KmDFjOH78OG+++SZ//vknf/31F4UKXX3C++rVqwkLC+Odd97B19eXt99+m/vvv5+DBw9S9Dr+IlRKKXUTSYiHQ2usnqxdSyEmAgoEQI37uFyjC58dK8//rT5MfEICIx+sw2MNbnH5Q7O6av2J9Xyw8QP2nNvDHSXuYGrrqdQqXsvt9S8fPEj4tGlcWPo94uNDUJ9nCHz6abyKFcvBVuceDbhUsho1auRIuZUrV07u5Wnfvj2rV69m9uzZzJ49m549ewJQv359lixZwqJFi5IDrhYtWtCiRYvkcu666y6qVKlC8+bN2bJlC/Xq1UteFhUVxdSpU5ODqxYtWvDTTz8xd+7cdAOuDz/8kEOHDvHPP/9QtWpVANq0acP58+cZOXIk/fv3x8vLi169evHuu+9y4cIFihQpAsDy5cuJiIigV69eyeW9mSLgTUxMpFWrVpw4cYJp06ZlS8BVpEgRPv/88+T3CQkJtG/fnpIlSzJ37lwGDRpESEgIISEhADRq1Agvr7Q/5gkJCbz99tu0atWKefPmJafXqFGD5s2b8+WXX/LSSy8lp0dGRrJ161aK2V+ApUqVokGDBixfvhAAg60AACAASURBVJzHH3/8mrdPKaWUyhGJCdZMgjsWw87v4NIZ8C4I1TtA7Qcxle9hyY4Ixn23m+MXDtC+VklaB0XSrWG5vG55vnYo8hDjN40n9EgoZQuVZXzL8bQr387tAPXy4cOET53GhaVLEW9vAp98kqBnnsYrKCiHW567NODKJtfSs5SeqKgoAgICcqRsZ4sXL06+UE+SkJBwzff8dOjQweF9UmDXvn375LRixYpRokQJjhw5kpx2+fJlxo8fz3//+18OHTpEbGxs8rKwsDCHgMvf398hsPLx8aFq1aocPnw43bb98MMPNGrUiIoVKzr07rVv357PP/+cnTt3ctttt9GzZ0/efvttFi5cSJ8+fQCYPXs21atXp2HDhsnr/fvvvwwbNoxVq1Zx8uTJ5FkCfXx8Mt5RblqwYAETJkwgLCyMCxcuJKeHhYVluqywsDBOnz7Ne++955DerFkzypcvz++//+4QcDVp0iQ52AKoU6cOQIb7WSmllMp1iYlwdIMVZO34Fi6eBC8/qNYeaj8IVdpCAX/+OnyOdz77iy2Hz1OrTGEmdLudJpWDCL0O7xXKLRfiLvDJtk+Yu3suBTwK8PIdL9Pr1l74eLp3vXP5yBHCp03nwnffIV5eBPbqRVCfZ/AqXjyHW543NOBSyWrXrk2VKlUc0pyHGGZFMafu4AIFCqSZnjKoeuONN5gyZQrDhg3jrrvuIiAggKNHj/Lggw865HNVFlhBjnM+Z6dPn2bv3r3JQwKdnT17FoDy5cvTokULZs+eTZ8+fTh//jzLli3j7bffTs578eJF2rZti7+/P2PHjqVy5coUKFCAadOm8eWXX6bbDnctXbqURx99lN69ezN8+HCKFy+Oh4cHHTt2zHBbXYmIiACs2QudlSpVKnl5ksDAQIf3SYFkVupWSimlsp0xcGyzHWQthshj4OkDVdtCra7/z959R0dVdX0c/950kpDeIHRCQq+hSK9KEwtYsWABFETFyqPo+whY6AihNwEfBQsiAiLSlKYQOmkQagiE9N6mnPePCS0GGCTJpOzPWi7inXvv7ORCVn455+wDgX3B3jRVPjY1h8k/Hmb90Ut4V7VnypDmDG5dA2srmT54K3qjnu9Pfs+8I/NIy0vj0QaP8lqr1/CqYl5Qyr8YS9LCBaT+tA7NygqPZ4bi+fLL2Hh7l3DlliWBS9w1BwcHwDQCdTU8wfVwUlxWr17Nc889x/jx468dy8zMLNb38PT0xMfHhy+//LLI14OCgq59/OyzzzJ8+HDOnz/Pzz//TH5+PkOHDr32+r59+zh//jy7du2ic+fO146bE1odHBzIz8//x/GkpCQ8bxhWX716NQEBATc1vdDpdP8IRua6GqDi4uL+8VpcXBzBwcH/6r5CCCFEqVEKLh+5HrJSL4CVLQT0hl7/Z5o26OBy7fSsPD0L/jjNoj/PAPBajwBe7V4fJ3v5sfh2dsfuZtqBaZxOO007v3a82/ZdGnqYtxxFd+kSiQsWkrp2LZqVFe5PPonn8OHY+vqUcNVlg/zNEnetdu3aAJw4cYLWrVsDkJqayt69e4t1+mN2dvY/Rp6WL19ebPcH6Nu3L3PmzKFWrVr4+Nz+H/1jjz3GmDFj+N///seGDRvo2rXrTZ0Fs7OzAW6qOSUlhZ9//vmOddSuXZsrV66QmJiIV8Fw+unTp4mKiqJjx443vUfhNVmrVq36R3OTqyNPOTk5t30mQUFB+Pr6snr1al566aVrx/fu3cv58+d5++2371i7EEIIUeqUgisnroes5DNgZQP1ekD3/0BQf6hyczMno1Hxw6GLTPstiviMPAa1qM77/Rri72Z+u/LK6EzqGaaGTmV37G5qVq3Jlz2+pEfNHmat09JdvkziwoWk/rgWDXB//HE8R47A1te35AsvQyRwibvWr18/XF1dGT58OJ988gl5eXlMmTLlpm52xaFv376sWLGCZs2aERAQwNq1a9m7d2+xvsfYsWNZs2YNXbp0YezYsQQFBZGVlUVkZCS7du26KSy5uLgwaNAg5s6dy+XLl1m8ePFN9+rYsSMuLi6MHj2aTz75hKysLCZNmoSXl9dNa62K8thjj/HRRx8xdOhQ3nrrLRITE/n888+vha+r+vbty7p16xg7diwDBw7k4MGDzJ49+x8dAhs3bgzA9OnT6devH9bW1kWOVllbWzNhwgRGjhzJM888wzPPPENsbCwffvghDRo04IUXXrirr6cQQghRouIjIWytqcNg0inQrKFuV+g8FhoOBEePIi/760wSEzeEE3YpnZY13VjwbBta16oYHfBKSmpuKvOOzuO7qO9wtHHkneB3eKrhU9hZ293xWt2VKyQtXETq99+jALfBj+I1ciS2RSxhqAwkcIm75ubmxoYNGxg7diyPP/44NWrU4OOPP2br1q3FusB0zpw5KKX48MMPAejfvz/ffvvtTU0q7pWrqyt79+5lwoQJTJ48mdjYWNzc3AgKCmLw4MH/OP/ZZ59lzZo1ODg4MGTIkJte8/b25qeffuLtt99myJAhVK9enTfeeIPk5ORr+2LdSkBAAD/88APjx4/n4YcfJjAwkBkzZvDZZ5/ddN7w4cOJiYlh2bJlLFy4kLZt2/LLL7/wyCOP3HTewIEDGTVqFPPmzWPChAkopVBKFfneI0aMwNHRkalTp/LQQw/h7OxM//79SyRECyGEEHctMfp6yEqIADSo0xnuGwWNBoHTrdcPnU/K4vNNkWwOi6O6qwNfPtmSQS2qS5v329AZdKyOWs38o/PJ0mXxWOBjjGo5Cg+HosPsTddeiSdp8WJSv/sOZTTi9uijeI0cga2/fylUXnZpt/ohrDILDg5WoaGht3w9IiKCRo0alUotpdmlUJhPnsvdKY1/Mzt37rxpk2hRNshzKXvkmZRN8lwKST5jmip44ie4chzQoNZ9psYXjR+CqrefkpaeqyNkezRf7TmHjbXGq93qM7xrPRxszdvbFCrfM1FK8cfFP5gWOo3z6efpWL0j7wS/QwP3Bne8Vp+QQNKSJaSsXoPS63F79BE8R76CXY3iD1pl6blomnZQKXXHBe8ywiWEEEIIISwv9UJByFpraoIBUKMdPPA5NHkYXKrf8RZ6g5FvD8Qw8/eTpGTnM6R1Dd55IAhfF4cSLr58i0qOYmroVP6+/Dd1XOowt9dcuvh3ueNIoD4xkaQlS0lZvRql0+H60EN4vfoKdjVrllLl5YMELiGEEEIIYRlpsRC+zhSyYgtmF1VvDX0mmkKWm/kbD/9xMoFPN4Zz8kom7ep68PHAxjT1dy2hwiuGpJwkQo6EsPbUWpxtnRnXbhyPBz2OrVXR2+VcpU9ONgWtb75B5efjOmiQKWgVNFYTN5PAJYQQQgghSk9GHIT/bApZMX+Zjvk1N7Vwb/IIeNS9q9tFx2fw6cYIdkQlUMvDkQXPtOaBJn6yTus28g35fB3xNYuPLSZXn8vTDZ/mlRav4Gp/+4CqT0khedkykv/3DSo3F5eBA/B69VXs697dM6tsJHAJIYQQQoiSlZkAET9D2Do4txtQ4NMEeow3hSyvgLu+ZUpWPrO2nuTrvy/gaGvNB/0b8nzHOtjbmL9Oq7JRSrH1wlZmhM7gYuZFutXoxtvBb1PX9faBSZ+SQvLyr0j5+muMOTm4DBiA16hR2NeToGUOCVz/klJKfnMihBmkMY8QQlRS2ckQsd60Luvsn6CM4BUI3d43hSwf8zbNLSxfb2TlvnPM3naKzDw9T7evxdjegXg62xdv/RVMeFI4Uw5M4eCVgwS4BbCwz0I6Vu9422sMqakkffUVKau+xpidjUu/vqagFXD3AbkyK/XApWlaTWAm0AfQgK3Am0qpC3e4rjYwG2gJ+ABZwAlgslLq10LnOgATgWcAN+AI8L5S6s/i+BxsbW3JycnB0dGxOG4nRIWWk5Pzjw2shRBCVFA5KRC50RSyzuwEox486kHnt6Dpo+DTGP7lL6yVUmyNiOezTRGcTcyiSwMvxg9oTJCfdA2+nYTsBGYfns3P0T/jZu/GRx0+4tEGj2JjdesYYEhPJ/mrFSSvXIkxM5OqffviPXoU9g3u3LFQ/FOpBi5N0xyB7UAe8DyggEnADk3Tmiulsm5zuTOQCIwHLgIuwHBgk6Zpg5VSa284dykwAHgXOAOMBn7TNO0+pdSRe/08fHx8iI2Nxd/fnypVqshIlxBFUEqRk5NDbGwsvpVsR3khhKhUctMhapMpZEVvA6MO3GrDfa+ZQpZf838dsq4Kv5TOpI3h7D2dRH1vJ5YPa0v3IG/5Gew2cvW5rAxfyZLjS9AZdQxrMozhzYdT1e7WAdWQkUHyipUkr1iBMSODqn364PXaaByCgkqx8oqntEe4hgP1gCClVDSApmnHgFPASGDGrS5USoUBL914TNO0jcBZ4AVgbcGxFsDTwItKqeUFx/4AwoAJwKB7/SRcXFwAuHTpEjqd7l5vd1u5ubk4OEgr07JGnot5bG1t8fX1vfZvRgghRAWRlwknN5tC1qnfwZAHLjWg/UhTyKre+p5DFkBCRh7Tt0SxJjQG1yq2fDKoCU+3r4WttVUxfBIVk1KKzec2M/PgTC5nXaZXrV681eYtarncuuOjITOTlFWrSFr+Fcb0dJx798J79GgcSmnf2YqutAPXIOCvq2ELQCl1VtO0PcBD3CZwFUUppdc0LQ24MfUMKvj/NYXOWw2M0zTNXimVdy+fBJhCV2n8ELlz505atWpV4u8j7o48FyGEEJVOfjac2gJha+HkFtDnQNVqEPyiKWT5B4NV8QShXJ2BZXvOMm/HaXJ1Bl7oWJc3ejXA1VGmqN/OsYRjTDkwhaMJR2no0ZBPO39KW7+2tzzfkJlFytdfk7x8OYa0NJx79sT7tdE4NG5cilVXfKUduJoAPxdxPAx4zJwbaJpmBVgBXphGzAKBNwq9x1mlVHYR72EHBBR8LIQQQgghbkeXC9FbTSErajPossDJB1o9YwpZNTsUW8gC0+jMxuOX+eLXSC6m5NC7kS8f9G9IPW/nYnuPiiguK44vD33JhjMb8HTwZELHCQyqPwhrq6I7Nhqzskj+3zckL1uGITUV527d8HrtNao0a1rKlVcOpR24PICUIo4nA+5m3mMK8HbBx5nAk0qpbWa+x9XXhRBCCCFEUfR5cHqHKWRFboL8DHD0hOaPm0JW7U5wix/k78XRmFQmbggn9HwKDf2q8r+X29MpwKvY36ciydZlszxsOV+d+AqjMjK82XBeavYSTrZORZ5vzM4m5dtvSVqyFENKCk5du+D92mtUad68lCuvXLTSbNmsaVo+MF0p9Z9Cxz/F1EXwjgFQ07QagF/Bf89hmkI4RCm1oeD13wFnpdR9ha7rA2wBuiqldhVx3xHACABfX982q1ev/hefYfHLzMzE2Vl+q1PWyHMpe+SZlE3yXMoeeSZlk6Wfi2bU455yDO+EXXgn/I2NIQudjTOJXh2I9+lCqlszVAmELIDkXCM/nNSx95IeFzsY3MCOLjVssLJwQwxLP5PbMSojoVmhrE9dT5ohjdaOrRnkPghPG8+iL8jPx/GPP3HcsgXrjAzyGjcia+BAdPXqlW7hxaAsPZcePXocVEoF3+m80h7hSqHoESZ3ih6V+gel1EVMXQoBNmiathOYBmwoOJYMFLUq0P2G14u67yJgEUBwcLDq3r27OeWUuJ07d1JWahHXyXMpe+SZlE3yXMoeeSZlk0Wei0EP53aZRrIifjG1dLd3haYPQdNHsa3bjWo2dlQrobfPztez8I8zLNxzGqOCV7vXZ1T3+lR1KBvrtMrqv5XD8YeZvH8yYUlhNPVsypx2c2jlU/S6cmNuLqlr1pC4eAmGxEScOt6H12tjcGxdftehl9XncjulHbjCMK2xKqwxEP4v7xkKvFnoPR7RNM2x0DquxkA+EI0QQgghRGVkNMD5vaaQFb4eshPBzhmC+pumC9bvCTYlu4Gw0ahYdySWKZujiEvPZUDzaozr25CaHrK/6e3EZsYy8+BMfjv3Gz6OPnzW+TMG1BuAlfbPNXTGvDxS13xH0uLF6BMScOzQAe8vZ+HYpo0FKhelHbjWA9M0TaunlDoDoGlaHaATMO5ub1bQQKMzcLrQe3yCqQnHioLzbIAngC3F0aFQCCGEEKLcMBoh5u+CkPUzZF4BW0cI7GsKWQG9wbZKqZRy4FwyEzeEc+xiGs1ruDLn6Va0rSPL628nS5fFkuNLWBm2EivNildbvMqwJsNwtP1nQDXm55P6/fckLVyEPj4ex7ZtqT59Gk7t2lmgcnFVaQeuxcBrwM+apo3HtPHxRCAGWHj1JE3TamMKUROUUhMKjv0X03TEPUAcpjVcLwHtMO27BYBS6oimaWuAWZqm2WLap+tVoC4wtIQ/PyGEEEIIy1MKLoaaQlbYOsi4BDYO0OB+U8hq8ADYld6IUkxyNl/8GsnG45fxc3FgxuMteLilP1ZWsnHxrRiMBn4+/TOzD80mKTeJgfUG8kbrN/Bz8vvHucb8fNJ+/JHEhYvQx8VRJbgN1adMwalDewtULgor1cCllMrSNK0nMBNYBWjANuBNpVTmDadqgDWm9u9XHcI0dfBJwBVT6DoKdFFK7Sn0Vi8AnwKTALeC8/oqpQ4V+yclhBBCCFEWKAWXDl8PWWkxYG0HAX2g6UQIfADsq5ZqSRm5OubtPM3S3Wex1jTe7N2AEV3r4WhX2r/zL18OxB1gyoEpRCZH0sK7BXN6zqGZd7N/nKfy80ld+xOJCxeiv3yZKq1aUf2zT3G87z40CzcdEdeV+t92pdQFYPAdzjmHKXTdeGw9pumC5rxHDvBWwX9CCCGEEBWTUhB3vCBk/QQp58DK1rQWq+d4COoHDq6lXpbBqPguNIbpW6JIzMzn0Vb+vNs3iGqupTN1sbyKSY9h+sHpbLuwjWpO1ZjadSoP1HngH+FJ6XSkrltH0vwF6C5dokqLFlSbOBGnTh0laJVB8usFIYQQQojy5kr49ZCVFA2aNdTrDl3fhYYDoIq525sWvz3RiUzcEE5kXAbBtd1Z+nxbWtR0s1g95UFGfgaLji3i64ivsbWy5fVWr/Ns42dxsHG46Tyl05G2fj2J8xegu3gRh+bN8fvkvzh17ixBqwyTwCWEEEIIUR4knDQFrLC1kBAJmhXU6QIdx0DDB8HpFnswlZIzCZl8timCrRHx1HCvwtynW9O/mZ8EgdvQG/WsPbWWkMMhpOal8nDAw4xpNQZvR++bzlN6PWnrfyFxwQJ0Fy7g0KQJvuM/xLlbN/n6lgMSuIQQQgghyqqk0wUh6ye4cgLQoHYnGDAdGg0CZx9LV0hato4vt51i5b5zONha817fIF7sVBcH25LZKLmi2Bu7l6mhU4lOjSbYN5h3275LY8/GN52j9HrSN24kYd48dOcvYN+4ETXmzcO5R3cJWuWIBC4hhBBCiLIk5Zyp6UXYWrh81HSsZgfoOxkaPwQuJbUV8d3RGYz876/zzNp2ivQcHU+0rclbfYLwrlqy+3iVd2fSzjA9dDp/XvyTGs41mNl9Jr1q9bopQCmDgfRNm0icO4/8c+ewb9iQGiFzcO7VS4JWOSSBSwghhBDCwuxzE2BviClkxR40HfQPhgc+M4Us1xqWLfAGSil2RMXz6cYITidk0SnAk/EDGtOomoulSyvT0vLSmH90Pmsi12BvY89bbd5iaKOh2FnbXTtHGQykb95sClpnzmAfGIj/7C+p2rs3mtU/NzgW5YMELiGEEEIIS9DnmzYiDl3KfRf2mY5Vawl9JkDjh8G9tmXrK0JUXAaTNoaz61Qidb2cWPxcML0b+cioy23ojDq+i/qOeUfmkanLZHCDwYxuORrPKtfX3CmjkYzffiNh7lzyo09j3yAA/1mzqHp/HwlaFYAELiGEEEKI0pQZD6HLIXQpZF4BzwDO1H2GegPfAs/6lq6uSEmZecz4/STf7r+As70NHw1szLMdamNnI2HgVpRS7IrdxdQDUzmXfo4O1Trwbtt3CXQPvH6O0UjGlt9JnDuXvFOnsKtfH/8Z06nat68ErQpEApcQQgghRGmIPQR/LzRNGzTkQ4P7of1IqNeTC3/+Sb0yGLby9Aa+2nOOkO3RZOsMPHdfHd7o1QB3J7s7X1yJnUo5xbTQaey9tJc6LnUI6RlC1xpdr40EKqXI2LqVxJC55EVFYVe3LtWnTcOlX180a2k2UtFI4BJCCCGEKCkGHUSsh78WwMX9YFcVgl+EtsPBK8DS1d2SUorfwuL4bFMkF5Kz6dnQhw/6NyLAx9nSpZVpybnJzDsyj+9Pfo+TrRPvtX2PJ4OexNbaFjB9XTO3bychZC55ERHY1a5N9SmTcRkwQIJWBSaBSwghhBCiuGUlwsHlcGApZFwGj/rQbwq0eAocynZziROxaUzcEM7fZ5MJ9HVm5Yvt6BrofecLKzGdQcc3kd+w8OhCsvXZPBn0JK+2eBU3B9OGz0opMnfsJDEkhNzwcGxr1aLaF5/jOnAgmo38OF7RyRMWQgghhCgul4+apg0e/wEMeVC/Fzw4GwJ6Qxlfk3MlPZepv0Xx46GLuDvaMenhpjzZtiY21mW7bktSSrE9ZjvTQ6cTkxFDF/8uvBP8DvXc6l17PevPP0mYE0LuiRPY1qhBtc8+w3XQgxK0KhF50kIIIYQQ98Kgh8gN8PcCuLAPbJ2g9XPQbgR4B975egvL1RlY/OcZ5v9xGp3ByIgu9RjdMwAXB1tLl1amRSZHMuXAFA7EHaC+a30W9F5AJ/9OQEHQ2r2bhJAQco8ew9bfn2qTJuL60ENotvJ1rWwkcAkhhBBC/BtZSXBoBRxYAumx4F4HHvgcWg0FB1dLV3dHSinWH73E5F8juZSWS98mfvynf0NqezpZurQyLTEnkZDDIaw9tRZXe1c+bP8hQwKHYGNlYwpae/aSGBJCzpEj2FSvht+ET3B7+GE0O2k0UllJ4BJCCCGEuBtxJ0yjWce/B30u1OsOA6abug5alY/GB4cupDDhl3COxKTSpLoLM55oSYd6nne+sBLLM+SxKnwVi48tJt+Yz7ONn2VE8xG42ruagta+fSTMCSHn0CFs/Pzw++//4fbooxK0hAQuIYQQQog7Mujh5K+mboPnd4OtI7R8GtqNBJ+Glq7ObLGpOUz+NZL1Ry/hU9WeqUOaM7h1DaysZOPiW1FKseX8FmYenElsZiw9avbg7eC3qe1i2pg66+/9JMyZTU7oQWx8ffH9+CPchgzBSoKWKCCBSwghhBDiVrKT4fAq2L8E0i6AWy24fxK0egaquFu6OrNl5emZv/M0i3edAeD1ngGM7FYfJ3v5UfB2whLDmHJgCofiDxHoHsiS+5fQvlp7ALIPHCBhTgjZ+/dj4+2N7/jxuD02BCt7ewtXLcoa+VcmhBBCCFHYlXDYvxCOrgF9DtTpAn0/h6B+5WbaIIDBqPjx4EWmbokiISOPh1pW572+DfF3q2Lp0sq0K1lXWJW4iv0b9+Ph4MF/7/svDwc8jLWVNdkHD5qC1l9/Ye3the8H/8Ht8cexcnCwdNmijJLAJYQQQggBYDTAyc2m9Vln/wQbB2j+BLQfCb5NLF3dXdt3OomJG8IJv5xOq1puLHy2Da1rlZ9ROUtIyU1h6fGlrI5ajcFg4MWmLzK82XCc7ZzJPnSYxJA5ZO3dh7WnJz7j3sf9iSewqiLhVdyeBC4hhBBCVG45qQXTBhdB6gVwqQG9PzG1dnf0sHR1d+18UhafbYrgt7ArVHd1YPZTrXiweTU0TdZp3UpmfiYrw1eyMnwlOfocBtYbSKucVgxpM4Sco0e5MCeErN27sfbwwOfdd3F/6kmsHB0tXbYoJyRwCSGEEKJySogybVJ89FvQZUPtTqb1WUEDwLr8/YiUlqMjZPspvtp7DltrK965P5CXu9TDwbb8TIEsbbn6XFZHrmbpiaWk5qXSp3YfRrccTX23+uz+6isujBhB1p+7sHZzw+edt3F/+mkJWuKulb/vJkIIIYQQ/5bRCKe2mKYNntkB1vbQ/DFTt8FqzS1d3b+iNxj59kAMM38/SUp2Po+1qcE79wfh4yJrim5FZ9DxU/RPLDy6kPiceDpV78SYVmNo4tWEvOhoYj4Yjef27eS6uuI9dizuQ4di7Sz7k4l/RwKXEEIIISq+3DQ4/D/TtMGUs1C1OvT6GFoPA6fyu//UHycT+HRjOCevZNK+rgcfDWxMU/+yv+mypRiMBjad3cS8I/O4mHmRVj6tmNx1MsF+weiuXOHS+PGkrf0JK0dHMgc9SOuPP8ba2dnSZYtyTgKXEEIIISquxFOmkHXkG8jPhJodTEGr0YNgbWvp6v616PgMJm2MYGdUArU9HVnwTBseaOIr67RuQSnF9pjthBwOITo1moYeDZnXax6d/TtjzMwkfsZMkleuRBkMuD8zFK9XX2X30aMStkSxkMAlhBBCiIrFaITT20zTBqO3grUdNB0C7UdA9VaWru6epGTlM2vrSb7++wKOdtZ82L8Rz3Wsjb2NrNMqilKKfZf3MefQHE4knaCOSx2mdZtGn9p9QKcnecUKkuYvwJCWhsvAgXi/+QZ2NWpYumxRwUjgEkIIIUTFkJdhGsn6eyEknwZnP+gxHtoMA2dvS1d3T/L1RlbuO8fsbafIzNPzdPtajO0diKezbLJ7K0fijzD78GwOxB2gmlM1JnScwIP1H8QaK9I3bCRh1pfoYmNx6ngf3m+/TZUm5a/1vygfJHAJIYQQonxLOg37F8PhryE/A2q0hR4fQKNBYGNn6eruiVKK38Ov8PmvkZxNzKJroDfjBzQi0LeqpUsrs6KSo5hzeA5/XPwDDwcPxrUbx2OBj2FnbUfm7j3ET59OXkQE9o0bUXPCJzh36mTpkkUFJ4FLCCGEEOWPUnB6u2k069QWsLKBpo+aug3WaGPp6opF+KV0Jm0MZ+/pJAJ8nFn+Qlt6BPlYuqwy61zaOeYdmcevedgwoQAAIABJREFU536lql1V3mj9Bk83fBpHW0dywsK4MH06WXv3YevvT/WpU3AZMADNysrSZYtKQAKXEEIIIcqPvEzTvln7F0HiSXDyge7joM0LUNXX0tUVi/iMXGZsOcma0Bjcqtgy4aEmPNWuFrbWEg6KEpcVx4KjC1gXvQ47azuGNxvOsKbDcLFzIT8mhthZH5O+cSPWbm74/mccbk89hZVd+R75FOWLBC4hhBBClH3JZ69PG8xLMzW/eGQRNHkYbCrGOqZcnYGlu88yb0c0eXojL3aqy+s9G+DqWH67KZakpJwklhxfwpqoNQA82fBJXm72Ml5VvNAnJxM3/zNSVq9Gs7bGc+RIPF9+CeuqMhVTlD4JXEIIIYQom5SCs3+Ypg1G/QpW1tD4YWj/CtQIhgrSAl0pxd+X9Xw4/Q9iU3Po09iXD/o3oq6XbLRblPT8dFaErWBV+CryDHk8HPAwrzR/hWrO1TBmZ5O4YAFJi5dgzMnBbfCjeL32Gra+FWP0U5RPEriEEEIIUbbkZ8GxNaaglRAJjl7Q9V0IfhFcqlm6umJ1NCaViRvCCT2fR6NqLkwd0pyOAV6WLqtMytZl823ktyw7sYz0/HT61unLqJajqOtaF6XXk/LddyTOCUGfkIBzr174jH0T+4AAS5cthPmBS9O05sB4oCvgAXRQSh3SNG0S8KdSaksJ1SiEEEKIyiDlPBxYDIdWQm4a+DWHh+dDk0fB1sHS1RWry2k5TNkcxU+HY/FytueFJnaMH9oZa6uKMWpXnHQGHT+c+oFFxxaRmJNI1xpdGdNqDA09GqKUImPrVuJnzCT/zBmqtGyJ/6yZOLapGI1TRMVgVuDSNK0jsA24AKwFRt7wshXwCmBW4NI0rSYwE+gDaMBW4E2l1IU7XBcMjMAU+GoBicAuYLxS6myhc88BtYu4zSNKqXXm1CmEEEKIUqAUnNtt2qQ4ahOgQeNBpmmDNdtXmGmDV2Xn61nwxxkW/Xkao4JR3eszqkcAoft2S9gqRG/Us+HMBhYcXUBsZixtfNswo/sMWvmYNq/OPnSI+KnTyDl8GLu6dakRMgfnXr3QKtjfGVH+mTvCNRlT4BrE9YB1VSgw1JybaJrmCGwH8oDnAQVMAnZomtZcKZV1m8ufBJoAs4EwwB/4CAjVNK2lUiqm0Pm/Af8tdCzKnDqFEEIIUcLys+H496Zpg/FhUMUDOo+F4JfA1d/S1RU7o1Hx0+FYpvwWyZX0PAY2r8b7fRtS08PR0qWVOUZlZOv5rYQcCeFs2lkaezbm4w4fc1/1+9A0jbzTp4mfMZPMbduw9vbC75NPcBv8KJqNrJQRZZO5fzPbAIOVUkbtn782SATMXYk4HKgHBCmlogE0TTsGnMI0ajbjNtdOVkol3HhA07Q9wNmC+35cuC6l1F9m1iWEEEKI0pAaAweWwKEVkJMCvs1gUAg0GwK2VSxdXYk4cC6ZiRvCOXYxjRY1XJn7dGuC63hYuqwyRynFnkt7mH1oNhHJEdRzrcfM7jPpVcs0aqW7Ek9iSAipP/6IVZUqeL/5Bh7PPYeVo4RWUbaZG7jygFt9F/QD0sy8zyDgr6thC0ApdbYgOD3EbQJX4bBVcOy8pmkJmEa7hBBCCFEWKQUX9pmmDUZsABQ0HGiaNli7Y4WbNnhVTHI2n/8awabjcfi5ODDziRY81MIfK5k6+A8Hrxxk9qHZHIo/hL+zP592/pQBdQdgbWWNISODpCVLSV6xAmUw4D50KF6vvoKNh4RWUT6YG7h2A69rmnbj+idV8OeLwA4z79ME+LmI42HAY2be4xpN0xoBPkBEES8/qGlaNmANHAa+kPVbQgghRCnS5cKJH0xBK+44OLhBxzHQ9iVwq2Xp6kpMRq6OuTtOs2z3WaytNMb2DmRE13pUsbO2dGllTnhSOHMOz2F37G68q3gzvv14Hm3wKLbWthjz80n+9msS5y/AkJqKy4ABeL/5BnY1a1q6bCHuiqaUuvNJmtYKU+iKBr4HPgFmAc2BDkA7pVRRoafwffKBGUqpcYWOTwLGKaXupmuiDaZ1ZY0wTVFMueG1OcABTNMNfYHXgG7As0qpr29xvxGYmnLg6+vbZvXq1eaWUqIyMzNxdna2dBmiEHkuZY88k7JJnkvZUxrPxD43keqXfqXa5S3Y6dLJdKpNrP9Arvh2w2hdMTYpLopRKf68qGftqXzS86FTdRuGBNri7mB1x2sr27+VOF0cm1I3cTj7MI5WjvRx6UPXql2xs7IDoxGH0FCc1q/HJjGJvIZBZD7yCPraRfVDKzmV7ZmUF2XpufTo0eOgUir4TueZFbgANE1rC0wDOmFqnKGAvcBYpVSomffIB6Yrpf5T6PinwPt3GbgWAC8BA+7Ukl7TNGvgL8BPKXXHX4sEBwer0FCzPqUSt3PnTrp3727pMkQh8lzKHnkmZZM8l7KnxJ6JUhDzt2k0K3w9oCCoP7QfCXW6VNhpg1ftiU5k4oZwIuMyaFvHnY8GNqZ5DTezr68s/1YuZV5i/tH5rD+9HgdrB55r8hzPNX6OqnZVAcjcs4f46dPJC4/AvmFDfN55B6dOHS3SebCyPJPypiw9F03TzApcZgccpdQBoFtBp0EvIEUplXGXdaVg2sOrMPeC18yiadrnmEajnjdn/y+llEHTtO+ByZqmVVNKXTb3vYQQQghxG/o8OLHWFLQuHwEHV7hvFLR9GdzrWLq6EncmIZPPNkWwNSKemh5VmDe0Nf2a+klr8kIScxJZfGwx3538DiuseKbRM7zU7CU8HEw/FuaGhxM/bTpZe/diW7061adMxmXgQDSrO48OClHWmbsP1yLgM6XUOaVUNqb9uK6+VgvTXlgjzLhVGKZ1XIU1BsLNrOVDYBzwulJqlTnXXL204E/zhvSEEEIIcWvplyF0GRxcDlkJ4N0QBs6E5k+AnZOlqytxqdn5fLntFKv2ncfB1ppx/RoyrGMdHGxlndaN0vLSWH5iOd9EfkO+IZ9HGjzCyOYj8XPyAyD/4kUSZn1J+oYNWLu64jPufdyffhorOzsLVy5E8TF3hOtlYAlwrojXvDFN7TMncK0HpmmaVk8pdQZA07Q6mKYpjrvNdRSc+zqmfbs+VErNMafwgutsMDXluKCUijP3OiGEEEIUEnOgYNrgOjAaILCvadpgve4VftoggM5g5Ou/zvPltlOk5+h4om0t3uoTiHfVirs27d/I1mXzv4j/sfzEcjJ1mfSr24/RLUdTy8XULEWfkkLSggWkfPMtWFnhOXw4nsNfxtrFxcKVC1H8imOHOF8gx8xzF2NqYPGzpmnjMY02TQRigIVXT9I0rTZwGpiglJpQcOxJTI06NgPbNU3rcMN905VS4QXnPYWpxfymgvv6AqMx7SX21L/8HIUQQojKS59vClh/L4DYg2DvAu1GQruXwaOepasrFUopdkTFM2ljBGcSsugc4MWHAxrRqJoEhBvlGfL4Pup7Fh9fTHJuMj1q9uC1Vq8R6B4IgDEnh+SVq0havBhjdjaujz6C95gx2Pqau6WrEOXPLQOXpmkPYQouV31UsOfVjapg6v53yJw3U0plaZrWE5gJrMI0zW8b8KZSKvPGt8fUzv3Gibt9C473LfjvRn8A3Qs+PoupVfxUTOvFsjF1LOyrlPrNnDqFEEIIAWRcMU0ZDF0GmVfAswH0nwYtngL7stElrDRExWUwaWM4u04lUs/LiaXPB9OzoY+s07qB3qhn/en1zD86n7isONr7tWdM6zG08G4BgNLrSf3pJxLnhKCPj8e5Z098xr6JfYMGFq5ciJJ3uxGuekCfgo8V0A7IL3ROHhAKvG/uGyqlLgCD73DOOa6vubp6bBgwzIz7/wX0NLceIYQQQhQSexD+XmhqhmHUQYP7C6YN9oRK1MQgMTOPGb+fZPX+C1R1sOXjgY15pkNt7Gwqz9fgTozKyJZzW5h7ZC7n0s/R3Ks5EztNpEM100QkpRSZ27cTP2Mm+adPU6VFC/xnTMcx+I6N3YSoMG4ZuJRSMzGNRKFpWgwwUCl1tLQKE0IIIUQpMugg/GdT0Lq4H+yqmjYobjcCPOtburpSlac38NWec4RsjyZHZ+C5++rwZu8GuDlKI4erlFLsit3F7EOziUqJIsAtgNk9ZtO9ZvdrI3/Zhw4TP20aOYcOYVenDv6zv6Rqnz4yMigqHbPWcJmzd5UQQgghyqHMBDj4FYQuhYzL4FEf+k0xTRt0qFzrk5RSbD4Rx+e/RnIhOZueDX34oH8jAnwqz/RJcxyIO8DsQ7M5knCEmlVr8kWXL+hbpy/WVqYOjXlnzhA/YwaZW7dh7e2F33//i9uQwWg2xdE6QIjy567+5mua5gIEAA6FX1NK7S2uooQQQghRwi4dKZg2+AMY8qF+L3hwNgT0rlTTBq86fjGNiRvD2X82mSDfqqx6qR1dGnhbuqwyJSwxjNmHZ7P30l58HH34+L6PeTjgYWytbAHQxceTGDKX1B9/xMrBAe83Xsfj+eexcnS0cOVCWJa5+3DZY+ow+BQ3N7K4kWw8IYQQQpRlBh3e8bth6ecQ8xfYOkHr503TBr0DLV2dRVxJz2XK5ijWHr6Ih6Mdnz7SlCeCa2JjXflC561Ep0QTciSEbRe24WbvxjvB7/BE0BM42Jh+/27IzCRpyRKSV6xE6fW4P/UUXqNexcbDw8KVC1E2mDvCNR5TA42XgeXA65gaZgzDtA/XWyVRnBBCCCGKQV4GHFoJf82nSVoMuNeBBz6HVkPBwdXS1VlETr6BxbvOMH/naQxGxYgu9RjdMwAXB1tLl1ZmxGTEMP/IfDac2YCjrSOjWo7i2UbP4mxnmmKp8vNJWb2GxPnzMaSk4NK/H95vvoldrVoWrlyIssXcwPUYMAH4GlPg2quUOgQs1jRtLdAL2FAyJQohhBDiX0m/bNo7K3Q55KVB7U4cr/kszR59B6wq58QUo1Gx/uglJm+O5HJaLv2a+jGuX0NqezpZurQyIz47nkXHFvHjyR+xtrJmWJNhvNj0Rdwc3ABQRiPpm34lYdYsdBcv4tihAz5vv02VZk0tXLkQZZO5gasWEKaUMmiapgNu/K60BFgGjC3u4oQQQgjxL1wJh30hcOw7UAZoNAg6vg412pC0c2elDVsHz6cwcUM4R2JSaervwqwnWtK+nqelyyozUnNTWXZiGd9EfoPBaGBw4GBGNB+Bj6PPtXOy9u0jftp0csPCsA8KoubiRTh17iydB4W4DXMDVxJwtUXPRaA5sKvg/90xbYAshBBCCEtRCs7+CXtnQ/RWsHWE4BegwyjwqGvp6izqYko2kzdH8cvRS/hUtWfqkOYMbl0DKysJCQBZuixWhq9kRdgKsnXZPFj/QV5p8Qo1q15vUp0bEUH8tOlk7dmDTfVqVJ/8BS4PPohWCRusCHG3zA1cfwMtgE3AWmCipmmOgB54D9hTMuUJIYQQ4rYMOghbZwpaccfAyRt6jofgl8CxcjctyMzTM39nNEt2nQXg9Z4BjOxWHyd7aU8OkKvPZU3UGpYeX0pKXgq9a/VmdMvRBLgHXDsn/2IsCbO/JP2XDVi5uODz/vu4P/0UVvb2FqxciPLF3O84U4DaBR9PAgKBzzF1LAwFRhV/aUIIIYS4pRsaYZAWA16BprbuzZ8A23/s3lKpGIyKHw9eZOqWKBIy8ni4ZXXe69uQ6m4yIQdAZ9SxLnodC44uID47no7VOzKm1Riael1fg6VPSSFpwUJSvvkGrKzwfPklPIcPx9qlcu3NJkRxMHfj4/3A/oKP04CHNE2rAjgopVJKsD4hhBBC3KiIRhj0nwoNHqiU+2cVtu90EhM3hBN+OZ3WtdxY9GwbWtVyt3RZZYJRGfn17K/MPTKXmIwYWnq35IsuX9DWr+31c3JzSV65iqTFizFmZeH6yMN4jxmDrZ+fBSsXony7Y+DSNM0O2A18qJT6/epxpVQOkFOCtQkhhBDiqts0whBwLjGLzzZFsCX8Cv5uVZj9VCsebF5NmjkASil2xOxgzuE5RKdGE+QexNxec+ni3+Xa10fp9aStW0fCnBD0V67g3KMH3mPfxCGwcu7PJkRxumPgUkrla5oWCBhKoR4hhBBCXCWNMO4oLUdHyPZTfLX3HLbWVrz7QBAvda6Lg23l7MRY2N+X/2b2odkcSzxGbZfaTO06lfvr3I+VZhoNVUqRuWMn8TOmkx99GocWzfGfNhXHtm3vcGchhLnMXcO1FegNbC/BWoQQQggBpkYY4T+bgtblo9IIowh6g5Fv919g5tZTpGTn81ibGrxzfxA+LpV7/dpVRxOOMufQHP6O+xs/Jz8mdJzAg/UfxMbq+o9+2YcPEz99OjmhB7GrXRv/L7+k6v19ZFRQiGJmbuCaAXyjaZoVsA64DKgbT1BKXSjm2oQQQojKpXAjDM8G0gijCDuj4vl0YwSn4jPpUM+D8QMa09Tf1dJllQknU04y5/AcdsbsxMPBg3HtxjEkcAj21te7CuadOUvCzJlk/P471l5e+P33/3AbPBjN1taClQtRcZkbuHYX/Pke8O4tzpGxeyGEEOLfkEYYZomOz2DSxgh2RiVQ29ORhc+24f7GvjIiA1xIv8DcI3P59eyvONs683qr1xnaaCiOto7XztHFx5M4dx6pP/yAlb09XmNew3PYMKycnCxYuRAVn7mBawSFRrSEEEIIcY+KbIQxBmoEW7qyMiU5K59ZW0/yv78v4GhnzYf9G/Fcx9rY28jveuOy4lh4bCE/nfoJO2s7Xmr2EsOaDMPV/vqInyEzk+Rly0ha/hVKp8P9ySfxGvUqNp6eFqxciMrD3LbwS0q6ECGEEKJSuNYIYw5E/35DI4xXwaOepasrU/L1RlbuO8eX206RnW/g6Xa1eLN3AzydZdPd5Nxklh5fyurI1Rgx8kTQEwxvPhyvKl7XzlH5+aSs+Y7E+fMxJCdTtV9ffN58E7vatW9zZyFEcZOt1oUQQojSYNBD+LqbG2H0GA9tpRFGYUoptoRf4fNNEZxLyqZroDfjBzQi0LeqpUuzuIz8DFaGr2Rl2EpyDbkMqj+IV1q8gr+z/7VzlNFIxubNxM/6Et2FCzi2b4/PO29TpVkzC1YuROUlgUsIIYQoSXkZcGgV/DXvhkYYX0LzJ6URRhHCLqUxaUME+84kEeDjzPIX2tIjyMfSZVlcjj6HbyO/ZdmJZaTlpXF/7fsZ3Wo09VxvHhXN+usv4qdOIzcsDPvAQGouWohTly6yzk0IC5LAJYQQQpQEaYRxV+Izcpn+20m+OxiDWxVbJjzUhKfa1cLWunJ/rXQGHT+e+pGFxxaSmJNIZ//OjGk1hsaejW86LzcykvjpM8jatQub6tWo9sXnuD74IJq1rHMTwtIkcAkhhBDFSRph3JVcnYGlu88yb0c0+QYjL3aqy+s9G+DqWLlblBuMBjae3ci8I/OIzYyltU9rpnebTmvf1jedp4uNJWH2bNLW/4KViws+772H+9CnsbKXdW5ClBUSuIQQQoh7JY0w7ppSig3HLvPFr5HEpubQp7EvH/RvRF2vyt2iXCnFtgvbCDkcwum00zTyaMRHvT+iY/WON00LNKSmkrhwESlffw2ahudLL+I5fDjWrrIfmRBlzV0HLk3TqgAewBWllL74SxJCCCHKCWmE8a8ciUll4oZwDp5PoVE1F6YOaU7HAK87X1iBKaXYG7uX2YdnE5YURl3XuszoPoPetXrfFLSMubkkr1pF0qLFGDMzcX3kEbzHvIZttWoWrF4IcTtmBy5N0/oBnwBXx7LbAYc0TVsI7FBKrS6B+oQQQoiyRxph/CuXUnOYsjmSdUcu4eVsz+TBzRjSpibWVpW7ocPh+MPMvjKb6AvRVHeqzqROkxhQbwA2Vtd/TFMGA2nrfiZhzhz0cXE4d+uG99tv4RAYaMHKhRDmMCtwaZr2ILAO2AmMBz674eUYYBgggUsIIUTFln4Z9i+E0GWQmwa1OkojDDNk5elZ+MdpFu06g1HBqO71GdUjAGf7yruyQSnFnkt7WHp8KaFXQqlqVZUP2n/A4AaDsbO2u+m8zJ07SZgxg7xT0Tg0b071KZNxatfOgtULIe6Gud/p/gusVEq9oGmaDTcHruPAK8VdmBBCCFFmxEfA3hA4tqagEcaD0PF1aYRxB0ajYu3hWKb+FsmV9DwGNq/G+30bUtPD0dKlWYzeqGfLuS0sO7GMqJQofB19eTf4XXyv+PJAwwduOjfn6FHip04jOzQUu9q18Z81i6oP3C8t3oUoZ8wNXI2BcQUfq0KvpQCVe+K1EEKIikcpOLcL9sw2NcKwqSKNMO7C/rPJTNwQzvHYNFrUdGPe0Na0qV1517Xl6HNYF72OFWEriM2MpZ5rPSZ1mkT/uv2xtbZlZ8LOa+fmnT1LwsxZZGzZgrWXF37/9zFuQ4ag2Vbuzo1ClFfmBq4MwPMWr9UGEoqnHCGEEMLCpBHGPbmQlM0XmyPYdDyOaq4OzHyiBQ+18Meqkq7TSstLY3Xkar6J/Ibk3GRaeLfg/bbv061mN6y0m6eh6hMSSJg7l9Tvf0Czt8frtdfwfGEYVk6Vu3OjEOWduYFrGzBO07RNQFbBMaVpmh0wGvitJIoTQgghSs21RhjzIe2CNMK4Sxm5OkJ2RLN89zmsrTTG9g5kRNd6VLGrnBvvxmXFsSp8Fd+f/J4cfQ5d/LvwUrOXaO3T+h9TAg2ZWTj98gvRb72Nys/H/Ykn8Br1KjZeMoFIiIrA3MD1AbAfiAQ2YppW+C7QAtPI15ASqU4IIYQoaUU1wug3GQL7SiMMM+gNRtaExjBjy0mSsvIZ3LoG7z4QhJ9r5QypZ1LPsDxsORvObEApRb+6/Xih6QsEut/cTVApRc7hI6Rv3Ej6xo04p6bi3LcvPm++gV2dOpYpXghRIswKXEqps5qmBQMTgAcLDvcBNgPjlVIXS6g+IYQQomRII4x7tutUApM2RBB1JYO2ddxZ/kJbmtdws3RZFnE04ShLjy9lR8wOHKwdeDzwcZ5r8hz+zv7XzlFKkRcVVRCyNqG7dAnN3h7nHj0416IFjV4YZrlPQAhRYsxtC+8EXFJKPX+vb6hpWk1gJqbApgFbgTeVUhfucF0wMALoCtQCEoFdmALf2ULnWgHvAyMBPyAKmKCU+vFe6xdCCFGOFdUIo80wuG+UNMK4C6cTMvlsYwTbIuOp6VGFeUNb06+pX6XrnqeUYlfsLpadWMbBKwdxtXfllRav8FTDp/BwuL7eL//CBdI3biRt40byo0+DtTVOnTri/cbrOPfqjbWzE9E7d1ruExFClKg7Bi5N02yBNOBRYP29vJmmaY7AdiAPeB7T1MRJwA5N05orpbJuc/mTQBNgNhAG+AMfAaGaprVUSsXccO5E4B3gQ+BgwbXfa5o2UCm16V4+ByGEEOWQNMIoFqnZ+czaeoqv/zqPg6014/o1ZFjHOjjYVq51Wnqjns3nNrP8xHJOppzEz8mP99q+x+AGg3G0NbW8112JJ/3XTaRv3ETu8eMAOAYH4/Hf/6PqAw9g4+5uyU9BCFGK7hi4lFI6TdPiAX0xvN9woB4QpJSKBtA07RhwCtNo1IzbXDtZKXVTN0RN0/YAZwvu+3HBMR9MYesLpdS0glN3aJoWAHwBSOASQojKQhphFAudwcjXf51n1tZTZOTqeKJtLd7qE4h3VXtLl1aqcvQ5/HTqJ1aGryQ2M5b6rvX5tPOn9KvbD1srWwypqaRs2UD6xk1k798PSuHQuDE+776LS/9+2FarZulPQQhhAeY2zfgGeIF7DyuDgL+uhi24tj5sD/AQtwlchcNWwbHzmqYlYBrtuuoBwA74utDpXwPLNE2rW3gKohBCiAomIw7+XiCNMO6RUortkfF8uimCMwlZdA7wYvzARjT0c7F0aaUqLS+NbyO/5ZuIb0jJS6Gld0vGtRtH1xpdITuHjI2/kb5xI5l79oBOh13duniNHo3LgP7Y161r6fKFEBZmbuA6CTyhado+4GfgMoU2QFZKrTTjPk0Kri8sDHjMzFqu0TStEeADRBR6jzwgutDpYQV/NsY0KiaEEKKikUYYxSYyLp1JGyLYHZ1IPS8nlj4fTM+GPpVqnVZcVhwrwlbw46kfydHn0K1GN15s+iIt3ZuStWsXl2e+Q8aOnaicHGz8/PB49llcBw7AvlGjSvV1EkLcnqaUuvNJmma8wylKKXXHCdyapuUDM5RS4wodnwSMU0qZGwDRNM0G0/5gjTBNUUwpOL4IGKSU8it0fgCmqYvPKaVWFXG/EZiacuDr69tm9erV5pZSojIzM3F2drZ0GaIQeS5ljzyTsqlUnotSuKUep2bMOjyTD2KwsiPOrzcxNQeRW0WmcBV2p2eSnqdYeyqfPy7qcbSFh+rb0bOWDTaVaOPiy/mX2Zq+ldCsUADaOLWht3NP6pzLxOHAAewPH8YqOwejszO5rVuT2zYYXf369zR6Kt/Dyh55JmVTWXouPXr0OKiUuuNv9MwNOA3usZ4bFZXw/s138RCgIzDgati64V53/R5KqUXAIoDg4GDVvXv3f1FS8du5cydlpRZxnTyXskeeSdlUos/lWiOMOXD5CDh6QY8PsW77Mv6OHjfNNRfX3eqZ5OkNLN9zjpC90eTqDDzfsQ5v9m6Am6Nd6RdpIUfij7D0xFJ2Xt5JFZsqPNXwSZ42tsVu+37SNy/EkJCIlaMjVfv0wWXgQJw6dECztS2W95bvYWWPPJOyqTw+F3P34TpdTO+XAhTVDsq94DWzaJr2OabRqOeVUlsKvZwMuGuapqmbh+/cb3hdCCFEeZWXCYdXwb55BY0wAmDgLGjxJNhWsXR15Y5Sil9PxPH5rxHEJOfQs6EPH/RvRIBP2fgNckm72tp96fGlHIo/hKu9K+94PE6PSBvyv9pBVsxKsu3scO7WDZcBA3Du3g0rB2m4IoQwn9lT+IpJGKY1VoU1BsLNuYGmaR8C44DXi5oaWPCMBxmUAAAgAElEQVQe9kD9/2fvvsOrrNK9j3+fnd57TyiBJJQAAQJIDUV6FSyo2Eed0bGcGccy5cwZnTkzc868o2eq6CijVBWRFkQFSaihh04SUkhIAmk7PTu7rfePHRWREjDJTnbuz3VxAZun3I/PJeSXtda9+PY6rgEtP7fqPkIIITqZuouwfykceqelEcZoaYTxPZ24UMNrm09zoKCKhDAflj82kvFxIfYuq0OYrCa25m9l2all5OhzGNAczOsXx9HrQBGmc6tocHLC67bbCH7qKXxun4KTj4+9SxZCdFGt3fg4h6tP0/uaUiq+FZfaCPxJ07RYpVRey7V7AWOxhagb1fEstn27fqGU+us1DtsKGIH7gd9c9vkS4KR0KBRCiC7mq0YYJz4Ei+mbRhgxI+xdWZd1qdbA/2zN4uMjFwjycuV3dyRyT3IMzk6OH1ybzE2sy1nH+6fep+FSMfPOB/HL7Eg8zhYCF3EeNozAX/0S3xkzcA4Ksne5QggH0NoRrv18N3AFAbcBtcDOVl7nbeDHwAZN037Zcs3XgCJg6VcHaZrWE8gFXlVKvdry2WLgDWyB6ktN02677Lq1SqnTAEqpMk3TXgde0TStDjgC3ANMxtZ6XgghRGenFBTssq3PyvkcnD1g2EMw+ikIjLV3dV1WQ7OZDeeM/Gh7Ghar4skJsTw9uS++7m2zDqkzqzZUszprNeuPrCDhRDXP5XjTK9eKZi3DrV8//F74Kb4zZ+ISJav/hBBtq7VruJZc7XNN0wKxBaDUVl6nQdO0ycDrwHJsjSy2A88rpeovvzTgBFz+rbYZLZ/PaPlxuXRg4mW//wVQDzwHhANZwN1KqU2tqVMIIYSdXKMRBsmPgZeMNtwKk8XK7pwKNmQW8/npSzQaLcxMDOeVmf3pEeRp7/LaXWl9KSuPvkvBp2sZeaKZ/5cPTmaFS09//H54P76zZ+PWp4+9yxRCOLDvtYZLKVWladr/AK8CH7TynEJg0Q2OKeCKroJKqYeBh1t5Dwu2qYe/bc3xQggh7EwaYbQppRRHCvVsyCxh8/FSqhqM+Lo7Mz8pkj66cn6wYLi9S2x3OWVn+OKj/8X1y/1MybbibgKCAwlcMg/f2bNxTxwoe2UJITpEWzTNaAR6tMF1hBBCdDfSCKNNnSurY/3REjYcK6aoqgk3Zx239w9jflIkKQkhuDk7kZaWZu8y242yWDi+bQ05Hy6jx+FiJhnA6OWG95yphC+4C8/k4WhON9w2VAgh2tQtBy5N03TYOv/9J3CmzSoSQgjh+MrO2qYNSiOM7+1ijYGNx4pZf7SE06W16DQY2zeY56bEM31gGD4Ovj5LKUXjieOc/eBtLNt24lNjoo8L1IxKoMfdjxM2cSqaa/fZS0wI0fm0tkuhie82zdBhm/ZXD8xu47qEEEI4GqWgYDfs/Ys0wvieappMbD1ZyvqjJWTkV6IUDIn241dzBjB3cAShvo6/T1Rzbi76zZu4tGEtriWVuDjBuXgPfH4whwn3/BRvX1nzJ4ToHFo7wvVHvhu4DMB5IFUp1epNi4UQQnQz0gijTRhMFnacLWN9ZjE7zpZjtFjpFeTJs5PjmJ8USWyI429UbCoupmbLFqo3b8aUlY1Vg7M9NXLuDGfoXT9i4aA7cNE59oieEKLraW2Xwl+2dyFCCCEcTHM9URc2wV+ekUYYt8hiVWTkVbL+aDFbT16krtlMsLcb99/WgwVJUQyO9nP4xg/mykpqt26ldnMqTUePApAb7czO23XUjx/M4rE/4u6o8Q7/30EI0XW1RdMMIYQQ4huGWlsjjH1/I85Q3dII4w8QP1MaYbSCUoqTxbWszyxm07ESyuqa8XZzZvrAcBYMjWR0bJDDb1Bsqauj7ott1Kam0pCRARYLNTEBfD7JlbR+FgYOmshjiY+RFJpk71KFEOKGrhm4NE176yauo5RST7ZBPUIIIboqQw3sfwv2/Q0M1RA/kyNeExk2/4f2rqxLOF/ZwIbMEtZnFpNX3oCLk8bEhFDmJ0Vye/8w3F0cu7ue1WCgPi2N2tRU6tN3ooxGiAzjxPQ+vB+ZT3FoE7Ni5/DWwEfoG9DX3uUKIUSrXW+EaxbfXbd1La09TgghhKO5StBi4ksQOZRaB25B3hYq6pvZfKyE9ZklZBZVAzCqdyA/GBfLrEHh+Hs6dnc9ZTLRsG8ftamp1G3bjrWhAaeQYEzzJrO+VwUfOh/Fw6WRRXH38+CAB4nwjrB3yUIIcdOuGbiUUtEdWYgQQoguxlDz9dRBDDWQMAtSXoTIofaurFOrbzbz+amLrM8sYc+5CixWRb9wH16e2Y95QyKJ9Hfs9W3KaqXp8GFqUlOp++xzLHo9Ol9ffGbMIH9UNEt1uzlauQ1/N3+e6v809ybci7+7v73LFkKIWyZruIQQQtwcCVo3zWi2sjO7nPWZxWw7cwmDyUqUvwdPTohlflIUCeE+9i6xXSmlMJw+TW3qFmq3bMF88SKahwc+kybhNWs6O6PqeDdrObn6DUR6RfLKyFe4I+4OPJwdO3wKIbqH663higTKlFLmll9fl1KqpE0rE0II0blcNWi9BJHSuOBqrFbF4UI9648Wk3qilOpGE/6eLiwaFs2CoVEM7xGATufYnfWa8/KpTU2lNjUVY0EBuLjgPXYsvi+8gNP4Uawv3sp7p/+Xi8UXiQuI4/fjf8/0XtOltbsQwqFcb4SrCBgNHAAucON1Wo69mlcIIborQw1kvAkZf28JWrNbRrQkaF1N1sU61mcWszGzhOLqJtxddEwdEM6CpEjGx4Xg6uzYHQZNpaXUbvmU2tRUDKdPg6bhOXIkgY8+gu+0adS6K1acXcXqT39PTXMNw8OG86vbfsV4ae0uhHBQ1wtcTwC5l/1aGmMIIUR3IkGr1Yqrm9iYWcKGzGLOXqzDSacxrm8wL0yPZ9qAcLzcHHsGv1mvp27rVmpSU2k6dBgA90GDCHvlZXxmzMQlLJSS+hLePPVP1uWsw2AxMClmEo8mPiqt3YUQDu96TTPeuezX/+qYcoQQQthdU7Vt6uDlQWviSxAxxN6VdSrVjUa2nLjI+sxiDuRXATC0hz+/mTeQ2YMjCPZ2s3OF7ctS30D99m3UpKbSsGcvWCy49u1DyHPP4jtrFq49ewKQrc9m2a7X+TT/UzQ0ZsfO5pHER+jj38fOTyCEEB3Dsb/lJoQQovWaqmH/m7DvH9BcA/3m2Ea0JGh9rcloYfvZS6w/WkJ6dhkmiyI2xIufTI1nflIkPYO87F1iu7I2N1Ofnk5t6hbq09JQzc24REYS9Oij+M6ZjVt8PJqmoZTi8KXDvHvyXXZe2ImHswf39b+PBwc8SLhXuL0fQwghOlSrA5emacHAPUAC4H7FH8vGx0II0VVJ0Lous8XK3txK1mcW89nJizQYLYT6uPHQ6F4sGBrFwEhfh157pMxmGjL22/bK+uILrPX1OAUF4X/nnfjOno3H0KSvn9+qrKQVpvHOyXc4Vn6MALcAfpz0Yxb3W4yfm5+dn0QIIeyjVYFL07R4YB+2oOUO6AF/QAfUAHXtVaAQQoh2IkHrmpRSHLtQw4bMYjYdK6WivhkfN2dmD45gQVIUo2KDcHLgDoPKaqUpM5PazanUfvYZlspKdN7e+Eybhu/sWXiNGoXm/M2XECaLiS35W1h2chm5NblEeUfx81E/Z0HfBdLaXQjR7bV2hOt/gSPAfKAemAacAh4CfgnMbpfqhBBCtL2rBq2XIGKwvSuzu/yKBtYfLWbjsRLyKxpwddIxuV8o85MimdQvFHcXx23Iq5SiOSuL2tRUalJTMZeUorm54T1pEr6zZ+E9YQI6t2+vS2s0NbI2ey3vn36fS42XiAuI4w/j/8D0XtNx1smqBSGEgNYHrhHAU4Ch5fc6pVQz8JamaYHAG8CUdqhPCCFEW2mqhox/2n5I0PpaWZ2BTcdK2ZBZzPELNWga3NY7iB+mxDIjMQI/D8feE8p4/jw1qanUpm7BmJsLzs54jR1D6PPP4z15Ck7e312XVmWoYtWZVaw+u5paYy3JYcn8evSvGRc1zqGnVwohxK1obeDyBSqVUlZN02qB4Mv+7AC2US4hhBCdkQSt76gzmNh68iIbMkvYm1uBVcHASF9+Mas/c4dEEu535VJlx2K6VEbtp1uo3ZyK4eRJADyTkwn8r1/jM306zgEBVz2vuL6Y9069xyc5n2CwGJgcM5lHBz3KkBCZhiqEENfS2sBVAIS1/DoLWARsbfn9TKC6bcsSQgjxvUnQ+pZms4W0rHI2Zpaw7cwlms1WegR68vSkvsxPiqRvqI+9S2xXVqOR2i1bCHh3GedyckAp3AcOJPTFF/GdNROX8Gt3D8yqymLZqWVszd+KpmnMiZ3DIwMfIdY/tgOfQAghuqbWBq5twO3AWuB1YJWmaWMAM5AI/L59yhNCCHHTmvSXBa1a6D/XFrTCB9m7sg5ntSoOFFSxIbOYLScuUtNkIsjLlcUjYpiXFMWwHv4OPwXOdOkS+jVrqP7gQyxVVejCQgl++ml8Z8/CrXfva573VWv3d06+w+7i3Xg6e3J///t5YMAD0tpdCCFuQmsD18uAB4BSao2mac3YWsR7AkuBN9unPCGEEK0mQQuwBYUzpXVsyLQ1vyitMeDp6sS0AWHMHxrFuL7BuDjp7F1mu1JK0XT0KFXLl1P3xTawWPCeNInAB5Zw0GBg0KRJ1zzXqqzsKNrBuyff5Xj5cQLdA3lm6DPck3CPtHYXQohb0KrApZQy8E3DDJRSnwCftFdRQgghboIELQCKqhrZeKyEDZnFZF+qx1mnMSE+hJdn9mPqgDA8XR2/a561uZnazalUrVxB8+kz6Hx9CXzgAQLuuxfXmBjbQWlpVz3XZDGxOW8zy04tI78mnyjvKH4x6hcs6LsAd2fHXtMmhBDt6Zr/+miaNhk4oJSq78B6hBBCtFaT3tbaff+bLUFrXkvQSrR3ZR2mqsFI6olSNhwt5tB5PQDJPQN4bUEiswdFEOjlaucKO4aptBT96jVUf/QRFr0et7i+hP/mN/jNnYPO0/O65zaYGr5u7V7WWEZCQAJ/HP9HpvWaJq3dhRCiDVzvb9IvgNHYuhCiaZoOSAMeU0rltH9pQgghrqqbB61Go5kvTl9iQ2YJO7PLMVsVcaHe/Gx6AvOGRBITeP2A4SiUUjQdPkzV8hXUbdsGSuE9eRKBSx7Ac9TIG65NqzJUsfLMSlafXU2dsY4R4SP4zZjfMDZyrMOvaxNCiI50vcB15d+2GjAOcOw2TkII0Vk1VtmmDXbDoGW2WNl1roINR4v5/PQlGo0WIvzceWxcb+YnRdE/wqfbhASrwUDt5s1UrVhJ89mz6Pz8CHrkYfwX34trdNQNz68wVfC7jN/xyblPMFqMTO4xmUcTH2VwSPfsXimEEO1N5goIIURn11gFGf+AjDfBWAcD5sOEFx0+aCmlOFJYzcbMYjYfL6WywYivuzPzkyKZnxTFyF6B6HTdI2QBmEpK0K9eTfWHH2GpqcEtPp7w117Fb84cdB4e1z3XqqxklGawNnst20u2o9PpmBs7l4cTHybWT1q7CyFEe5LAJYQQndXVglbKSxA20N6VtatzZfVsyCxmQ2YJhVWNuDnruL1/GPOTIklJCMHN2cneJXYYpRSNBw6iX7GCuu3bAfC5/XYCltyP54gRNxzVq2iqYP259Xyc/TEX6i/g7+bPJN9JvDLtFcK8wq57rhBCiLZxo8AVpWnaV9/6crrss+9sdKyUymvTyoQQorvqhkHrYo2BTcdKWJ9ZzKmSWnQajO0bzDOT+zIjMRwfdxd7l9ihrE1N1GzahH7FSpqzs3Hy8yPosccIuHcxLpGR1z/3stGsHYU7MCszyWHJPDP0Gab0nMK+XfskbAkhRAe6UeBae5XP1l/j2O7zLUchhGgP3wlaCyDlRYcNWjVNJraeLGX90RIy8itRCgZH+/GrOQOYOziCUN/u14rceKEY/epVVK/9GGtNDW79+xPxu9/iO3s2Ovfr//e42mjWff3v4874O+ntd+0NjoUQQrSv6wWuRzqsCiGE6M4aq2Df32H/UocPWgaThbSsMtYfLeHLrDKMZiu9gjx5dnIc85MiiQ3xtneJHU4pRWNGBlUrVlK/YwdoGj5TpxL4wBI8hg277rTBG41muTm5deCTCCGEuJprBi6l1HvtcUNN02KA14Gp2DofbgOeV0oVtuLc/waSgeFAIPCIUurfVzkuDUi5yiX+Qyn1xi0XL4QQbambBC2LVbE/r5L1mcV8evIidQYzwd5u3D+qB/OTohgS7ddtOgxeztrYSM3GjehXrqQ55xxOAQEEPf64bdpgePh1z5XRLCGE6Do6tGmGpmmewJdAM/AQoIDfAjs0TRuslGq4wSWeATKBzcCDNzj2OPDkFZ8V3GzNQgjR5q4atF6CsAH2rqxNnSqpYfXZZl7au51Ltc14uToxPTGcBUlRjOkThLOTzt4l2oWxqAj9ylVUr1uHtbYW9wEDiPjv/8Z39ix0btcekZLRLCGE6Jo6ukvh40AskKCUOgegadpxIAdbOPrzDc73U0pZNU3ry40DV51SKuP7FiyEEG2msQr2/a0laDXAwAW29u4OFLSUUqRll7M0PZeMvCqcNJjUL4hfzYnk9v5huLt0z+W+Sika9u5Fv2Il9Wlp4OSE77SpBCx5AI+hSdcd4ZPRLCGE6No6OnDNAzK+ClsASql8TdP2APO5QeBSSlnbuT4hhGh73SBomSxWNh0r4a2deZy9WEe4rzs/n9WPSEMhc6Yl27s8u7E2NFC9YQP6lasw5ubiFBhI0A+fJGDxYlzCrt0pUEazhBDCcXR04BoIbLjK56eAu9r4XkM1TasBPIEzwP8ppd5p43sIIcS1dYOgVd9sZs2BQt7dnU9JjYH4MG/+dNcQ5g2JxNVZR1pakb1LtAvj+fPoV62i+uN1WOvrcU9MJPKPf8Bn5kx0rq7XPE9Gs4QQwvFoSqmOu5mmGYE/K6VevuLz3wIvK6VaFQBbphTmcO2mGa8CRUA24I9t+uFC4FdKqd9e45pPAE8AhIWFDV+zZk1rH6td1dfX4+3d/bp2dXbyXjqfzvROXIy1RF/YQFTxZpwszZSHjKWg1z00evWwd2ltpqZZ8cV5E18Wmmg0Q0KAjpm9XRgc4oTusulxnem9tDurFdczZ/HcsQPXU6dA0zAMH0bTpEmYeveGa0wbtCor2YZs9tTv4XjjcaxY6evWl7E+YxniOQQXrW33IOtW76QLkffS+cg76Zw603uZNGnSYaXUDadxdPQIF9gaZVypTdtTKaX+84qPNmia9gnwC03T3lBK1V/lnLeAtwCSk5PVxIkT27KkW5aWlkZnqUV8Q95L59Mp3klDpW1E69BbLSNad0DKi4SG9ifUvpW1mbzyet7elc/HRy5gsliZPiCcJ1JiGdYj4KrHd4r30s4s9Q3UrF+PfsUKjAUFOAUHE/DUU/jfczcuodd+81cbzVoyYEm7j2Z1h3fSFcl76XzknXROXfG9dHTg0mNr536lgJY/a0+rgQXAIGBfO99LCNGdfBW0Dnw7aBHa396VtZmjhXqWpufx2emLuDjpWDQsmsfH9+6W+2Z9pTk/H/3KVdR88gnWhgbcBw8m8n//B5/p0685bVDWZgkhRPfT0YHrFLZ1XFcaAJxu53t/NYrWcXMohRCO7cqglbjQtkYrtJ+9K2sTVqsiLbuMN9PzOJBfha+7M09N7MNDY3oR6uNu7/LsQlmtNOzeTdXyFTTs2gUuLvjOnEHgkiV4DB58zfNkbZYQQnRfHR24NgJ/0jQtVimVB6BpWi9gLPDydc5rC/cBTcCJdr6PEMLRNVTCvr/C/rfA1OhwQctotrLxWAlv7cwl+1I9EX7u/HJ2fxaP7IG3mz1motufpa6Omk8+sXUbPH8e55AQgp/5MQF3341zSMhVz5HRLCGEENDxgett4MfY1lT9Etto02vYGlws/eogTdN6ArnAq0qpVy/7PAUIAcJbPkrWNK0eQCm1tuWY8djC2zpsGx37YdtkeR62xhw32lxZCCGuzsGDVp3BxJoDRbyzO5+LtQb6hfvw57uHMHdIJC7ddJPi5rw89CtWUrN+PdbGRjySkoh85hl8p01Fu8a0QRnNEkIIcbkODVxKqQZN0yYDrwPLsU3z2w48f0UjCw1wAq78F/43QMplv3+65cdX5wCUtpz3KhAMmIDjwH1KqdVt9zRCiG7DwYNWWa2BZXsLWJFxnjqDmdGxQfxh0SBS4kOuuyGvo1JWK/Xp6ehXrKRhzx40Fxd8Z80iYMkSPAYlXvUcGc0SQghxLR0+N0QpVQgsusExBVylc6FSamIrrn8OmHmL5QkhxDcaKmDvX+HA2y1BaxFM+JnDBK3c8nre3pnHuiPFmK1WZiZG8MSEWIbE+Nu7NLuw1NZSvW4d+pWrMBUV4RwaSshzz+J/9904BwVd9RwZzRJCCHEj3XMyvhBCXM/VglbKixCSYO/K2sTh81W8mZ7HtjOXcHXScfeIaH4wLpZewV72Ls0ums+do2rlSmo2bEQ1NuIxbBih//E8PlOnorl8dw8sGc0SQghxMyRwCSHEVxw4aFmtiu1ny1iansuh83r8PFx4ZlJfHhzTi2Dv7hcQlMVCfXo6VcuX07gvA83VFd/ZswlYcj8eA6/WTFdGs4QQQtwaCVxCCNFQAXv/Agf+ZQtag+60TR10gKDVbLaw4WgJS3fmklveQJS/B7+eO4C7k2Pw6oYdBy01NVSv/Rj96tWYLlzAOTyckOefx//uu3AO/O42kTKaJYQQ4vvqfv/aCiHEV74OWm+DqcmhglatwcSq/YW8uzufsrpm+kf48n+Lk5g1KKJbdhw0ZGfbug1u2oRqasIjeTihL7yAz+1T0Jy/+0+hjGYJIYRoKxK4hBDdz1WD1osQEm/vyr63izUGlu3JZ+X+QuqbzYztG8Sf7hrC+LjgbtdxUFks1H35JfoVK2ncvx/NzQ3fObMJXLIE9/79v3O8jGYJIYRoDxK4hBDdR325LWgd/BeYDZD41YhW1w9aOZfqeGtnHuszi7FYFbMGRfDkhD4Mivazd2kdzlJdTfXatehXrcZUUoJzRAQhP/0J/nfeiXNAwHeOl9EsIYQQ7UkClxDC8Tlo0FJKcei8nqXpuWw7U4a7i457R/bgB+Ni6RHkae/yOpwhKwv9ihXUbNqMMhjwHDmS0Jdfwmfy5O9MG5TRLCGEEB1FApcQwnE5aNCyWhVfnLnE0vRcjhRWE+DpwnNT4nhwdE+CulnHQWU2U7f9S/QrVtB48CCauzt+c+cSsOR+3BO+uxZPRrOEEEJ0NAlcQgjHc2XQGnSXLWgFx9m7su/FYLKw/mgxb+3KI6+8gegAD16dP5C7hsfg4epk7/I6lFmvp/qjtehXr8ZcWopLZCShP3sB/0WLcPL/9sbNMpolhBDCniRwCSEcR3057P0/OPiOQwWtmiYTK/efZ9meAsrrmhkY6ctf7h3KrMRwnLtZx0HD6dNUrVhJ7ebNKKMRz9tuI/wXP8d70iQ0p2+HThnNEkII0RlI4BJCdH31ZcTmLoM9nztU0CqtaeLd3fms2l9Ig9HC+Lhg3rgniTF9grpVx0FlMlG3fTtVy1fQdPgwmocHfnfcQcD99+Ee/+3poTKaJYQQorORwCWE6Loqc2HvXyFzFTEWEwx2jKCVddHWcXBDZjEKmDM4gsfHx5IY1b06Dpqrqqj+8EP0q9dgvnQJl+hoQl98Ef9FC3Hy+/Z/CxnNEkII0VlJ4BJCdD3FR2DPG3B6Izi5QNJ9HHAaxahZ99m7slumlOJAfhVLd+bx5dkyPFycWHJbTx4b15uYwO7VcbDp5Cn0K1ZQu2ULymjEa8xown/9n3inpHxr2qCMZgkhhOgKJHAJIboGpSBvB+x+A/LTwc0Xxj0Po34EPmE0paXZu8JbYrEqPj91kaU788gsqibQy5WfTI3ngdt6EuDlau/yOowymaj9/HP0K1bSdPQomqcnfosWEnj//bj17futY2U0SwghRFcigUsI0blZzHBmgy1oXTwO3uEw9VUY/gi4+9q7ultmMFlYd6SYt3flkV/RQI9AT15bkMidw6K7VcdBc0UF+g8/pHr1Gszl5bjExBD68kv4L1yIk+8371dGs4QQQnRVEriEEJ2TqQmOroB9fwN9AQTFwby/wuB7wLnrfnFd3WhkRcZ5/r23gIp6I4Oi/Pj7fcOYkRiOk677NMJoOnGiZdrgpyiTCa+xYwl/7VW8J0xA033TeVFGs4QQQnR1EriEEJ1Lkx4O/Av2vwmNFRCVDNN+CwmzQdd1W6AXVzfxzq581hwspNFoISU+hCdTYhkd2306DiqjkdrPPqdqxXIMx46j8/TE/667CFhyP26xsV8fJ6NZQgghHIkELiFE51BTDBn/gEPLwNQAfafa1mj1HAtdOJCcKa3lrZ15bDpWggLmDYnkiQmx9I/outMhb5a5vBz9Bx+i/2ANlvIKXHv2JOznP8dv4R04eXt/fZyMZgkhhHBEEriEEPZVdhb2/gWOfwjKComLYOxzEJ5o78pumVKKfXmVLE3PIz27HE9XJx4c3YtHx/UiOqB7dBxUSmE4fhzfd5eRc/QomEx4TRhP4O+W4DVu3NfTBmU0SwghhKOTwCWEsI/CDFsjjOxPwdkDkh+F0U9DQE97V3bLLFbF1pMXWbozl+MXagj2duWFafEsua0n/p7do+OgtbGRmtRU9KtX03z6DG7u7gQsXkzAfffi1vubUSoZzRJCCNFdSOASQnQcqxVyPrMFraIM8AiAlJdh5BPgFWTv6m6ZwWTho8MX+NeuPM5XNtIryJPf3ZHIomHRuLt0j46Dzbm56FevoWbDBqx1dbjFxRH2n7/iRGAgA2fMAGQ0SwghRPckgUsI0f4sJjixFvb8H5SfAb8YmPFHGPYAuHrZu7pbpm8wsjzjPO/tLaCywTL4lsgAACAASURBVMiQGH9emdmPqQO6R8dBZTRSt307+tVraDxwAFxc8J02jYB7F+MxfDiapqHS0mQ0SwghRLcmgUsI0X6a6+HI+7Dv71B7AUIHwh1vQeJCcHKxd3W3rKiqkXd25/PBwSKaTBYm9wvlyQmxjOwd2C06DppKSmx7Z639GEtFBS5RUYT85Cf4L1qIc5BtpNJitbC/ZD/vlL/DyY9OymiWEEKIbksClxCi7TVU2Nq6H3gbDNW2ToNzXoe4qV264+Cpkhre2pnH5uOlaMD8pCiemBBLQriPvUtrd8pqpWHPHvSr11CflgZK4T1hAv73LsZ7/Hg0J9vUyWx9NptzN5Oal0pZUxleOi8ZzRJCCNGtSeASQrSdqnzbRsVHV4C5GfrNhrHPQ8wIe1d2y5RS7M2t5M30XHblVODl6sSjY3vxyNjeRPp72Lu8dmfW66lZtw79mg8wFRXhFBhI0GOP4X/P3bhGRwO2Bhipealsyt1Elj4LZ82ZcVHjeLHPi+jydUwdMdXOTyGEEELYjwQuIcT3V3oc9rwBpz4BzQmG3ANjnoOQeHtXdsvMFiuftnQcPFlcS7C3Gy/OSOD+UT3x8+i60yFbQylF09FM9GtWU7f1M5TRiEfycEKeew6faVPRubrSZG76OmTtK92HVVlJDErk5ZEvM7P3TALdAwFIK0iz78MIIYQQdiaBSwhxa5SC/J22Rhi528HVB0b/GG57Cnwj7F3dLWsyWvjocBFv78qjqKqJ2GAv/rBwEAuGRjl8x0FrQwM1mzajX7OG5rNn0Xl54X/nIvwXL8Y9Ph6rsnLw4kE25m5k2/ltNJobifCK4LHEx5jTZw6xfrH2fgQhhBCi05HAJYS4OVYLnNlkC1olR8ArFKb82raPloe/vau7ZVUNRt7fV8B7ewvQN5oY2sOfX84ewNT+YegcvONgc07ONy3dGxpwS0gg/L/+C985c3Dy9uKc/hybDr9Oal4qlxov4e3izYzeM5gTO4fhYcPRaTp7P4IQQgjRaUngEkK0jskAx1bD3r9CVS4ExtoaYQy5D1zc7V3dLSuqauRfu/L44FARBpOV2/uH8mRKH5J7Bjh0x0FlNFL7xRfoV6+m6dBhNBcXfGbOIGDxvXgMTaLSUMmq/HVsyt3EmaozOGlOjI0aywvJLzAxZiLuzl33nQshhBAdSQKXEOL6DDVw8B1b18H6SxCRBHf9G/rPA13XnWJ34kINS3fmsuVEKU46jQUtHQfjwhy746DxQjHVH35I9ccfY6msxCU6mtAXforfwoWYfT3ZUbSDjdufYl/JPizKwoCgAbw04iVm9p5JkEfX3ZxaCCGEsBcJXEKIq6sthYx/wKFlYKyDPpNh4dvQe0KXbe2ulGJXTgVLd+ay51wl3m7OPD4+lkfG9ibcz3FHbJTFQsPu3ehXraZ+507QNLwnTrRtUDxmNIfLjrDpzOt8cf4LGkwNhHuF8/DAh5nbZy59/PvYu3whhBCiS5PAJYT4tooc2/qs4x+A1QwD74Cxz0HEEHtXdsvMFiupJ0p5Mz2PM6W1hPq48fLMftw3qge+7o7bcdBcWUn1x+uo/uADTMXFOAUHE/TkEwTcfTdFngbeydtE6ievUdpQiqezJ9N6TWNu7FySw5NlXZYQQgjRRjo8cGmaFgO8DkwFNGAb8LxSqrAV5/43kAwMBwKBR5RS/77GsY8DPwV6AwXA60qpN9vgEYRwTBcOwe7X4WwqOLvBsAdtXQcDu+5mtY1GMx8cLOJfu/Iprm6iT4gX/7NoMPOHRuLm3HWnQ16PUoqmI0fQr15D3WefoUwmPEeMIPSFn2IcO5TPirez6chPOFV5Cp2mY0zkGJ4f9jyTekzCw9nx9xUTQgghOlqHBi5N0zyBL4Fm4CFAAb8FdmiaNlgp1XCDSzwDZAKbgQevc5/HgaXA77EFuinAPzRN05RS//zeDyKEo1AKzm2D3W/A+d3g7g8TXoCRT4J3iL2ru2UV9c28v7eA9zPOU91oIrlnAL+ZN5DJ/UIdtuOgpb6B2k0b0a9aTXNODjpvb/zvuQfPuxaw162ITbmb2LP+FSzKQv/A/vws+WfMip1FsEewvUsXQgghHFpHj3A9DsQCCUqpcwCaph0HcoAngT/f4Hw/pZRV07S+XCNwaZrmDPwOWK6U+kXLxzs0TYsEXtM07V9KKVMbPIsQXZfFDKfW2aYOXjoJvlEw/b9to1puXbdpxPnKBt7elcdHhy7QbLYybUAYT6bEMrxnoL1LazeGrCz0q1dTu3ET1sZG3Ab0J+w3/0XeyChWlX7B54d/QL2pnlDPUB4a+BBzY+fSN6CvvcsWQgghuo2ODlzzgIyvwhaAUipf07Q9wHxuELiUUtZW3GM0EAKsuOLz5cAjwDhgx80ULYTDMDbC0eWw929QUwgh/WDBPyHxTnB2tXd1t6TJaCEjr5J/ZBo4/FkazjodC4dF8YPxsfQN9bZ3ee3CajRS99ln6FevoenIETRXV3xnzaJp7gQ2u2eTmv8uJTtL8HD2YGrPqcztM5cRYSNw6sJdJYUQQoiuqqMD10Bgw1U+PwXc1Yb3ADh5lXsADEACl+huGqvgwFuwfyk0VUHMbTDrfyBuOui6VnMEpRS55Q2kZ5eTllXG/vwqjGYrHs7wZEofHhnTi1Bfx+w4aCwqovqDD6j+eB0WvR6Xnj3w+cmP2TPEjfXl2zl5bjM6TcfoiNE8M+wZJsdMxtPF095lCyGEEN2appTquJtpmhH4s1Lq5Ss+/y3wslKqVQGwZUphDldpmqFp2s+xTSn0UEoZLvvcGTAB/6mUeu0q13wCeAIgLCxs+Jo1a27m0dpNfX093t6O+V36rqyrvBc3QxkxRRuIKP0CJ2szFUEjKOyxiFq//vYu7aYYzIozVRZOlFs4XmGhosn291aEl8bgYCcGhTgR5WogwLfzv5ObZrXievIknuk7cT19GgDD4EGcHBXNp5HFnG4+gxUrUS5RjPAeQbJnMn7OfnYu+htd5f+V7kTeSeck76XzkXfSOXWm9zJp0qTDSqnkGx1nj7bwV0t4bbmK/atr3VSSVEq9BbwFkJycrCZOnNiGJd26tLQ0Okst4hud/r1cOmVbn3VirW3PrEF3w9hnCQ7tT1dokaCUIvtSPenZZaRllXOwoAqTReHp6sSYPqFMTAghJT6EmMBvRm86/Tu5SeaKCqrXfoz+ww8wl5TiHBJC04ML+HSQmQ21u6kznSZEF8JDAx9iTp85xAfE27vkq3K09+II5J10TvJeOh95J51TV3wvHR249NjauV8poOXP2kJVy8+BQOllnwde8edCOBal4Pxe2PMG5HwOLl4w6ocw+inwi7Z3dTdUZzCx51wF6dnlpGeVU1JjG6BOCPPh0bG9SYkPIblXIK7OXWsK5M1QStF48CDVa9ZQ+8U2MJnQJSdx4u7B/DvwDEVNm/Co8eD2Hrczp88cRoWPknVZQgghRCfX0YHrFN+ssbrcAOB0G96DlvtcHrgGtPzcVvcRonOwWiFriy1oXTgInsEw6Zcw4jHw7Lzd+ZRSnCmtIy27jPSscg6f12O2KnzcnBnbN5hnp4QwIT6ESH/H3xvKUldHzYaN6NesxnguF83Hh/IZw/hoYB1p2kl02mlG+Y/iR8N/zJQeU2RdlhBCCNGFdHTg2gj8SdO0WKVUHoCmab2AscDL1znvZuwDKoD7se3B9ZUl2Ea39rTRfYSwL3MzHP8Q9v4FKrLBvyfM+hMMXQIunTOk1DSa2HXONoKVnl1OWV0zAAMifHliQiwp8SEM6xmAi5PjjmJdznDmDPpVq6lJTUU1NmKM78GeJQN4LzKXRqfDxAXE8ZPYnzCr9yzCvMLsXa4QQgghbkFHB663gR8DGzRN+yW2dVavAUXYNioGQNO0nkAu8KpS6tXLPk/B1vI9vOWjZE3T6gGUUmtbfjZpmvYrbBsdF2MLXZOBR4FnlFLG9n1EIdqZoRYO/xsy/gF1pRA+CBa9AwMWgJM9lmVem9WqOFVSS1pWGenZ5Rwp1GNV4OvuzPj4ECbG29ZiOWpXwauxNjdT++mnVK9eQ9OxYyhXFwpGRrOyXyXHQ0oI9gjmrt5LmNtnLgmBCfYuVwghhBDfU4d+daaUatA0bTLwOrZ9sTRgO/C8Uqr+skM1wAm48tvcvwFSLvv90y0/vjrnq/u8qWmaAn4K/AwoBH6slPpHGz6OEB2rvgwy/gkH34HmGug9Aeb/HfpMtjXG6CSqGozsyrGNYu3MKaei3vY9jsHRfjw9qS8TE0IYEu2PczcZxfqKsbAQ/ZoPqFm3Dkt1NY0R/nw+O5ANcTVYfSqY3GMyT8XOZVTEKJx1nSs4CyGEEOLWdfi/6kqpQmDRDY4p4CqdC5VSE2/iPku5bNRMiC6rMhf2/hUyV4HFCAPmwdjnIGq4vSsDwGJVHL9QTVrLNMFjF6pRCgI8XZgQH8LEhBDGx4UQ7O1m71I7nDKbqU9PR79qNQ179qB0Os4m+vLRTB2netYzMnIUr8TO5faet+Pl4mXvcoUQQgjRDuTbqEJ0ViVHYfcbcGYj6Fwg6V4Y8ywE9bF3ZZTXNbMrp5y0rHJ25ZSjbzShaZAU489zU+KYmBDKoCg/nHSdZ+StI5nKyqheu5bqDz/EfPES9f5ubJ3gzBeDFUEx4czt8ziv955FuFf4jS8mhBBCiC5NApcQnYlSkLfDFrTy08HN1zaaNepH4GO/pglmi5XMomrSs20h60RxDQDB3q5M6hdKSnwIE+JCCPBytVuN9qaUonH/AfRrVlP7xTY0i4VTsS5sWaijINGPGXGzWRo7l36B/dA60RRQIYQQQrQvCVxCdAYWM5zZYNusuPQYeIfD1Fdh+CPg7muXkspqDaRl26YJ7soup9ZgRqfBsB4BvDAtnpT4UAZG+qLrpqNYX7HU1lKzfj1lq1agCopo9NCxfbhiZ7InA5Km8EjsXEZHjpZ1WUIIIUQ3JV8BCGFPpibIXGlbo6UvgKA4mPdXGHwPOHfsmieTxcrh8/qvR7HOlNYCEOrjxozEcFLiQxnXNxg/T5cOrauzajp5irKV71GfuhWd0UR2JHwx2wnTxGRm9l/AUz1ux9vV295lCiGEEMLOJHAJYQ9Nejj4L9i/FBrKISoZpv0WEmaDruO695VUN5GebesouOdcBXXNZpx1GsN7BvDSjH6kxIfQP8JHpsC1sBoM6Ddv5sLyd3DNKsDgAnsGaJya0IPhE+7il7FzZF2WEEIIIb5FApcQHamm2LZ/1uF/g7Ee+k6Fcc9Dz7Ed0tq92WzhcIGetOxy0rLKyL5k240hws+dOUMiSIkPZWzfIHzcZRTrcs15+Zz7998xp36Ba4ORsiDYM9Mbn3lzmTF4EU8HDpBQKoQQQoirksAlREcoz7Ktzzr+ISgrJC6yNcMIT2z3WxdVNdrWYmWVsze3gkajBRcnjZG9A7lreAwpCSHEhXpLYLiCMps5v2UtJcuXEXCiEKsOjvRzomrGbYyY+TC/iBqDi06CqRBCCCGuTwKXEO2pcD/seQOytoCzByQ/CqOfhoCe7XZLg8nCgfyqln2xysgtbwAgOsCDhcOimBgfyug+QXi5yf/+V6MvOsfxd1/HY8sufGpMWHxh16xowhYv4c6khfi4+ti7RCGEEEJ0IfIVlxBtzWqFnM9tQatwH3gEQMrLMPIJ8Apql1sWVDS0NLsoY19eJQaTFVdnHbfFBnH/qJ6kJIQQG+wlo1jXYLQYObR5GdVrVtMj8xKhCrLiPbE8OYvbFj7NeP8Ye5cohBBCiC5KApcQbcVighNrbVMHy8+AXwzM+CMMewBcvdr0Vk1GCxl5laRllZGeXU5BZSMAvYI8WTyiBykJIdzWOwgPV6c2va8jUUpxKn8/p5f/nZDPjxJeacHFQyNv5kBiH/oh8wdPkYAqhBBCiO9NApcQ31dzPRx5H/b9HWovQOhAWPg2DLwDnNpmjY9Sitzyb0ax9udXYTRbcXfRMaZPMI+M7U1KfAi9gts22Dmi0vpS0j7/F+aPNzH4WB2DzHAp1p+aHyxg6OKnGeEhrdyFEEII0XYkcAlxqxoqbG3dD7wFhmpbp8G5b0Df29uk42BDs5m9uZWkZ5eRllXOBX0TAH1CvHjgtp6kxIcwsncg7i4yinUj9cZ6tmWlkv/x+8Sl5ZF0EYyuOupvH0G/x56l/6Bke5cohBBCCAclgUuIm6UvIC57KezeAWYD9JsNY5+HmBHf67JKKXLK6knLsgWsgwVVmCwKL1cnxvQN5ocpfUiJDyEm0LONHsSxma1m9pbsZeee1Xil7mb8MTMJzdAQHYTbz+4l/p6HcPKW0SwhhBBCtC8JXEK0hsUMOZ/BoWVwbhsRmhMkLYYxz0FI/C1fts5gYs+5iq83Hy6pMQCQEObDoy3TBJN7BeLq3HGbIXdlSinOVJ1hc9YGSreuZ8z+OhadV1iddDBxDD0e/iGeycmyNksIIYQQHUYClxDXU3PBtj7ryHKoKwGfCEh5kQxjAmOmL7rpyymlOFNaR1p2GelZ5Rw+r8dsVfi4OTO2bzDPTglhQnwIkf4e7fAwjquotojPaz7n3ff/l7id+Uw5pgioB3NYIIHPLyHozrtwDg62d5lCCCGE6IYkcAlxJasFcr6Aw8ts7d2Vsq3Lmv0niJsOTs4Y09JafbmaRhO7ztlGsNKzyymrawZgQIQvT0yIJSU+hGE9A3BxklGs1jJbzWSWZZJ+IZ3Mk9vwOVXIqCzF/TkKDQ33cWMIuW8J3hMmoDnJGjchhBBC2I8ELiG+UltiG8k68r6t26B3GIz7CQx78KY2KrZaFadKar9u2X6kUI9Vga+7M+PjQ5gYH0JKfAihvu7t+DCOp6a5hj0XdnP46BbqDmTQO7+J5EKYVaMAMHt7EfKD+/C/525co6PtXK0QQgghhI0ELtG9WS2Q+6VtbVb2VlAW6DMZZvweEma2uq17VYORXTm2UaydOeVU1BsBGBztx9OT+jIxIYQh0f44yyhWqymlyKvJ40DGJ1zcsx2fU4X0K7JyZ53tzy1+3niPGIHvyNvwHDGCjNJSBk2ebN+ihRBCCCGuIIFLdE91F+Hocjj8PtQUglcIjH0Whj0Egb1veLpVKY4W6klrmSZ47EI1SkGApwsT4kOYmBDC+LgQgr3dOuBhHIfR1ExmxgYK0rdgPXqCXvmNJNn2dKbZ3xOXEUMIHXc73iNG4NqnD5rusgB76ZJ9ihZCCCGEuA4JXKL7sFohb4dtbVbWp2A1Q+8UmPYqJMwGZ9frnq6U4mhRNSszCvnsRCP1n+1F0yApxp/npsQxMSGUQVF+OOmkA15rKbOZssz9ZH25jsZDhwjOLsPHAIOA2kB3LCOH4Dl+KhFjp+DSs6d0FxRCCCFElyOBSzi++jI4ugKOvAf6AvAMgtueguEPQ1CfG57ebLaw+Vgp7+0r4PiFGrzdnBkc4sw9ExKZEBdCgNf1g5r4hjIaaTx5kqKdn1KZsRuvM4W4NVsJAcqCnLg0Ipag0RMYePud+PS48bsRQgghhOjsJHAJx2S1QsFO29qss6lgNUHPcTD5V9B/LjjfeKpfaU0TKzMKWX2gkMoGI31DvXlt/kDuGBbNoX27mZgU1QEP0rVZDQaajh2n7sA+Lu1NQ3cqB2ejBYCGYMgdFoTnyBEMmLSICQljZQRLCCGEEA5HApdwLA0VkLkSDv8bqvLAIwBGPWlbm9WKDYqVUhws0PPe3gK2nrqIVSmm9Avj4TG9GNs3SALBDVgbGmg8mknjoYPUZOzDePIUOrMFK1AcBtlJLjAkkd4psxkzYAYhniH2LlkIIYQQol1J4BJdn1JQsNu2NuvMJrAYoccYmPgK9J8HLjduv95ktLAhs5j39p3nTGktfh4uPDauNw/c1pOYQM8OeIiuyVJbS+PhwzQeOkTjwYM0nTqFZrFi1UFuGJwZrnExLpiI0ZMZ028qPwofgZuTNBIRQgghRPchgUt0XY1VkLnKNppVmQPufpD8mG1tVmi/Vl2iqKqRFRnn+eBQEdWNJvqF+/CHhYOYnxSFh6tsmHsls15P48GDLQHrEM1nz4JSWJx15Ec6c3yU4kyME25DBjM6bjJ3RE8gzj9ORgaFEEII0W1J4BJdi1JQuM+2Nuv0BrA0Q/RIWPBPGHgHuHi04hKKvbmV/HtvAdvPXELTNKYPDOOh0b0Y2TtQwsFlTGVlNB06RMPBgzQePIjxXC4AVldnint5c3C8M8ejLZT09GZkz3GkxKTwo6hxBLoH2rlyIYQQQojOQQKX6Bqa9HDsA9u0wfKz4OYLwx6E5EcgbGCrLtHQbGbdkQu8t+8858rqCfRy5UcT+3D/qJ5E+t84qHUHpuJiGlsCVtPBQxjPnwdAebhTGR/C0RmhpIdUkhuhiPQPICV6Af8Rk8Lw0OG4tHKTaCGEEEKI7kQCl+i8lIILB22jWafWgdkAUcNh3t8gcSG4erXqMvkVDby/r4C1hy5Q12xmUJQff7prCHMGR+Du0n2nDSqlMBUW2qYIHrStwTKVlACg+fjQOLAnp0cO4vOACxwLqEVzKmNo6FDmRj/ChJgJ9PbtLaOBQgghhBA3IIFLdD6GGjj+oS1olZ0CVx9Iug+GPwIRg1t1CatVkZ5Tznt7C0jLKsfFSWPWoAgeGtOLoTH+3TIoKKUw5uZ+K2CZy8sBcAoMhKQBFM0axI6gS3zmdAaTOouvqy/josazODqFsVFj8XPzs/NTCCGEEEJ0LRK4ROegFBQftoWskx+DuQkikmDu/0HineDm3arL1BpMrD10geUZ58mvaCDEx43nb4/jvpE9CPW9cbdCR6IsFpqzs78OV42HDmHR6wFwDg3FfWQyVQnhZITXscVyjLzaDABi/WJZEv0gKTEpDAkZgrNO/poQQgghhLhV8pWUsC9DLZz4yLY26+IJcPGCwXfb1mZFDm31ZXIu1fHevgLWHSmm0WhhWA9/nl+cxMzECFydde1XfyeizGYMp09/E7COHMFaWwuAS1QU3ikpaEkDORmj2GY+we6SPdQaa3GucSY5LJm7Eu4mJTqFGN8YOz+JEEIIIYTj6PDApWlaDPA6MBXQgG3A80qpwlac6w68BiwB/IFM4CWl1M4rjisAel7lEncopdZ/rwcQbaPkqG0068RaMDVA+CCY/WcYdBe4+7bqEharYvuZS7y3r4A95ypxddYxb0gkD43uxaBox5/6ZjUaMZw48XXAajp6FGtjIwCuvXrhO306HsnDqeoXzk7TGdIvpHO07FMs5ywEuAUwMWYiE2MmMjpiNN6urRtBFEIIIYQQN6dDA5emaZ7Al0Az8BCggN8COzRNG6yUarjBJd4BZgM/A/KAp4HPNE0brZTKvOLYz4D/uuKzrO/3BOJ7aa6Hk2ttQas0E1w8bc0vhj8KUcOgleuqqhuNfHCwiOUZ57mgbyLCz52fTU9g8YgYgrwdd1Nda1MTTceOt6zBOkjTsWOo5mYA3OLi8FswH88RI3AZmsQxdZ70onR2XniLwgzb9zLiA+J5NPFRUmJSSAxKxEnXfRuGCCGEEEJ0lI4e4XociAUSlFLnADRNOw7kAE8Cf77WiZqmDQHuAx5VSi1r+Swd/n979x0fV3nne/zzGxVLcpFlSy7Y2HJBrhobsCkm2IZQHHoxodsEFu4mm8JlNwlpLAGSwG5Cdkn23sBmN5gWuJBCYBNCgAgHbNMMliyDu9ybXGTL6tJz/3iOZFnI1kgzI42k7/v1Oq+xzpxz5nnm5ym/eRrFwH3AZS1OKXXOLYt5DaT9dhT6LoOFz0PNIRgyBS76se86mBZ5S9THOw6yaEkJv/9oG1W1DZw+ZhDfuWgS508eSnJSz+s2WF9+mMoPP2waf1VZVAS1tRAKkTZxIlnXXUvGzJmkn3oqh9Lhb9v+xptbXmPJG/dRXltOaiiV04afxoLJC5g9cjbD+w3v6iqJiIiI9DqdnXBdBixrTLYAnHMbzext4HKOk3AF59YCzzU7t87MngXuNrM+zrnqOJVb2qvmMKz8rU+0tn0AyWkw5So/NmvkzIhbs2rrG3i1eBeLlpTwbsk+0lJCXHnySBacOZpJwyPrethd1JeVUfHB8qYEq2rVKqivh6Qk0qZOYfDCBT7BOuUUQv36se7AOl7a+iZvLl3Eij0rcDiy07O5MPdC5oycw+nDTycjJaOrqyUiIiLSq3V2wjUFeLGV/cXANRGcu9E5V9HKuanA+ODfjS41swogCfgQeFDjtzrBrmLfZbDwOag+CDkTYd5DMO1aSM+K+DKl5dU8++5mnlq2mZ0HqzhxUDrfuWgSn59xIpkZPWOB3bp9+/z4q/f9GKzq1avBOSwlhbRpYQbfcTsZM2aQMX06ob59qa6v5r2d7/Fm8SMs3rqY7Yf9mlmTB0/mi9O+yOwTZzNp0CRC1vNa+0RERES6K3POdd6DmdUADzvn7m6x/wHgbufcMRNAM3sVGOCcO6PF/vOAvwCznXN/C/b9DHgP2AgMBb4MzAFuds49dYzr3wHcATB06NBTn3322Y5VMsbKy8vp1y+xJzQI1VeTs+dtTtj+CpkHV9NgKewechY7hl9IWeakiFuzADaW1fPapjre2VFHnYMpg0OcNzqFaTlJhBJo7ayOxCV04ACpa9eSsnYtqWvWkrxzJwAuJYWacWOpPSmPmpPGUztmDKT4pPJg/UGKK4pZWbmST6o+ocbVkGqpTEibwNT0qUxJn0Jmcs+fICQS3eG10hspLolHMUlMikviUUwSUyLF5ZxzzvnAOTejreO6Ylr41jK8SL5JW6TnOue+ctQBZr8DlgE/AlpNuJxzjwGPAcyYMcPNnTs3giLFX0FBAYlSlk/Z/YnvMrji136x4sEnwYU/JDTteoZlDGJYhJepqWvgj0U7eHxJCR9tOUzf1CRuOGM0C87MZfyQxHhBtRRJXGq2bqPi/feaugjWbvKTV4T69iX91FPIuPEGMmbMIH3KC4HptAAAIABJREFUFCw1FfCLE3+8z88ouHjLYlbuXQnAsL7DuDLvSuaMnMPMYTNJS+5da4pFIqFfK72Y4pJ4FJPEpLgkHsUkMXXHuHR2wrUfGNTK/qzgvuPZB4w6xrmN97fKOVdvZs8DD5nZcOfcjkgKK62orYJVL/pEa/NSSEqFSZf5sVmjz2pXa9aug1U8/c5mnnlnM6Xl1YzJ7ss/XzqZ+aeOpH9a9+o26JyjpqSkqXtgxfvvU7fd/zcLZWaSMWMGWdddT8bMmaRNnIAlH3npVdZV8s6WgqYka3flbgwjnBPmqyd/ldkjZ5OXlYclUAufiIiIiESmsxOuYvxYrJYmA6siOPdKM8toMY5rMlADrGv9tCaN31Y7rw9lT7JnDXzwOKx4Bir3w6BxcP79MP0G6Jsd8WWccyzfvJ/Hl2ziT0U7qHeOcyYMYeGsXM4en00o1E2SioYGqtasOSrBqt9TCkDS4MFkzJxJxq23kTFzJn1OGo+Fjh5XtfPwThZvXcybW9/knR3vUF1fTd+Uvsw6YRZzRs7hMyM+w+D0wV1RMxERERGJoc5OuP4A/NjMxjrnNgCYWS5wFnD3cc5rPPf7+Mk1FgXnJgPXAq8eb4bC4LhrgM3OuZ1R1qH3qKuGj1/yk2BsegtCKTDpEjj1C5B7NoQin5yhqrael1ZsZ9HSElZuO0j/tGQWzsrl5jNGk5vdN351iJH68sNUrVxJZWEhlYUryFm6jI2H/bJxycOG0feMM/0EFzNnkjom91OtUQ2ugZWlK30r1tbFfLLvEwBG9hvJNXnXMHvkbGYMnUFKUvdq2RMRERGR4+vshOs/8RNYvGhm38W3Nt0PbAEebTzIzEYD64H7nHP3ATjnPjKz54B/M7MU/IQYXwTGADc2O/d6/BTzfwyuOxS/QPKpwPXxrmCPsHe97zL40TNQsReycuG8e2H6TdAvp12X2nagkqeXbeLZ97aw73ANeUP78cAVU7ny5BH07dMVQwjb5urrqV63jsoVK6gsLKRqRSHV69ZBMMFM6ujRVIfDjL30UjJmziBl5MhWu/sdrj3M0u1Lm5KsfVX7CFmIk4eczF2n3sWckXMYkzlGXQVFREREerBO/cbrnDtsZucCPwWexHfzex240zlX3uxQw0/n3rIJ5QvAD4AHgIHACmCec255s2M2AkOAf8WPF6vAz1g4zzn355hXqqeoq4FPXvaJ1sbFEEqGCRf5sVlj5rarNcs5x7IN+1i0pIRXV/kGxfMnD2XhrFzOHDs44RKM2l27qFyxgqrCQipXFFJZXIyr8L1WkzIzSZsWpv+FF5I+LUx6fj5JAwdSUFDAwFYGbG49tLUpwXpv53vUNtTSP7U/nxnxmaaugpl9NKugiIiISG/R6U0MzrnNwNVtHFNC67MPVgJ3Bduxzl0GnBtdKXuRfRvgg0Xw0dNweA8MHAXnfg9Ovgn6RzrPoFdRU8fvP9zOE0tL+GTnIQZmpHDH7HHcdMYoRmYlxgK8DYcPU1lcfCS5Kiykbtcuf2dKCmmTJjHwqqt8chUOkzJq1HETxLqGOgr3FFKwtYDFWxazvmw9AGMyx3DjpBuZPXI204dMJyWkroIiIiIivVFi9umS+KqvhdV/9GOzNvwVLAkmfM6PzRp3DoSS2nW5zXsreHJZCc+9t4WDVXVMHj6Af7k6zGXTTyAtpX3XiiVXX0/1+vVHJVfVa9dCQwMAKaNGkTFzJunhMOnTwvSZNIlQMD378ZRVl/HB4Q945W+v8Na2tyirLiPZkjl12KlcnXc1c0bOYdSA1ibUFBEREZHeRglXb7J/EyxfBB8+BeW7YMBImPttOOVmGHBCuy7lnONva0tZtKSEN1bvJmTGvKnDuGVWLjNGZ3VJt8Ha3buPSq6qiopoCLoGhjIzSc/Pp/9nP0v6tDBp4TDJWVltXNG3YK3dv5ai0iIK9xRSVFrExrKNOBxZh7KYM3IOs0fOZtYJs+if2j/eVRQRERGRbkYJV09XXwdrXvFjs9a97tfJOulCPzZr/Hntbs0qr67jNx9sZdHSEjbsOUx2v1S+cs54bjh9NMMyO28x3obKSqqKi5uSq8rCQup2BMurJSeTNmECmVdcTvq0aaSFw6TmfnrmwJacc+yq2EXhnsKm5GrV3lVU1VcBMChtEPnZ+Vw05iJSdqSw8IKFJLXz+RMRERGR3kUJV091YAssfwI+fBIO7YD+J8Ccb/rWrMyR7b7chj3lPLF0Ey98sJXy6jqmnTiQn147jYvyh9MnOb5Jh2tooGbDhqOSq+o1a6C+HoCUESPIOHk6aQsXkB6eRtrkSYTS2k7+Dtcepri0mMLSQor2FFFUWsSeyj0ApIZSmTh4IvPz5pOfnU9+Tj4j+x2ZjbBgf4GSLRERERFpkxKunqShHta+6sdmrfuLn8Z8/Hlw8cNw0gWQ1L5wNzQ4Ctbs5vElm1i8Zg8pScYl4RNYOCuX6ScOjFMloK601CdWK/yaV1VFK2ko95NYhvr1Iz2cT7/b/4708DTSp4VJHtz2AsH1DfWsL1vflFgVlhay/sB6GpwfzzV6wGhOH346+dn5hHPCTMiaoDWxRERERCRqSrh6grJtviVr+RNwcBv0GwqfuQtOWQBZo9t/ucpann9/C08s3cTmfRUMHdCHu87P4/rTRpHTv09Mi95QVUXVqlVHkqsVhdRu3+7vTEqiz4Q8BlxycVNylTpmDBbBFPW7K3ZTtMcnVkWlRRSXFlNR58dzDUgdQH5OPueNOs+3XmXnMzAtfgmkiIiIiPReSri6q4Z6Pybrg1/5MVquAcadC/Me9DMOdqB1ZvXOQyxaWsLvlm+jsraemblZfGPeBC6cMoyUpMjX4ToW19BATUnJUclV1Zo1UFcHQPIJw0kPTyPrppv8xBaTJxNKT2/zupV1lazau+qoBGvnYb/+V3IomQlZE7h8/OVNrVej+h9/qncRERERkVhRwtXdHNoJy4PWrLLN0DcHzvoanLIQBo1p9+Xq6ht47ePdLFpSwtINe+mTHOLy6Sew4Mxcpo6IboHeun37qFyxws8YuKKQypUraTh4EIBQ376k5ecz+NZbm9a8Ss7JafOaDa6BkrISCkuPTGyxdv9a6p0fzzWi3whOzjmZ/Mm+5WrS4En0SYptq5yIiIiISKSUcHUHDQ2w4Q0/Nmv1n8DVw5g5cMF9MOFiSG577aiW9h2u4dn3NvP0ss1sO1DJiIHpfHPeRK6beSJZfdt/vYbqaqpWrTpqWvbarVv9naEQffLyGDBvXlNylTp2LJbU9qQTeyv3HjUle3FpMYdqDwHQL6UfU7OncuvUWwnnhMnPzmdwetvjuUREREREOosSrkRWvptRm16AR74KBzZBxmA48x/g1Ftg8LgOXXLltjIWLSnhDyu2U13XwKxxg7nn0smcN2koSaHIutk556gpKTl6zavVq6G2FoDkYcNID4fJuv460sNh0qZMIZSR0eZ1q+ur+XjvxxSVFjV1D9xWvg2AJEsiLyuPz435HPk5+YSzw+Rm5hKy6Ls6ioiIiIjEixKuRFb0PGM3Pgm5Z8Nn74FJl0Jy+7vH1dY38MrKnSxaUsL7m/aTnpLE/FNHsnBWLnlD216st27//qOSq8qiIhrKygCwjAzSp05l8C0LSQuHSQ9PI2XokDav6Zxj08FNR7Verd6/mroGP55rWN9h5Gfnc92E68jPyWfy4MmkJ7c9nktEREREJJEo4Upk02/knf2ZnH7RTR06fc+hap55ZzNPv7OJ3YeqGT04g+9ePIlrZpxIZnrrk2o01NRQ/fHHR615Vbt5s78zFKLP+PEMuOD8puSqz/hxEXUNPFB1wLdcBVOyryxdSVm1T9oykjOYmj2VhZMXNrVe5WS0PZ5LRERERCTRKeFKZOkDqcxo/yLFH27ez6IlJfxP0Q5q6x2z83J48OrRzM0bQqhZt0HnHLWbNzdb86qQ6o8/xjV2DRwyhPRpYQZeM98vKDxlCkn9+rb5+LX1tazev5rCPYVNiwpvPuSTtpCFGDdw3JEp2XPyGZc5TosIi4iIiEiPpISrh6iuq+d/CnewaEkJK7aW0a9PMjeePpqbzxzNuJx+ANSXlVFeWBTMHLiCqsIi6g8cAMDS00mfMoWsBTc3rXmVMmxYm4/rnGNr+dajFhT+ZO8n1DTUAJCTnkN+dj5XnnQl4ewwU7Kn0Del7aRNRERERKQnUMLVze0sq+Lpdzbx63c3U1pew7icvtx3+RSuzB9K8sZ1VP75RbYX+RasmpISf5IZqePG0u/cc0kPh0mfPo0+48djyW3/dzhYc5CVpSubEqyi0iL2Ve0DIC0pjcmDJ3PDpBua1rwamjFUa16JiIiISK+lhKsbcs7x/qb9PL6khD+v3El9QwNXDg9x7fBDjN5VSNW//YJtH3+Mq/GtTEnZ2aSHw2RecYVfUDg/n6R+/dp8nNqGWtbuX3vUgsIbyzY23T82cyxnjzi7aUr28VnjSQm1f8FlEREREZGeSglXN1JVW8+LH23jub9+jPtkFdMObeWx+t0M374eDuwH4ECfPqRNmULWDTccWVD4hBPabGVyzrHz8M6mMVdFpUWs2ruKqvoqAAalDSKcHeaSsZeQn53P1Oyp9E9te4ZDEREREZHeTAlXoquvZ9OyD1jy8mLKPviIMXtK+EH57qa7U8eOJX3uHN9yFQ6TlpeHpbTdynS49jDFpcUUlhY2TcteWlnqrxlKZdLgSczPm9/UejWi3wh1DRQRERERaSclXAms6NFFDHrkJ1TU1zIdqMgYQMrUqWSfcZ1vvcrPJ2nAgDavU99Qz7oD645My76nkPUH1uNwAIweMJozhp9BOCdMODtMXlYeKUnqGigiIiIiEi0lXAls28BhrBx7BsNnzWTO5ecwcdK4iFqZdlfsPmrc1crSlVTWVQKQ2SeT/Ox8Lhh9Afk5+eRn55PZJzPeVRERERER6ZWUcCWwz84/n1B2Khd89pxjHlNRW8GqvauOar3aVbELgORQMhOzJnLF+CuaZg0c1X+UugaKiIiIiHQSJVwJLCUpRGrSkeSowTWwsWxj05irotIi1u5fS72rB2Bkv5GcMvQUwtlh8nPymThoIn2S+nRV8UVEREREej0lXAnsQNUBiiqKKFxeSGFpIcWlxZTXlgPQP6U/U7Onclv+bU0J1qC0QV1cYhERERERaU4JVwJ7acNLPLbnMZJKk8jLyuOiMRf5WQNz8skdkEvIQl1dRBEREREROQ4lXAns/NHnU7O5hhvOu4H05PSuLo6IiIiIiLSTmkgS2LC+wxiXNk7JloiIiIhIN6WES0REREREJE6UcImIiIiIiMSJEi4REREREZE4UcIlIiIiIiISJ0q4RERERERE4kQJl4iIiIiISJx0esJlZiea2QtmVmZmB83st2Y2KsJz08zsX81sh5lVmtlSM5vdynEhM/uWmZWYWZWZrTCzq2NfGxERERERkWPr1ITLzDKAN4CJwELgZuAk4K9m1jeCS/wXcDtwD3AJsAP4s5lNb3Hc/cC9wM+BzwHLgOfN7KIYVENERERERCQiyZ38eLcDY4EJzrl1AGZWCKwF/hfw8LFONLNpwA3Arc65XwX73gSKgfuAy4J9Q4B/Ah50zv04OP2vZjYeeBD4YxzqJSIiIiIi8imd3aXwMmBZY7IF4JzbCLwNXB7BubXAc83OrQOeBS40sz7B7guBVOCpFuc/BeSb2ZioaiAiIiIiIhKhzk64pgArW9lfDEyO4NyNzrmKVs5NBcY3O64aWNfKcUTwOCIiIiIiIjHR2V0KBwH7W9m/D8iK4tzG+xtvDzjnXBvHHcXM7gDuABg6dCgFBQVtFKdzlJeXJ0xZ5AjFJfEoJolJcUk8ikliUlwSj2KSmLpjXDo74QJomQgBWATnWYTnRnrc0YVy7jHgMYAZM2a4uXPnRlCk+CsoKCBRyiJHKC6JRzFJTIpL4lFMEpPikngUk8TUHePS2V0K99N6C1MWrbdeNbfvOOc23t94m2VmLROslseJiIiIiIjEVWcnXMX4MVYtTQZWRXDumGBq+Zbn1nBkzFYx0AcY18pxRPA4IiIiIiIiMWGfHuoUxwczuxP4MZDnnNsQ7MvFTwt/t3PuJ8c5dzrwIXCLc25RsC8ZKALWOecuDfYNAbYAP3TOfb/Z+a8BQ51z+RGUcw+wqSN1jINsoLSrCyGforgkHsUkMSkuiUcxSUyKS+JRTBJTIsVltHMup62DOjvh6gusACqB7+LHWt0P9AfCzrny4LjRwHrgPufcfc3OfxY/7fvXgY3AF/ELIM9yzi1vdtyDwJ3At4HlwLX4db4ud869FOdqxpSZve+cm9HV5ZCjKS6JRzFJTIpL4lFMEpPikngUk8TUHePSqZNmOOcOm9m5wE+BJ/ETWbwO3NmYbAUMSOLTXR6/APwAeAAYiE/e5jVPtgLfAcqBrwHDgNXA57tbsiUiIiIiIt1bp89S6JzbDFzdxjEltDKroHOuErgr2I53fj0+KXugwwUVERERERGJUmdPmiHt91hXF0BapbgkHsUkMSkuiUcxSUyKS+JRTBJTt4tLp47hEhERERER6U3UwiUiIiIiIhInSrhERERERETiRAlXFzGzE83sBTMrM7ODZvZbMxsV4bk/NLNXzWyvmTkzuyXOxe0VOhoTM5thZo+Z2SdmVmFmm83saTMb0xnl7umiiMtoM3vRzDaZWaWZlZpZgZl9rjPK3ZNF8/7V4jrfCt7D3opHOXuTKD9T3DG26fEud08X7WvFzCaZ2fPB+1elma02s6/Fs8w9XRSfKfce57VS1Rll78mifA8bZWaLgu9fFWa2xsweCJajSggaw9UFzCwDP6V9NUfWI3sAyMCvR3a4jfMPAR8BG4AFwBecc4/Hs8w9XTQxMbMfA2cCTwPFwAjge8AQYLpzbkt8S99zRRmXKfgZTQuArcAA4HbgYuBq59xv41r4Hira969m1xkLFAKHgbXOuc/Ep8Q9Xww+UxzwOPBoi7sKnXMVMS9wLxGDuMwA3sC/h/03UAacBPRzzj0cv5L3XFF+powERrbY3Rd4Bfidc+7zcSl0LxBlXPoCHwIpwL3AZmAm8H3gD865a+Na+Eg557R18oZfH6weGN9s3xigDrgrgvNDwe14/H/KW7q6Tt19iyYmQE4r+0YDDfjFu7u8ft11i/a10sr1koEtwEtdXbfuusUqJsCf8V/wC4C3urpe3XmLwWeKAx7o6nr0tC3Kz5UQ/ge833V1PXrSFofPlJuD18/FXV237rxF+Vq5IIjBBS32Pxicn9HV9XPOqUthF7kMWOacW9e4wzm3EXgbuLytk51zDXEsW2/V4Zg45/a0sm8TsAff2iUdF9VrpSXnXB3+V+LamJWw94k6JmZ2A3AK8K24lLD3ienrRGImmrjMBSYDasmKrVi/VhYCu/A/IEnHRROX1OD2YIv9B/A/XHxqXd+uoISra0wBVrayvxj/BiudL6YxMbNJ+C6FH0dZrt4u6riYWcjMks1smJl9D8gD/iOGZextooqJmWUBPwW+4ZzbF+Oy9VaxeP/6oplVB+Mf3jCzs2NXvF4rmrg0drFNM7NlZlZrZrvN7BEzS49pKXuXmH3WB10MzwGeDn7Mk46LJi6vAWuBh8xsspn1M7Nz8a1mv3ARdnOPNyVcXWMQsL+V/fuArE4ui3gxi4mZJQO/wLdw/Vf0RevVYhGXf8G3aO0AvgFc55x7PTbF65Wijcm/AmvwY4YkNqKNyVPAl4DzgDuAwcAbZjY3VgXspaKJywnB7XPAq8D5+PeyvwOeiVUBe6FYfv+6Gf89elG0hZKOx8U5V4X/gaKxG+4h4HXgZeDLsS1mxyV3dQF6sdZmK0mIZs9eLFYx+TkwC9+nu7U3EGmfaOPyb8CzwDD8JDPPmNl859zLsShcL9WhmAStJguAU1zQyV5ipsOvE+fczc3+/JuZvYj/tfkBjrS0SMd0NC6NP4g/5Zy7J/h3gZklAQ+a2WTn3KqYlLD3idVn/QLgQ+dcYZTlEa+jnytp+B8mhuCT4M3AacA9+DFcX4xhGTtMCVfX2I/P5lvKovUMX+IvJjExsx/hfyFe6Jx7NUZl682ijotzbit+lkKAl82sAPgx/tcvab9oYvIovtV3q5kNDPYlA0nB35XOueqYlbT3iOlninPukJn9D3BbtAXr5aKJy97g9i8t9r+KnwxgOqCEq/1i9Vl/GjARuDNG5ertoonLbfgxj+Odc+uDfYvNrAx4zMx+4ZxbEbOSdpC6FHaNYnx/1ZYmozfQrhJ1TMzsO8DdwNecc0/GsGy9WTxeK+/jZ/iUjokmJpOAv8d/gDZuZwFnBP9OiF8iu6F4vE6M1n9xlshFE5fi4LZlDBp/8dfkWR0Tq9fKQnzribp3xkY0cckH9jdLthq9G9xOirJsMaGEq2v8ATgjWIcGADPLxX/x+EMXlam3iyomZvZVfPeb7zjnfhanMvZGMX2tmFkI30Wq5RuzRC6amJzTyrYC333tHOCF2Be3V4j162QAfr26d2JUvt4qmrj8Cb8m0bwW+y8Mbt+PTRF7nahfK2aWClwH/LG1WYqlQ6KJy04gy8xa/pB6enC7LUZljE5Xz0vfGzf8QnnrgCL8dJeX4b90bMAvaNh43Gj8Lyj3tDh/DjAfPxjQ4ccMzQfmd3XduusWTUzwb7wN+A/IM1psk7u6bt15izIu9wKPANcGr5lr8d1xGvATZ3R5/brjFu37VyvXK0DrcHVZTIB/Av4TuAHfLWdhcJ0a4Oyurlt33mLwWf/Pwf4f4ic0uRuoBB7v6rp11y0W71/AVcF3r6u6uj49ZYvyPSwXPyX8muD96xzg68G+9wnWru3qTWO4uoBz7nAwZeVPgSfxXQReB+50zpU3O9SAJD7dEvl9/BfIRv8QbI3nSDtFGZN5wf55fPrXyDfxX2KkA6KMy3J8//rrgEz8r2Ar8F8i3+6E4vdIMXj/khiLMiargSuDLRP/JeVt4Dbn3LtIh8XgtXIffsa1L+ET4x34WT7vj3PRe6wYvX8txM+ep3HAMRJNXJxzJWZ2Bv5H1geAbGAL8BjwA5cga9dakB2KiIiIiIhIjOmXRxERERERkThRwiUiIiIiIhInSrhERERERETiRAmXiIiIiIhInCjhEhERERERiRMlXCIiIiIiInGihEtERNrFzH5pZs7MHu7qsrSHmd0brPXSq5lZbvBcjO3qsoiI9AZKuEREJGJmlg5cE/x5o5kld2V52umfgV6fcAG5+OdCCZeISCdQwiUiIu1xJTAA+CMwBJjXtcURADPr09VlEBGR1inhEhGR9lgI7AduASqBBa0dZGbTzOx3ZrbXzCrNbLWZfavFMVea2dtmVm5mB83sXTO7rNn9yWb2LTP7xMyqzWy7mf3EzNKaHZMbdG/8kpk9bGa7zazCzF42s9xmx7ngn98Jjndmdm9w30wze8HMtjYr6w+D1rzm5S0ws7fM7DwzWx48zkozu6KD9b/KzJYF1zlgZs+b2ai2AtCsHJea2YdmVg18Kbjvy2a21Mz2BddcZmYXNzt3LvDX4M+/NHsu5jY75nYzW2FmVWZWamb/ZWaD2iqXiIi0rjt1BRERkS5kZicA5wGPOef2mNnvgavMLMs5t7/ZcacBBcA64H8DW4GTgHCzY74CPAL8Hp/ElQOn4Lu7NXoKuBR4CFgCTALuD465ukXxvgV8BHwB3/L2Q+BVM5vinKsFzgSWAo8DjwbnbA1uRwXnPg4cAqYA9+C73F3X4nHGAf8O/AgoBf4ReMHMJjrn1rWj/n8P/F/gV8B9QH/gXuBNMws75w5xfHn45+9+YAOwL9ifC/wSKMF/xl8KvGxmFznn/gQsB/4B+A/gq8B7wXmrgnI9GNTpEeDrwAjgAWCqmc1yztW3US4REWnJOadNmzZt2rS1uQHfBBxwZvD3hcHff9/iuMXAFiDjGNcZgE9sfnucxzo7uPaCFvtvDPZPD/7ODf5eBYSaHXdWsP+2Zvsc8EAbdTR8onIT0AAMbnZfAVALnNRs3xCgHvh2O+rfDygD/rvF/lygBrizjTIWBGWb3sZxoaAurwIvNts/N3guzmvl8euBe1rsb3wur+jq/4PatGnT1h03dSkUEZFILQDWOueWBn+/BmynWbdCM8vAf0F/2jlXcYzrzMInHY8d57Hm4ZOP3wRdC5ODCTpeDe6f3eL4F5xzDY1/OOfexrcsndlWpcxsgJk9ZGbrgWp8UvUkPvk6qcXha51za5s9zm5gN76VLNL6n4lPOp9uUbetwCet1K01Jc65j1qpy6lBd8pdQF1Ql/OBCRFc83x8ktayXO8AByMsl4iItKAuhSIi0iYzmwlMBh4ys4HN7vot8GUzy3POrQGy8F/at7ZymUaDg9vjHTMESMV3NTzeNRrtauWYXfgucW35Fb6r5D34roWHgdPw3e7SWhy7j0+rbnZcJPUfEty+doz79x9jf3M7Wu4wsxOB1/GtfV8BNuOTrvvx3THb0liudce4v+VzLiIiEVDCJSIikVgY3H4z2FpaAHwXnyw0cPxEpzS4HQGsPMYxe4EqfNfC1mxv8ffQVo4Zik+gjimYgONy4F7n3L83259/vPOOI5L67w1ubwGKW7m/rfFb4Lv4tTQPyAQ+75xrSviCVrdINJbrAlpP+va2sk9ERNqghEtERI7LzFLxk0e8A9zdyiE/BW42s+855yrM7C3gJjO7zzlX2crxS/AtV3cAfz7Gw76CT+wynXOvR1DM+WZ2b2O3QjM7CxiJnyijUQ2Q3uK8PkASvutdc7dE8Jif0o76HwLGO+cWdeRxjqExsWqqi5nl4bs4Nm9xqw5uWz4Xf8Eni6Occ3+JYblERHo1JVwiItKWS/Ddyf7ROVfQ8k4zexQ/495c/JTj/wS8CSw1s5/gv+yPxU/y8BXn3KFgivSfmdlvgKfxCch0oMo59zPnXIGZ/Ro/A+DDwLv4ZCAXuAj4ZtD968PSAAABr0lEQVSFsVF/4PdBWXLwswiuBZ5odswq4GIzewXfgrPdObfdzJYB/2hmO/Ctb7cSWVfEY2mr/gfN7OvAf5hZDvAn/CQaI4A5QIFz7pkOPO5r+C6ETwSPOxz4Pr5rYfMx22uC4241s334BGy1c269mT0E/NzMJgR1qAJOxI/v+qVz7q+IiEi7aNIMERFpy0J8QvT8Me7/NX5NroUAzrn38K0qW4Cf4RdJ/jrNWlmccz8HrsG3Qj0N/AaYD2xsdt2b8FOlzwdeBF4AvoxPpFqO2foRfuzR48D/wU9/fqHzU8I3+jJ+fNZL+OnQ7wj2Xw98gB+z9TiwE/jaMZ+NNkRY/0eBy/CTWTyJT7q+j/8h9LjdII/zuMX4WRxHA38AvoFvkVzc4ri9+OdiGj6peg84Nbjv2/jnZTbw//DP+zfxCepaRESk3cy51rqBi4iIJL5gceONwO3OuV92bWlEREQ+TS1cIiIiIiIicaKES0REREREJE7UpVBERERERCRO1MIlIiIiIiISJ0q4RERERERE4kQJl4iIiIiISJwo4RIREREREYkTJVwiIiIiIiJx8v8BNiyGgb1tl30AAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 1008x504 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "f_rates_true = np.zeros(0)\n", "f_rates_human = np.zeros(0)\n", "f_rates_cont = np.zeros(0)\n", "f_rates_caus = np.zeros(0)\n", "x_vals = np.arange(1, 9) / 10\n", "\n", "for r in range(1, 9):\n", " print(r, end=\" \")\n", "\n", " f_rates_cont = np.append(\n", " f_rates_cont,\n", " contraction(s_test_labeled, 'judgeID_J', 'decision_T', 'result_Y',\n", " 'pred_Y', 'acceptanceRate_R', r / 10))\n", "\n", " f_rates_caus = np.append(\n", " f_rates_caus,\n", " np.sum((s_test_labeled.dropna().result_Y == 0)\n", " & (cdf(s_test_labeled.dropna().X, s_logreg, 0) < r / 10)) /\n", " s_test_labeled.dropna().result_Y.shape[0])\n", "\n", " #### True evaluation\n", " # Sort by failure probabilities, subjects with the smallest risk are first.\n", " s_sorted = s_test.sort_values(by='probabilities_Y',\n", " inplace=False,\n", " ascending=True)\n", "\n", " to_release = int(round(s_sorted.shape[0] * r / 10))\n", "\n", " # Calculate failure rate as the ratio of failures to successes among those\n", " # who were given a positive decision, i.e. those whose probability of negative\n", " # outcome was low enough.\n", " f_rates_true = np.append(\n", " f_rates_true,\n", " np.sum(s_sorted.result_Y[0:to_release] == 0) / s_sorted.shape[0])\n", "\n", " #### Human error rate\n", " # Get judges with correct leniency as list\n", " correct_leniency_list = s_test_labeled.judgeID_J[\n", " s_test_labeled['acceptanceRate_R'].round(1) == r / 10].values\n", "\n", " # Released are the people they judged and released, T = 1\n", " released = s_test_labeled[\n", " s_test_labeled.judgeID_J.isin(correct_leniency_list)\n", " & (s_test_labeled.decision_T == 1)]\n", "\n", " # Get their failure rate, aka ratio of reoffenders to number of people judged in total\n", " f_rates_human = np.append(\n", " f_rates_human,\n", " np.sum(released.result_Y == 0) / correct_leniency_list.shape[0])\n", "\n", "plt.plot(x_vals, f_rates_cont, label=\"Contraction\")\n", "plt.plot(x_vals, f_rates_caus, label=\"Causal\")\n", "plt.plot(x_vals, f_rates_true, label=\"True evaluation\")\n", "plt.plot(x_vals, f_rates_human, label=\"Human evaluation\")\n", "plt.title('Failure rate vs. Acceptance rate, simple data')\n", "plt.xlabel('Acceptance rate')\n", "plt.ylabel('Failure rate')\n", "plt.legend()\n", "plt.grid()\n", "#plt.yscale(value=\"log\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "test_labeled.to_excel('test_labeled.xlsx', sheet_name='sheet1', index=False)\n", "s_test_labeled.to_excel('s_test_l.xlsx', sheet_name='sheet1', index=False)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": true, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": true, "toc_position": { "height": "calc(100% - 180px)", "left": "10px", "top": "150px", "width": "300.7px" }, "toc_section_display": true, "toc_window_display": true }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "position": { "height": "352.85px", "left": "1070px", "right": "20px", "top": "120px", "width": "350px" }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }